# Introduction to Accelerator Physics

Part 4

Pedro Castro / Accelerator Physics Group (MPY)

Introduction to Accelerator Physics DESY, 29th July 2014





### Differences between proton and electron accelerators

HERA (Hadron Electron Ring Accelerator) tunnel:



electron accelerator

27.5 GeV

proton

accelerator

920 GeV



### Which collider is better?











### Radio antenna















### Radiation of a dipole antenna

#### local oscillator:

$$P = \frac{q^2 a^2}{12\pi\varepsilon_0 c^3} \omega^4$$

(oscillation amplitude:  $a < \lambda$ )

### moving oscillator:

moving oscillator: 
$$P = \frac{q^2 a^2}{12\pi\varepsilon_0 c^3} \gamma^4 \omega^4$$
 
$$\gamma = \frac{E}{m_0 c^2}$$

### Radiation of an oscillating dipole



### Radiation of a moving oscillating dipole





### Radiation of a oscillating dipole under relativistic conditions









**Electrons** 

Total energy loss after one full turn:

$$\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}} [\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}$$





Total energy loss after one full turn:

$$\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}} [\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}$$



Total energy loss after one full turn:

$$\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}} [\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}$$

HERA electron ring:

 $E = 27.5 \, \text{GeV}$ 

$$\rightarrow$$
 r = 580 m

$$r = 580 \text{ m}$$

$$E = 920 \, \text{GeV}$$

**HERA** proton ring:

$$\gamma = 54000$$

$$\gamma = 980$$

$$\Delta E_{turn} = 87 \text{ MeV } (0.3\%)$$

the limit is the max. dipole field = 5.5 Tesla

$$\frac{1}{r} = \frac{qB}{p} \implies p_{max} = RqB_{max}$$

need acceleration = 87 MV per turn



Total energy loss after one full turn:

$$\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}} [\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}$$





# Summing-up

| Basics of synchrotron radiation           |                       |  |
|-------------------------------------------|-----------------------|--|
| particle type                             | limitation            |  |
| • proton synchrotrons                     | dipole magnet         |  |
| <ul> <li>electron synchrotrons</li> </ul> | synchrotron radiation |  |



### International Linear Collider (ILC)

Colliding beams with Ecm = 500 GeV (update to 1 TeV possible)





### Figure of merit: Luminosity





production rate of a given event (for example, Z particle production):





### Luminosity





number of colliding bunches per second number of positrons per bunch  $R_Z = \sum_z \cdot L = \sum_z \cdot \frac{f_b N_{e+} N_{e-}}{4\pi\,\sigma_x^* \sigma_y^*} \cdot H_D$  beam-beam enhancement factor transverse bunch sizes (at the collision point \*)



### Luminosity enhancement factor $H_D$ due to focusing of opposite beam

### electric field of a charged particle (or bunch)



opening angle of field lines =  $\pm 1/\gamma$ 

#### electron bunch





### Luminosity enhancement factor $H_D$ due to focusing of opposite beam





### International Linear Collider (ILC)

Colliding beams with Ecm = 500 GeV (update to 1 TeV possible)





### Damping rings

#### Radiation damping:



Longitudinal acceleration:



acceleration (only in z direction)

$$rac{p_{\chi}}{|\vec{p}|}$$
 and  $rac{p_{\mathcal{Y}}}{|\vec{p}|}$  get smaller



### Quatum excitation



### > Quantum excitation

- Radiation is emitted in discrete quanta
- Number and energy distribution etc. of photons obey statistical laws
- → Increase beam size



### Positron source



### Luminosity





### Project for a future e-e+ collider: ILC

#### The International Linear Collider



Colliding beams with  $E_{CM} = 500 \text{ GeV}$ 

using superconducting cavities for acceleration:







at radio-frequencies, there is a "microwave surface resistance" which typically is <u>5 orders of magnitude</u> lower than R of copper



Example: comparison of 500 MHz cavities:

| dynamic losses | superconducting cavity | normal conducting cavity |                                |
|----------------|------------------------|--------------------------|--------------------------------|
| for E = 1 MV/m | 0.4+1)W/m<br>at 2 K    | 60 kW/m                  | dissipated at the cavity walls |
| static losses  |                        |                          |                                |
|                |                        |                          |                                |
|                |                        |                          |                                |

### 2<sup>nd</sup> law of Thermodynamics

"Heat cannot spontaneously flow from a colder location to a hotter location"



 $\boldsymbol{W}$ 

max. efficiency

most common applications



thermal power stations, cars, ...



air conditioners, refrigerators, ...



