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Abstract

The CMS detector at the LHC is currently analyzing data in a effort to find signatures
of the supersymmetric neutral Higgs-like bosons. As a part of this analysis, a control region
with a high background to signal ratio must be determined. ROOT’s Toolkit for Multivariate
Analysis was used to find the optimal cuts across nine input kinematic variables. This
analysis returned a viable control region, with a background to signal ratio of 7.6, while
retaining a background selection efficiency of 60%.
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1 1 INTRODUCTION

1 Introduction

Over the past few decades, numerical theory has become an integral part of scientific ap-
proaches. This is especially true when it comes to solving partial differential equations, many
of which have no known analytical solution. These types of equations are often useful in de-
scribing physical processes, especially in astrophysics. This paper aims to outline some of the
fundamentals of differential numerical theory by exploring several different types of numerical dif-
ferentiation and integration. These methods will be compared and applied to a model differential
equation.

1.1 Background

1.2 Theory

The CMS detector is one of two general purpose detectors at the LHC. It is equipped with
several layers of detectors, each of which is designed to measure different properties of the final
state particles.

Figure 1: The path of particles as they pass through all the CMS detectors [2]

The first layer is the silicon tracker detector. It reconstructs the path, or track, of post
collision muons, electrons and charged hadrons as they pass through. The particles then reach
the electromagnetic calorimeter. As the name suggests it measures the energy of electromagnetic
particles, namely electrons and photons. The leftover particles, unaffected by the electromagnetic
calorimeter, now pass through the hadron calorimeter. This measures the energy of hadrons,
which are particles made of quarks and gluons. The muon detector sits on the outermost layer
of CMS. [3, 4].

The combination of all these layers allows the CMS collaboration to accurately measure final
state particles from a collision. From this data, physicists are able to reconstruct the interactions
of the full event, including signatures of currently undiscovered particles.

1.3 Jets

The main physical objects that this paper deals with are jets. Jets result from the fundamental
nature of the strong force. Since the strong force coupling increases with distance, unbound
quarks are never observed in nature. Instead, they exist in hadronic bound states. In proton-
proton collisions at high energies, the partons involved in the hard interaction may fly apart to
form several hadrons. This process is referred to as hadronization.
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The resulting particles are unstable. This causes them to decay into lower energy hadrons.
The particles in these bunches all travel in approximately the same direction, and hence are
referred to as jets. Jets are reconstructed from final state particles using clustering algorithms.
Furthermore, jets can be described by their own set of kinematic properties [5].

1.3.1 Properties

The fundamental property a jet is its four momentum, which is simply a sum of the four
momentum of all its constituent particles. From this, the transverse momentum, traverse energy,
rapidity, pseudorapidity, azimuthal angle, and polar angle can be defined. For a jet J , consisting
of N particles, each denoted by index i, these properties are defined as the following [5]:

• Four Momentum: pJ =
(
EJ ,pJ

)
=

N∑
i

(
Ei, pix, p

i
y, p

i
z

)
• Tranverse Energy: EJ

T =

√
(mJ)2 +

(
pJT
)2

• Rapidity: yJT = ln

√
EJ + pJz
EJ − pJz

• Azimuthal Angle: φJ = arctan
pJy
pJx

• Tranverse Momentum: pJT =

√
(pJx)2 +

(
pJy
)2

• Pseudorapidity: ηJT = ln

√
|pJ |+ pJz
|pJ | − pJz

• Polar Angle: θJ = arccos
pJz
pJT

1.3.2 Identification

In order to group final state particles into a jet, the “anti-kt” jet-clustering algorithm is
used. This process compares effective distances between entities i and j, and entity i and
the beam, B. The goal of this algorithm is to identify all high-pT , or hard, particles as the
origin of a jet, grouping the appropriate low-pT , or soft, particles to this jet. This is done by
identifying the smallest distance between entities. The distances are defined by the following,
where ∆2

ij = (yi − yj)2 + (φi − φj)2, and R is a radius parameter defined in the analysis.

dij = min
[
(piT )−2, (pjT )−2

] ∆2
ij

R2
diB = (piT )−2

The algorithm groups particles i, j into the same jet for the case where dij is smaller than diB.
Otherwise, it defines a new jet for particle i. Since hard particles have a much higher transverse
momentum than soft particles, this minimum function in this algorithm ensures hard particles
group with soft particles long before soft particles will group to each other. The R parameter is
analogous to a cone parameter around the hard particle, inside which all soft particles will be
included in the jet [6].

