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Abstract

In this report we are dealing with massive quark effects in the perturbative evaluation of
deeply inelastic scattering. The renormalized one-loop gluon contributions to the massive
operator matrix elements are calculated. The scalar parts of several two-loop diagrams are
investigated.
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1 Deeply Inelastic Scattering
One of the cleanest possibilities for the investigation of the structure of nucleons at short distances
are experiments of high energy lepton-scattering off hadrons. The momentum transfers |q2| are
usually larger than 4GeV2. The targets are destroyed during the interaction, hence this process
is called inelastic. With the introduction of the quark model by Gell-Mann [1] and Zweig [2]
the spectrum of the experimentally observed hadrons could be explained. According to this
model hadrons are bound states of quarks and gluons, the latter being the particles mediating
the strong interaction. The dynamic theory of these constituents is quantum chromodynamics
(QCD). Deeply inelastic scattering (DIS) has played an important role in establishing QCD as an
asymptotically free quantum field theory. Asymptotically free means that at very high energies
the constituents of hadrons are behaving as if there were free particles.

Since the strong interaction is several orders of magnitude larger in strength than electroweak
interactions it is sufficient to work at tree level in electroweak theory, see Fig. 1. The momenta

P

l

l′

}
PF

q

Figure 1: Feynman diagram for DIS in tree-level approximation.

of the incoming lepton and nucleon are denoted by l and P , respectively. They interact via
the exchange of a virtual electroweak vector boson of momentum q. After the interaction the
momentum of the scattered lepton is l′ and the outgoing hadronic jet is denoted by F , carrying
the total momentum PF . Since the virtual vector boson is space-like one defines the virtuality

Q2 = −q2 . (1.1)

The process of DIS is conveniently described by using the scaling variable Bjorken-x and the
variable y

x = Q2

2P · q , (1.2)

y = P · q
P · l

, (1.3)

with the mass M of the nucleon, neglecting the masses of the leptons. The exchanged virtual
vector boson can be, according to electroweak theory, a photon, a Z0- or W±-boson. We restrict
ourselves to electron-proton scattering. If the virtualities are not too large, i.e. Q2 ≤ 500GeV2 the
exchange of a Z-boson can be neglected [3]. A straightforward calculation yields the differential
inclusive cross section [4]

l′0
dσ

d3l′
= 1

4P · l
α2

Q4LµνW
µν . (1.4)
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One observes that it factorizes into a leptonic Lµν and a hadronic tensor Wµν . The former is
well known from QED. We will concentrate on the latter object. The hadronic tensor describes
the nucleon structure and is a non-perturbative quantity.

A general ansatz, taking into account its symmetry and gauge invariance, yields the expression
[4]

Wµν = 1
2x

(
gµν −

qµqν
q2

)
FL(x,Q2) + 2x

Q2

(
PµPν + qµPν + qνPµ

2x − Q2

4x2 gµν

)
F2(x,Q2) . (1.5)

The dimensionless functions FL and F2, called structure functions, describe the composition of
the nucleons. Solving (1.5) for the structure functions yields

FL(x,Q2) = 8x3

Q2 P
µP νWµν(q, P ) (1.6)

F2(x,Q2) = 2x
D − 2

[
(D − 1)4x2

Q2 P
µP νWµν(q, P )− gµνWµν(q, P )

]
. (1.7)

Here, D is the dimension of space-time. With the decomposition of the hadronic tensor one
obtains the expression for the differential cross section in terms of the structure functions [4]

dσ

dxdy
= 2πα2

xyQ2

{[
1 + (1− y)2

]
F2(x,Q2)− y2FL(x,Q2)

}
. (1.8)

Measuring the differential cross section means measuring the structure functions which in turn
sheds light on the constitution of the nucleons and the nature of the strong interaction.