Example: comparison of 500 MHz cavities:

|                | superconducting cavity           | normal conducting cavity |                                 |
|----------------|----------------------------------|--------------------------|---------------------------------|
| for E = 1 MV/m | 0.4 + 1 W / m<br>at 2 K          | 60 kW/m                  | dissipated at the cavity walls  |
| Carnot effici  | ency: $\eta_c = \frac{T}{300-T}$ | x = 0.007 x              | cryogenics 20-30%<br>efficiency |
| for E = 1 MV/m | 1 kW/m 0.4 W/m                   | 60 kW/m                  |                                 |
|                | electric power                   | RF power lost            |                                 |

Example: comparison of 500 MHz cavities:

|                | superconducting cavity    | normal conducting cavity   |                                          |
|----------------|---------------------------|----------------------------|------------------------------------------|
| for E = 1 MV/m | 0.4 + 1 W / m<br>at 2 K   | 60 kW/m                    | dissipated at the cavity walls           |
| for E = 1 MV/m | 1 kW/m 0.4 W/m            | 60 kW/m                    |                                          |
| for E = 1 MV/m | 1 kW/m 0.8 W/m<br>e-power | 120 kW/m<br>e-power for RF | including RF generation efficiency (50%) |

reduction factor of >100 in (electrical) power



Example: comparison of 500 MHz cavities:

|                                         | superconducting cavity | normal conducting cavity |
|-----------------------------------------|------------------------|--------------------------|
| for E = 1 MV/m                          | 0.4 + 1 W/m            | 60 kW/m                  |
|                                         | at 2 K                 |                          |
|                                         |                        |                          |
| for E = 1 MV/m                          | 1 kW/m 0.4 W/m         | 60 kW/m                  |
|                                         | e-power                | RF power                 |
| for $E = 1 \text{ MV/m}$                | 1 kW/m 0.4 W/m         | 60 kW/m                  |
| and                                     | +                      | +                        |
| 20 mA beam                              | 20 kW/m                | 20 kW/m                  |
| $\eta_{{\scriptscriptstyle RF}	o beam}$ | ~ 100 %                | ~ 25 %                   |

dissipated at the cavity walls

$$P_{beam} = \eta_{RF o beam} P_{RF}$$



Example: comparison of 500 MHz cavities:

|                                  | superconducting cavity  | normal conducting cavity |                                          |
|----------------------------------|-------------------------|--------------------------|------------------------------------------|
| for E = 1 MV/m                   | 0.4 + 1 W / m<br>at 2 K | 60 kW/m                  | dissipated at the cavity walls           |
| for E = 1 MV/m                   | 1 kW/m 0.4 W/m          | 60 kW/m                  |                                          |
|                                  | e-power                 | RF power                 |                                          |
| for E = 1 MV/m                   | 1 kW/m 0.4 W/m          | 60 kW/m                  |                                          |
| and<br>20 mA beam                | 20 kW/m                 | 20 kW/m                  |                                          |
|                                  |                         |                          |                                          |
| for E = 1 MV/m<br>and 20 mA beam | 1 kW/m<br>40 kW/m       | 160 kW/m                 | including RF generation efficiency (50%) |
|                                  |                         | e-power for RF           | -                                        |

reduction factor of 4 in (electrical) power





## Accelerator Research at DESY







## Accelerator Research at DESY







# **Accelerator Research at DESY**





& testing of sc cavities and modules, AMTF, ongoing)

#### **FEL Seeding**

(sFLASH, FLASH2 seeding, ongoing)

#### **LAOLA at FLASH2**

(beam-driven plasma acceleration, 2016+)

**SINBAD** (ultra-short bunches, LAOLA, prototype table-top FEL, 2017+)

**AXSIS** (atto-second bunches, ICS, 2014+)

#### **LAOLA at REGAE**

(laser-driven plasma acceleration, 2013-2016)

**Surface Technology** 

**SC Technology** 

(R&D on CW, cryo module test bench, ongoing)

(cavity surfaces, CRISP, ongoing)

<u>La</u>boratory for <u>Laser- and beam-driven plasma <u>Acceleration</u> (LaoLA)</u>

Haupteingang Main Gate

Relativistic Electron Gun for Atomic Exploration (REGAE)

Short Innovative Bunches and Accelerators at Doris (SINBAD)

Attosecond X-ray Science Imaging and Spectroscopy (AXSIS)

Photo Injector Test Facility at DESY, Location Zeuthen (PITZ)

Zeuthen Campus

Photo-Injector (ongoing)

#### **LAOLA at PITZ**

(bunch modulation in plasma, 2013+)

Hamburg Campus



### Laser-driven plasma wakefield acceleration





### Laser-driven plasma wakefield acceleration





# Laser-driven plasma wakefield acceleration





# Acceleration (and focusing) within a hair width ...

E<sub>long</sub> 100 GV/mg<sub>transv</sub> 300 MT/m

Trapped electron beam

~35 µm

 $(120 \, fs)$ 

~25 µm





# **Simulations**



### Breakthrough in the lab



#### **LETTERS**

# GeV electron beams from a centimetre-scale accelerator

W. P. LEEMANS<sup>1\*†</sup>, B. NAGLER<sup>1</sup>, A. J. GONSALVES<sup>2</sup>, Cs. TÓTH<sup>1</sup>, K. NAKAMURA<sup>1,3</sup>, C. G. R. GEDDES<sup>1</sup>, E. ESAREY<sup>1\*</sup>, C. B. SCHROEDER<sup>1</sup> AND S. M. HOOKER<sup>2</sup>

nature physics | VOL 2 | OCTOBER 2006



<sup>&</sup>lt;sup>1</sup>Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

<sup>&</sup>lt;sup>2</sup>University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