1.4 Supersymmetry

One of the most developed framework for physics beyond the Standard Model is Supersym-
metry (SuSy). It was first formulated in the mid 1970’s as a solution to the “fine tuning” problem
of the SM 1. Since much of the SM is built around the observed symmetries in nature, super-
symmetry looks to extend this success by positing an as of yet unobserved symmetry. It predicts
that every particle has a superpartner, or a corresponding particle with similar properties, yet
opposite spin statistics. Hence, for every boson, there is a corresponding particle that obeys
fermionic statistics and vice versa.

1This problem requires a delicate balancing of divergent terms, due to loop-level contributions of particle
interactions. See [7] for more details
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1.4.1 SuSy Breaking

It is important to note that no supersymmetric particles have been observed yet. While
the symmetry itself suggests that all SM particles have a superpartner of the same mass, the
fact that none have been observed suggests that supersymmetry is a broken symmetry [8]. The
favoured supersymmetric theories are ones that contain soft SUSY breaking, which means that
the mass between the SM particles and the SUSY counterparts is different, but only by an order
of magnitude or so at the most. As experiments reach higher and higher energies, the absence
of observed superpartners pushes this theory to more and more unnatural territory.

1.4.2 Minimal Supersymmetric Model

The most minimal form is appropriately named the Minimal Super Symmetric Model (MSSM).
Even in this economical form, there exist two Higgs doublet superfields, each comprised of a
fermionic component, called a Higgsino, and a scalar component, the Higgs boson. These dou-
blet fields are described by Hu =

(
H+

u H0
u

)
and Hd =

(
H0

d H
−
d

)
. Due to chirality considerations,

supersymmetry demands the existence of at least two such fields, where Hu gives mass to the
“up-like” quarks, and Hd gives mass to the “down-like” quarks. Each of these multiplets contain
an electrically neutral component, denoted with a 0, and a charged component, denoted with a
plus or minus respectively. All of these components can be complex [7].

This model is the simplest supersymmetric extension and has been referred to as the “standard
model” for physics beyond the SM. As illuminated before, the scalar Higgs fields in MSSM consists
of two complex doublets, Hu and Hd, yielding a total of eight degrees of freedom. When the
electroweak symmetry is broken, the three would-be the Goldstone bosons of the potential are
absorbed into the longitudinal degrees of freedom of the Z0 and W± bosons [5]. The remaining
five degrees of freedom manifest as two CP-even neutral scalar bosons, h0 and H0, one CP-odd
neutral scalar boson A0, a positively charged scalar boson H+ and a negatively charged scalar
boson H− [8]. By convention, h0 is of smaller mass than H0, which is theoretically limited by
mh0 . 135 GeV 2 [8]. This h0 boson is a superposition of the neutral components of Hd and
Hu, hence it couples to both “up” and “down” like quarks. Given the upper limit on its mass, it
closely resembles the SM Higgs boson, and can naïvely be considered the MSSM equivalent [8].

1.5 MSSM Higgs Search

Figure 2: Decay channel

The ultimate goal of this study is to search for neutral
scalar decays into two bottom quarks at CMS. This involves
colliding two protons, which creates a scalar particle, which
then decays into two bottom quarks. This decay channel can
be visualized in the adjacent Feynman diagram in Figure 2.

The desired final state is characterized by three b-quark
jets that fall within the tracker acceptance and satisfy kine-
matic parameters. A signal event occurs when two of these
jets result from the one of the desired neutral scalar bosons.
These jets are expected to have the highest two transverse momenta in the interaction, with the
third jet following. The background for this process is either composed of three genuine b-jets
from QCD processes, or two b-jets and one misclassified jet originating from a lighter parton.

