Introduction to Accelerator Physics

Part 4

Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 29th July ²⁰¹⁴

Differences between proton and electron accelerators

HERA (Hadron Electron Ring Accelerator) tunnel:

27.5 GeV

Which collider is better?

Dipole magnet

Radio antenna

Radiation of a dipole antenna

Radiation of an oscillating dipole

$$
P = \frac{q^2 a^2}{12\pi \varepsilon_0 c^3} \gamma^4 \omega^4
$$

litude: $a < \lambda$)

$$
P = \frac{q^2 a^2}{12\pi \varepsilon_0 c^3} \gamma^4 \omega^4
$$

$$
\gamma = \frac{E}{m_0 c^2}
$$

Radiation of a moving oscillating dipole

Radiation of a oscillating dipole under relativistic conditions

Pedro Castro | Introduction to Accelerator Physics | 29th July 2014 | **Page 8**

$$
\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}}[\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}
$$

$$
\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}}[\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}
$$

$$
\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}}[\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}
$$

$$
\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}}[\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}
$$

• proton synchrotrons $\qquad \qquad | \qquad \text{dipole magnet}$ \bullet electron synchrotrons $|$ synchrotron radiation particle type limitation Basics of synchrotron radiation

International Linear Collider (ILC)

Colliding beams with Ecm = 500 GeV (update to 1 TeV possible)

Figure of merit: Luminosity

production rate of a given event (for example, Z particle production):

Luminosity

Luminosity enhancement factor $\bm{H}_{\bm{D}}$ due to focusing of opposite beam

Luminosity enhancement factor $\bm{H}_{\bm{D}}$ due to focusing of opposite beam

International Linear Collider (ILC)

Colliding beams with Ecm = 500 GeV (update to 1 TeV possible)

Damping rings

Radiation damping:

Longitudinal acceleration:

Pedro Castro | Introduction to Accelerator Physics | 29th July 2014 | **Page 20**

Quatum excitation

>Quantum excitation

- $\overline{}$ Radiation is emitted in discrete quanta
- $\mathcal{L}_{\mathcal{A}}$ Number and energy distribution etc. of photons obey statistical laws
- \blacksquare \longrightarrow Increase beam size

Positron source

Luminosity

Pedro Castro | Introduction to Accelerator Physics | 29th July 2014 | **Page 23**

Project for a future e-e+ collider: ILC

The International Linear Collider

Colliding beams with $E_{CM} = 500$ GeV

using superconducting cavities for acceleration:

Advantages of RF superconductivity

at radio-frequencies, there is a "microwave surface resistance"

which typically is 5 orders of magnitude lower than R of copper

Advantages of RF superconductivity

Example: comparison of 500 MHz cavities:

2nd law of Thermodynamics

"Heat cannot spontaneously flow from a colder location to a hotter location"

reduction factor of >100 in (electrical) power

$$
P_{beam} = \eta_{RF \rightarrow beam} P_{RF}
$$

Pedro Castro | Introduction to Accelerator Physics | 29th July 2014 | **Page 30**

reduction factor of 4 in (electrical) power

Pedro Castro | Introduction to Accelerator Physics | 29th July 2014 | **Page 31**

Laser-driven plasma wakefield acceleration

Laser-driven plasma wakefield acceleration

Laser-driven plasma wakefield acceleration

Acceleration (and focusing) within a hair width …

Simulations

Pedro 1.5 troduction to Accelerator Physics | 29th July 2014 | **Page 39**

Breakthrough in the lab

nature physics | VOL 2 | OCTOBER 2006

Breakthrough in the lab

LETTERS

GeV electron beams from a centimetre-scale accelerator

W. P. LEEMANS^{1*†}, B. NAGLER¹, A. J. GONSALVES², Cs. TÓTH¹, K. NAKAMURA^{1,3}, C. G. R. GEDDES¹, E. ESAREY^{1*}, C. B. SCHROEDER¹ AND S. M. HOOKER²

¹ Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA ²University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK ³Nuclear Professional School, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188, Japan *Also at: Physics Department, University of Nevada, Reno, Nevada 89557, USA te-mail: WPLeemans@lbl.gov

2-3 orders of magnitude higher acceleration fields than conventional RF cavities

smaller and cheaper accelerators are possible

nature physics | VOL 2 | OCTOBER 2006

Challenges of laser-driven plasma wakefield acceleration

- •plasma self-injection is very unstable in energy, timing …
- \bullet very low efficiency "wall-plug power" to "beam power"

Challenges of laser-driven plasma wakefield acceleration

- •plasma self-injection is very unstable in energy, timing ...
- •very low efficiency "wall-plug power" to "beam power"
- •maximum energy limitation at 1 GeV or few GeV (in self-injection mode)
- •multiple-stage plasma acceleration not yet demonstrated

Challenges of laser-driven plasma wakefield acceleration

not yet proven !

Linear collider based on plasma wakefield acceleration

Circular colliders (synchrotrons):

1000 turns in a synchrotron with $B = 7$ T

Circular colliders (synchrotrons):

(muon beams produced as tertiary beams)

Muon collider principle

Muon collider block diagram

Collider: $E_{cm} = 3$ TeV
circumforone circumference $= 4.5$ km $L = 3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

MICE at FERMILAB (Chicago)

The Muon Lonization Cooling Experiment (MICE) \rightarrow demonstrate the method and validate simulations

Basics of synchrotron radiation

International Linear Collider (ILC):

- •luminosity eq.
- •damping rings
- positron source
- power efficiency in superconducting cavities

Two very promising (and challenging) research areas in accel. physics:

- •laser-driven plasma wakefield acceleration
- •muon collider

Thank you for your attention

pedro.castro@desy.de