At large virtualities Q2 the structure functions factorize in Mellin convolutions between the
Wilson coefficients Cj

i (x,Q2) and the parton distribution functions (PDFs) fj(x, µ2)

Fi(x,Q2) =
∑
j

Cj
i (x,Q2)⊗ fj(x, µ2) , i = 2, L , (1.9)

which is expressed by the factorization theorem [5]. The sum over j runs over all the partons
in the nucleon. The PDFs form the non-perturbative part of the structure functions, whereas
the Wilson coefficients are perturbatively calculable. Here, the Mellin convolution between two
functions is defined as [6]

[f ⊗ g](x) =
∫ 1

0
dy
∫ 1

0
dzf(y)g(z)δ(x− yz) . (1.10)

In order to reduce the number of integrals simplifying the calculations one introduces the Mellin
transform [6]

f̂(N) =
∫ 1

0
dxxN−1f(x) , (1.11)

with N denoting the Mellin-moment, leading to a decomposition of the Mellin convolution into
a product of the two Mellin transformed functions

M[f ⊗ g](N) = M[f ](N)M[g](N) . (1.12)

This simplification will be useful later in the evaluation of the integrals occuring in massive
operator matrix elements, accordingly we will work from now on in Mellin-space. In the latter,
Eq. (1.9) reads

Fi(N,Q2) =
∑
j

Cj
i (N,Q2)fj(N,µ2) . (1.13)
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2 Regularization and Renormalization

2.1 Dimensional Regularization
The loop integrals we consider are divergent in D = 4 dimensions. However, the divergence of a
loop integral does depend on the space-time dimension. In dimensions D 6= 4 the corresponding
momentum integrals converge, so that a natural way to regularize these infinities is to analyt-
ically continue the space-time dimension to general values for D. This procedure is known as
dimensional regularization [7–10]. In this way Lorentz-invariance in Minkowski-space and other
important properties of gauge field theories as for instance gauge invariance and Ward-Takahashi
identities are preserved [8]. The prototype of these D-dimensional momentum integrals is given
by [11] ∫ dDk

(2π)D
(k2)r

(k2 +R2)m = Γ(r +D/2)Γ(m− r −D/2)
(4π)D/2Γ(D/2)Γ(m) (R2)−m+r+D/2 , (2.1)

where k is a Euclidean 4-vector, R a scalar not depending on k and r and m integers. The
verification of this equality is straightforward. The Γ-function is an analytic function in the
complex plane with poles at non-positive integers. Thus, the right hand side of Eq. (2.1) can be
analytically continued to arbitrary complex values for D 6= 0,−1,−2, · · · . We set D = 4 + ε and
treat ε to be an infinitesimal. Since the outcome of the loop integral is an analytic function in ε
we can expand it in a Laurent series around ε = 0. The possible divergencies of these momentum
integrals manifest themselves as poles in ε.

Furthermore, the coupling constant g has to be analytically continued. In this way the cou-
pling aquires a mass dimension and an arbitrary scale µ has to be introduced via the substitution
g2 → g2(µ2)−ε/2. For convenience one may introduce

as = g2

(4π)2 , (2.2)

after this substitution has been performed.

2.2 The MS scheme
In order to consistently remove the singularities from the theory, one has to choose a distinct
renormalization scheme. A widely used scheme is the MS-scheme [12], which we will adopt
below. It turns out that 1/ε poles always appear in the combination with one factor per loop

Sε = exp
{1

2ε(γE − ln(4π))
}
, (2.3)

where γE is the Euler-Mascheroni constant.
In contrast to the MS-scheme [13], where only the poles in ε are subtracted, in the MS-scheme

the poles are subtracted in the form Sε/ε and Sε is set to one at the end of the calculation. As
a consequence, no terms containing γE appear in the renormalized result which simplifies the
expressions.

3 Massive Operator Matrix Elements
As mentioned in Sec. 1, the structure functions, Eq. (1.13), factorize in Mellin-space into the non-
perturbative PDFs fj(N,µ2) and perturbatively calculable Wilson coefficients Cj

i (x,Q2). They
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Figure 2: One-loop Vacuum polarization diagram. The curly lines denote gluons and the full lines heavy quarks.

decompose into a sum of the light Ĉj
i (N,Q2) and heavy flavour Wilson coefficients Hj

i (N,Q2,m2)

Cj
i (N,Q2,m2) = Ĉj

i (N,Q2) +Hj
i (N,Q2,m2) . (3.1)

Furthermore, the heavy flavour part factorizes into light flavour coefficients and the massive
operator matrix elements (OMEs) Aij(N,m2) [14]

Hj
i (N,Q2,m2) =

∑
i

Ĉj
i (N,Q2)Aij(N,m2) . (3.2)

In the following the renormalized OME ArQg, being part of the structure function F2(N,Q2), will
be calculated up to first loop order.