MSSM has three candidates for the scalar boson in this process: the h0, the H0 and the A0

bosons. As such, additional mass resonances are expected mass spectrum of the two resulting
b-quark jets. This is referred to as the dijet mass spectrum. This study is looking at a medium
mass scenario which requires that the mass of the scalar particle(s) is above 180 GeV [9].

2This limit assumes that all supersymmetric particles that contribute to the m2
h0 term in loops do not have a

mass that exceeds 1 TeV.
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In order to verify the results of this study, a control region must be determined where no
signal is expected. By probing both control regions and signal regions, this study can confirm
that any resulting signal is not a result of event selection bias. The optimal control region is
determined using multivariate analysis techniques.

1.6 Multivariate Analysis

In order to determine the optimal control region, cuts must be made across many variables.
Making simple cuts across each variable independently results in a low sensitivity since these
variables are not independent. Determining the best cut necessitates multivariate analysis tech-
niques which are conveniently provided by ROOT’s Toolkit for Multivariate Analysis (TMVA).
TMVA provides several classification tools, all of which follow the same general, two step “su-
pervised learning” structure. The goal of these tools is to be able to neatly classify events as
background or signal.

The first step makes use of Monte Carlo generated training events, for which the desired
classification is already known. From these events, the classifier builds a mapping function that
describes a “decision boundary.” This boundary represents the optimal cuts across all variables
to distinguish background from signal. Another set of statistically independent events are then
passed through the classifier to test if this decision boundary holds for any event set [10].

1.7 Input Kinematic Variables

Events are characterized by their measurable final state kinematic properties. The best vari-
ables for classification are then determined. Ideally, each variable used has a different distribution
for background and signal events and no two variables are correlated. Furthermore, to avoid sam-
ple biasing, none of the preselection parameters can be used, as discussed in section 2.3. This
study uses nine input kinematic variables, each of which are outlined below.

For the following variables, note that the input jets are ranked by transverse momentum. It
is expected that the first two leading jets, i.e. jet 1 and jet 2, result from the decay of the scalar
boson. The third jet is expected to result from the third b-quark in the process.

• dphijet2jet3_boost13: The difference in the polar angles of the second and third jet in
the center of mass frame of the first and third jet system.

• Et3byEt2: The transverse energy of the third jet divided by the transverse energy of the
second jet. Note that this is always less than 1 by definition.

• phijet3_boost12: The polar angle of the third jet in the center of mass frame of the first
and second jet system

• thetajet1_boost13: The polar angle of the first jet in the center of mass frame of the first
and third jet system

• ptd1: The area of the leading jet upon detection.

• ptd2: The area of the sub-leading jet upon detection.

For the following variables, the thrust and thrust axis must first be defined. The thrust
describes the coordination the motion of the final state particles. It is defined as the following
quantity, T , where nT is the thrust axis. Note that the thrust axis maximizes the thrust by
definition and that the index i runs over all particles in the event [11].

T = max
nT

(∑
i |pi · nT |∑

i |pi|

)
TMa = max

nMa⊥nT

(∑
i |pi · nMa|∑

i |pi|

)
TMi =

∑
i |pi · nMi|∑

i |pi|
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• major: Thurst Major, TMa, which is the defined similarly to the thrust along a different
axis, nMa. This axis must be perpendicular to nT and maximize TMa.

• minor Thurst Minor, TMi, which is the defined similarly to the thrust along a different axis,
nMi. This axis is defined as the one perpendicular to both nMa and nT .

• Bmin Narrow jet broadening, BN , is defined by splitting the event into two hemispheres
using a plane through the origin and perpendicular to nT . The following value is calculated
for both hemispheres, where BN is the lesser of the two values.