<sup>&</sup>lt;sup>3</sup>Nuclear Professional School, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188, Japan

<sup>\*</sup>Also at: Physics Department, University of Nevada, Reno, Nevada 89557, USA

<sup>†</sup>e-mail: WPLeemans@lbl.gov

#### Breakthrough in the lab



#### **LETTERS**

# GeV electron beams from a centimetre-scale accelerator

W. P. LEEMANS<sup>1\*†</sup>, B. NAGLER<sup>1</sup>, A. J. GONSALVES<sup>2</sup>, Cs. TÓTH<sup>1</sup>, K. NAKAMURA<sup>1,3</sup>, C. G. R. GEDDES<sup>1</sup>, E. ESAREY<sup>1\*</sup>, C. B. SCHROEDER<sup>1</sup> AND S. M. HOOKER<sup>2</sup>

2-3 orders of magnitude higher acceleration fields than conventional RF cavities

smaller and cheaper accelerators are possible

nature physics | VOL 2 | OCTOBER 2006



<sup>&</sup>lt;sup>1</sup>Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

<sup>&</sup>lt;sup>2</sup>University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

<sup>&</sup>lt;sup>3</sup>Nuclear Professional School, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188, Japan

<sup>\*</sup>Also at: Physics Department, University of Nevada, Reno, Nevada 89557, USA

<sup>†</sup>e-mail: WPLeemans@lbl.gov

#### Challenges of laser-driven plasma wakefield acceleration

- plasma <u>self-injection</u> is very unstable in energy, timing ...
- very low efficiency "wall-plug power" to "beam power"

(reminder: power efficiency in RF cavity accelerators)





#### Challenges of laser-driven plasma wakefield acceleration

- plasma <u>self-injection</u> is very unstable in energy, timing ...
- very low efficiency "wall-plug power" to "beam power"
- maximum energy limitation at 1 GeV or few GeV (in self-injection mode)
- multiple-stage plasma acceleration not yet demonstrated



#### Challenges of laser-driven plasma wakefield acceleration



not yet proven!



### Linear collider based on plasma wakefield acceleration





# Circular colliders (synchrotrons):

| particle type                                   | limitation                                                  |
|-------------------------------------------------|-------------------------------------------------------------|
| • proton synchrotrons 938 MeV/c <sup>2</sup>    | dipole magnet                                               |
| • electron synchrotrons $0.511 \text{ MeV/}c^2$ | synchrotron radiation                                       |
| <ul> <li>muon synchrotrons</li> </ul>           | mean lifetime: $\tau = 2.2~\mu s$ ?                         |
| 105.7 Me $V/c^2$                                | $	au^* = \gamma \; 	au = 21 \; m$ s at $	ext{E} = 1 \; TeV$ |
|                                                 | travel 6300 km                                              |
| '                                               | 1000 turns in a synchrotron with $B = 7 T$                  |

### Circular colliders (synchrotrons):

| particle type                                   | limitation                                                                |
|-------------------------------------------------|---------------------------------------------------------------------------|
| • proton synchrotrons<br>938 MeV/c <sup>2</sup> | dipole magnet                                                             |
| • electron synchrotrons $0.511 \text{ MeV}/c^2$ | synchrotron radiation                                                     |
| <ul> <li>muon synchrotrons</li> </ul>           | mean lifetime: $	au=2.2~\mu \mathrm{s}$                                   |
| 105.7 MeV/c <sup>2</sup>                        | $p  ightarrow \pi  ightarrow \mu$ (muon beams produced as tertiary beams) |



#### Muon collider principle

#### Muon collider block diagram



#### Collider:

$$E_{cm} = 3 \text{ TeV}$$
  
circumference = 4.5 km  
 $L = 3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 



#### MICE at FERMILAB (Chicago)



#### Summing-up

#### Basics of synchrotron radiation

| particle type                             | limitation            |
|-------------------------------------------|-----------------------|
| <ul> <li>proton synchrotrons</li> </ul>   | dipole magnet         |
| <ul> <li>electron synchrotrons</li> </ul> | synchrotron radiation |

#### <u>International Linear Collider (ILC)</u>:

- luminosity eq.
- damping rings
- positron source
- power efficiency in superconducting cavities

Two very promising (and challenging) research areas in accel. physics:

- laser-driven plasma wakefield acceleration
- muon collider



# Thank you for your attention

pedro.castro@desy.de