3.1 One-Loop Diagrams
3.1.1 Vacuum Polarization Diagram

We first consider the one loop vacuum polarization diagram. The Feynman diagram for this
process is shown in Fig. 2. The calculation of this integral corresponds to the case of N = 1 for
an operator matrix element to be considered later. Since its evaluation requires some techniques
which are indispensable for the evaluation of more complicated diagrams appearing below, we
will present the calculation in detail.

The analytic expression of the amputated one-loop vacuum polarization diagram is given by

Πµν
ab (p) = −Tr

∫ dDk

(2π)D δmji
(k/+ p/) +m

(k + p)2 −m2 igγ
µtajlδlni

k/+m

k2 −m2 igγ
νtbnm . (3.3)

Herein, m denote the quark mass and taij the generators of the gauge group, being SU(3) for
QCD, in the adjoint representation. The momentum integral consists of a numerator and a
denominator, both being functions of the loop momentum k and the external momentum p.
Additionally, the numerator has a Dirac-structure containing several γ-matrices. Because the
vacuum polarization contains a closed Fermion-loop we have to take the trace, denoted by Tr, of
these matrices simplifying the structure of the numerator. Using the relations of D-dimensional
Dirac-algebra we can write

Tr[(k/+ p/+m)γµ(k/+m)γν ] = 4[(kµ + pµ)kν + (kν + pν)kµ − (k + p) · kgµν +m2gµν ] , (3.4)

and the integral reads

Πµν
ab (p) = −4Tfg2δab

∫ dDk

(2π)D
(kµ + pµ)kν + (kν + pν)kµ − (k + p) · kgµν +m2gµν

((k + p)2 −m2)(k2 −m2) . (3.5)

Since the representation matrices taij factor out they form the global color factor Tf = 1/2. In
order to proceed, we need to combine the two denominators into a single funtion depending on
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the scalar k2 only. Then we make use of Eq. (2.1) and integrate the loop momentum. Further
integrations over so called Feynman-parameters, needed to combine denominators, have to be
carried out. The most general form of the Feynman-parameter integrals are given by [11]

1
Aj11 · · ·A

jn
n

= Γ(∑n
i=1 ji)

Γ(j1) · · ·Γ(jn)

∫ 1

0
dx1 · · · dxn

xj1−1
1 · · · xjn−1

n

(x1A1 + · · ·+ xnAn)
∑n

i=1 ji
δ

(
n∑
i=1

xi − 1
)
. (3.6)

It has to be applied to each loop integral. In the present case this relation is given by
1

AαBβ
= Γ(α + β)

Γ(α)Γ(β)

∫ 1

0
dx xα−1(1− x)β−1

(xA+ (1− x)B)α+β , (3.7)

leading to

Πµν
ab (p) = −Tfg2δab

∫ dDk

(2π)D
Numerator

[(k + xp)2 −m2 + x(1− x)p2]2 . (3.8)

Shifting the integration variable to k′ = k+xp and using the relations for symmetric integration
[11] ∫ dDk

(2π)D k
µf(k2) = 0 , (3.9)

∫ dDk

(2π)D k
µkνf(k2) = gµν

D

∫ dDk

(2π)D k
2f(k2) , (3.10)

we obtain

Πµν
ab (p) =− Tfg2δab

∫ dDk′

(2π)D
∫ 1

0
dx

×
8gµν
D
k′2 − 8x(1− x)pµpν − 4k′2gµν + 4x(1− x)p2gµν + 4m2gµν

[k′2 −m2 + x(1− x)p2]2 . (3.11)

Since Eq. (2.1) is only valid in a Euclidean vectorspace but the momentum four-vectors are
Minkowski-space vectors we cannot apply it directly. One has to perform an analytical contin-
uation from Minkowski- to Euclidean 4-vector-space, the Wick-rotation, since integrals can be
performed only in spaces with a norm. The Wick-rotation consists of the replacements [11]

k0 = ik0
E , k2 = −k2

E ,
∫
dDk = i

∫
dDkE .

Performing this transformation we apply Eq. (2.1) and use relations for the Γ-functions to derive
the following expression

Πµν
ab (p) = 8Tfg2δabi

Γ(2−D/2)
(4π)D/2 (gµνp2 − pµpν)

∫ 1

0
dxx(1− x)[m2 − x(1− x)p2]D/2−2 . (3.12)

Setting p on-shell, p2 = 0 for massless gluons, inside the integral, it is trivial to perform the
x-integration.