BN = min
i∈{1,2}

(∑
k∈Hi

|pk × nT |
2
∑

j |pj |

)

2 Method

This study uses Monte Carlo simulations to build and test multivariate analysis techniques
that will eventually be used on real data. This implies that these events must fall within trigger
requirements and preselection criteria to be considered. Once a sample is compiled, it is used
to build a Boosted Decision Tree (BDT) classifier. This classifier is then tested again on a
statistically independent sample.

2.1 Event Selection

Before events are considered for analysis, they must contain at least three jets, each satisfying
the following requirements [9].

• pJ1T > 60 GeV ; pJ2T > 53 GeV ; pJ3T > 20 GeV

• |ηJ | < 2.2 for the three leading jets.

• ∆R2
12 = (η1 − η2)2 + (φ1 − φ2)2 > 1

2.2 b-Jet Tagging

Hadrons containing b-quarks have an average lifetime of τB ≈ 1.6 ps, which corresponds to
a flight distance on the order of centimeters when traveling close to the speed of light. This
means that any b-hadrons resulting from the initial interaction at the primary vertex will decay
inside the detector at a secondary vertex. Jets originating from b-quarks to be easily tagged by
identifying a secondary vertex characteristic of the mean b-hadron lifetime.

In the absence of identifying a secondary vertex directly, shortest distance of approach of
particles resulting from a b-hadron are measured from the primary vertex. This is referred to as
the impact parameter (IP). Particles originating fro the primary vertex have an IP that is close
to the resolution of the detector, whereas those from the secondary vertex may have a much
larger IP. This difference, illustrated below in Figure 3, allows for decay products of b-hadrons
to be grouped into a b-jet [12].

The secondary vertex and IP methods are combined in Combined Secondary Vertex CSV
algorithm. This algorithm outputs a value in the range 0 ≤ d ≤ 1, with 1 signifying a “perfect”
b-jet. This study opts for a tight CSV parameter of d > 0.898. Vertices from other long-lived
particles are suppressed by requiring that the secondary vertex is less than 2.5 cm away from the
primary vertex. Additionally, no tracks with mass greater than 6.5 GeV or a comparable mass
to the K0

s meson were considered.



2 METHOD 6

Figure 3: Impact Parameter due to a Secondary Vertex [12]

2.3 Variable Selection

In selecting the ideal kinematic variables, it is important to avoid any variable that introduces
a selection bias, i.e. selecting more signal events than background or vice versa. This means
that none of the b-tagging criteria are used. By definition, all signal events have b-jets in them,
whereas some of the background events have mislabeled jets resulting from lighter quarks. Using
b-tagging criteria would then introduce a bias whereby background and signal events would be
treated differently.

The result of this study will examine the combined mass of the two leading jets, referred to as
dijet mass. In order to avoid selection biasing, this variable and all variables with a correlation
of 50% or higher to it were excluded. This is the same as requiring that the final dijet mass
distribution is independent of the selection process so that it remains a representative sample of
the entire distribution. The selected variables were determined by running TMVA with differing
settings many times, until optimal separation was reached.

2.4 Boosted Decision Trees

Figure 4: Decision tree

The classifier used in this study is referred
to as a Boosted Decision Tree (BDT). This
method utilizes a binary tree structure, as
shown in Figure 4. The classifier starts with all
events stored in a root node. It determines the
variable that will provide the best separation
between background and signal, and scans this
variable for the optimal cut value. Once the
cut is found, the process of selecting the opti-
mal variable and value is repeated on all sub-
sequent daughter nodes until a minimum num-
ber of events in each node is reached. The final
nodes are referred to as the leaf nodes. They
are classified as background or signal depend-
ing on the majority of events in the node. The
testing sample is then run through the same
decision tree so that its classification accuracy
can be determined.

This classification technique has two major sources of error. The first is overtraining, which is
when the classifier becomes too specific to the training sample, and hence cannot be generalised
to a statically independent testing sample. A process called pruning is used on the classifier to
alleviate this effect. The second is the classifier’s instability when dealing with fluctuating data.
In order to stabilize the classifier, a process called boosting is used, which is analogous to training
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many classifiers and averaging their result [10].

2.4.1 Cutting

The goal of MVA is to end up with leaf nodes that are either pure signal or pure background.
The purity of a node is defined as the fraction of signal events to total events in the sample,
i.e. p = S/(S + B). TMVA then defines a separation criteria. This is a function of the purity
which helps determine the optimal cut at a given node. This criteria must be maximized for a
purely mixed sample, i.e. at p = 0.5, and it must fall off to zero for a sample of only one event
type. This function must also value pure background as much as pure signal, hence it must be
symmetric around its maximum. In this study, the cross entropy was used, as defined below.

Cross Entropy : s(p) = −p · ln(p)− (1− p) · ln(1− p)

TMVA looks for the variable and cut value that will maximize the difference between the
separation index of a parent node, and the sum of the indices of the two daughter nodes. The
indices of the daughter nodes are weighted by their relative fraction of events. This study uses
the maximum granularity possible when scanning each variable for the best cut value.

The cutting process is repeated until the number of events in a node reaches a minimum
value, defined as 69 for this study, or until the separation index is zero. To avoid overtraining,
a process called pruning is employed once the tree has been grown to its full size [10].

2.4.2 Pruning

The goal of the training phase in TMVA is to build a classifier whose results will be valid for
a statistically independent sample. This implies a balance between how well a classifier performs
on the training sample and how well it can be generalised to the testing sample. A decision tree
that is grown to perfectly separate out all signal events in the training sample will only work
well for that sample. Such a tree is said to be overtrained. In order to ensure meaningful results
from the testing sample, a process called pruning is employed.

As the name suggests, pruning is the process of “cutting back” a fully grown decision tree,
which means removing leaf nodes that are too specific to the training sample to be applied in
general. The tree is first allowed to grow to its full size instead of being interrupted. This is
because apparently insignificant cuts can lead to useful cuts down the tree.

TMVA offers two pruning algorithms: expected error and cost complexity. The method
used in this study was expected error,3 which estimates the statistical error of a parent node and
daughter nodes using the binomial error, shown below, where N is the number of nodes. Starting
at the leaf level, daughter nodes whose combined error is greater than that of the parent node
are recursively deleted. In order to control the strength of the pruning, the daughter nodes can
be scaled by a constant factor, PruneStrength, denoted Cpr below [10].4

err = Cpr ·
√
p · (1− p)

N

It is worth mentioning that pruning is applied after boosting, which is described in the next
section.

2.4.3 Boosting

In order to stabilize decision trees, a process called boosting is utilized. This can loosely be
considered an averaging process which incorporates many different decision trees into the final

3for more on cost complexity, see [10]
4For the parent node, Cpr = 1.
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BDT output. This is especially useful for dealing with variables that have both a high separation
power along and a high variance in the training sample. In this study, a method called bagging
was used.5

The classifier randomly selects events from the parent sample, allowing the same event to
be selected multiple times. It then grows a decision tree based on this resample. This process
is repeated many times until a “forrest” of decision trees is grown. Each individual tree will
assign each event as signal or background, hence for event x, we define the result of a classifier
as h(x) = +1 or −1, respectively. The results are then averaged, as explicitly noted below.

yBa(x) =
1

Ntrees

Ntrees∑
i

hi(x)

Since events can be selected more than once, each resample can be thought of as a representa-
tion of the probability density distribution of the parent sample. This parent sample is unaffected
throughout the process, which means that each resample will have the same parent distribution,
albeit statistically fluctuated. These fluctuations are the key to all boosting methods since they
help stabilize the resulting output. This output will fall in [−1, 1] depending on if the event was
classified as more signal-like or background-like [10].

2.5 Event Samples

In order to train and test the BDT classifier, four event sample sets were used. They are
listed below, along with a brief description.

• mva_SUSY_combination : This is the sample contains signal events from a simulation of
the medium mass Higgs-like boson scenario. The three masses used were 200 GeV, 300
GeV, and 350 GeV. These masses were all taken to have the same cross section.

• mva_HTQCD : This is the sample contains simulated background events.

• mva_data : This is data collected by the CMS experiment in 2012 of integrated luminosity
of 4fb−1.

3 Results

The multivariate analysis returns a viable control region that retains the majority of back-
ground events, i.e. high background efficiency, while cutting most of the signal events. The final
MVA output was cut along three values, denoted loose, tight, and very tight. After comparing the
three, the tight cut was selected as the ideal balance of background efficiency and background
to signal ratio.6

3.1 Variable Distributions

The kinematic variables used in the MVA show distributions with clear discrimination be-
tween signal and background events. Several of the chosen variables proved to be extremely
effective, namely the minor thrust and the two jet areas. While background simulations show a
high variance, they are in good agreement data points overall. Since the number of background
events will heavily outweigh the signal events, this agreement is characteristic of accurate simu-
lations.

The following distributions have been scaled for ease of comparison. The signal has been
scaled by a factor of 100, while the background has been scaled by a factor of 2.5.

5Bagging is not a “boost” method in the strict sense of the definition, but returns the same result. See [10] for
more details

6Please note the following is unpublished Data and is still a work in progress
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Figure 5: ptd2 for scaled events Figure 6: minor for scaled events

3.2 Cuts

Once the multivariate analysis was complete, three cuts were made along the MVA output
at different tolerances. These tolerances result in varying background, signal, and data selection
efficiencies. The tighter cuts resulted in a lower background selection efficiency and a higher
background to signal ratio, as expected.

Loose: yBa < 0.45

Tight : yBa < 0.25

Very Tight : yBa < 0.00

Figure 7: Multivariate Analysis Results

Cut Seff Beff Deff B/S D/B
L 0.18 0.72 0.65 4.03 0.90
T 0.08 0.60 0.52 7.58 0.87
VT 0.02 0.28 0.24 13.88 0.86

Figure 8: Multivariate Analysis Result

3.3 Signal Supression

After the cuts were made in the MVA output, the resulting dijet mass distributions were
compared. All three of the cuts showed significant signal suppression from the uncut set of
events, while preserving most of the background set. Shown below is is the tight cut compared
to the original sample. This cut was selected for its optimal balance of background efficiency
and signal to background ratio, as discussed in section 4.1.
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Figure 9: Distribution before cut Figure 10: Distribution at “tight” cut

4 Conclusion

Using Monte Carlo generated events along with multivariate analysis techniques, a viable
control region for the MSSM Higgs search at the CMS collaboration has been determined. This
analysis was done across nine input kinematic variables, each of which displayed moderate to
strong separation power. Once the classifier was trained and tested, three cuts were made on
the MVA output at different tolerances. These cuts were compared on the basis of background
efficiency and background to signal ratio. Ultimately, a middle value of yBa < 0.25 was chosen
because of its ideal balance of these two parameters.

4.1 Ideal Cut Value

In selecting the optimal cut value, two main consideration were made. In order for the final
region to be an ideal control region, the background to signal ratio must be maximized, which
suggests making a very tight cut. Making such a cut would necessitate that all remaining events
be classified similarly by the MVA. This means they would have similar kinematic properties.
While none of these properties are strongly correlated to the dijet mass, each has a residual
correlation. These residual correlations are magnified when all the remaining events are kine-
matically similar, resulting in a biased sample. Larger event samples tend to smear out these
correlations, reducing their effect. This effect suggests making a looser cut. For this purpose,
the MVA parameter was cut at yBa < 0.25.

This resulted in a background selection efficiency of 60% and a background to signal ratio
of 7.6. The signal events were cut to less than 10% of the original sample. The dijet mass
distribution for this cut shows similarly shaped background and data samples before and after
the cut. This implies that there was a low selection bias, as the form of the distribution was
unchanged. The data to background ratio for this cut is 0.87. Since the vast majority of data
will be background events, it is expected that this value be close to one.

4.2 Further Studies

With the control region determined, this study can continue on to search for MSSM Higgs
signatures in the dijet mass distribution of two bottom quarks. The analysis code for this ongoing
work is CMS-AN-13-229.
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