The final step consists in the ε-expansion. As discussed in Sec. 2 we set D = 4 + ε and
expand in a Laurent-series in ε and derive

Πµν
ab (p) =8

3 iTf
g2

(4π)2 δab(g
µνp2 − pµpν)Sε

(
m2

µ2

)ε/2 1
ε
exp

( ∞∑
n=2

1
n

(
ε

2

)n
ζn

)

=8
3 iasTfδab(g

µνp2 − pµpν)Sε
(

1
ε

+ 1
2 ln

(
m2

µ2

)
+ ε

8ζ2

)
. (3.13)

As expected the divergence of the integral can be described by a simple pole. The coefficient ζ2
of the linear term in ε is the value of the Riemann ζ-function evaluated at n = 2.

In the next subsections we turn to the calculation of massive operator matrix elements.
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Figure 3: One-loop line insertion diagram.

3.1.2 Line Insertion Diagram

The first topology to be studied is shown in Fig. 3. It is very similar to the vacuum polarization
diagram except for the fact that one of the internal propagators gets replaced by a line with an
operator insertion [15–17]. This line insertion consists of two propagators and an effective vertex
∆/(∆ · k)N−1, where ∆ denotes a light-like 4-vector. The corresponding analytic expression is

G
(1),µν
Q,ab = −Tr

∫ dDk

(2π)D i (k/− p/) +m

(k − p)2 −m2 δlnigγ
µtajl

×i k/+m

k2 −m2 ∆/(∆ · k)N−1i k/+m

k2 −m2 δmjigγ
νtbnm . (3.14)

In contrast to the vacuum polarization diagram, we have to act with a projection operator onto
the amputated Greens function Gµν

Q,ab in order to get the OME [18]

AQg = 1
N2
c − 1

1
D − 2(−gµν)δab(∆ · p)−NGµν

Q,ab . (3.15)

In this case of external gluons the projector is merely a multiplicative constant. We apply the
same strategy to solve the integral as for the vacuum polarization. The only crucial difference
in its evaluation is that, due to the shift of the variable, the term ∆ · k becomes a binomial sum

(∆ · k)N → (∆ · k′ + (1− x)∆ · p)N =
N−1∑
n=0

(
N − 1
n

)
(1− x)n(∆ · k′)N−1−n(∆ · p)n . (3.16)

This sum together with the residual numerator terms have to be integrated over k′. Because ∆
is a light-like vector most of these terms vanish after performing the symmetric integration.

The remaing Feynman-parameter integrations take the form of Beta-functions [19]

B(x, y) =
∫ 1

0
dttx−1(1− t)y−1 = Γ(x)Γ(y)

Γ(x+ y) , Re(x),Re(y) ≥ 0 . (3.17)

Having calculated all the Feynman-integrals, the ε-expansion yields the result

A
(1)
Qg =− 8asTfSε

(
m2

µ2

)ε/2 1
(2 + ε)εexp

( ∞∑
n=2

1
n

(
ε

2

)n
ζn

)

× 2(N + 1)(N + 2) + ε(N2 +N + 2)
N(N + 1)(N + 2) (3.18)

3.1.3 Vertex Insertion Diagram

The second graph to be investigated is shown in Fig. 4. This diagram contains a vertex insertion,
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Figure 4: One-loop vertex insertion diagram.

meaning that one of the vertices is exchanged compared to the vacuum polarization diagram
[15–17]. Its analytic expression reads

G
(2),µν
Q,ab = −Tr

∫ dDk

(2π)D i (k/− p/) +m

(k − p)2 −m2 δlngt
a
jl∆µ∆/

N−2∑
j=0

(∆ · (k − p))j(∆ · k)N−2−j

×i k/+m

k2 −m2 δmjigγ
νtbnm . (3.19)

Also here the same apparatus of projecting the amputated Greens function to the OME and
calculating the integral applies. The sum, stemming from the vertex insertion, can be treated
exactly in the same way as in the previous diagram. Again one has to make use of the fact
that ∆ is a light like vector, accordingly only a few terms survive the symmetric integration.
The Feynman-parameter integrals again lead to Beta-functions. Performing the ε-expansion one
obtains

A
(2)
Qg = 32asTfSε

(
m2

µ2

)ε/2 1
(2 + ε)εexp

(
N∑
n=2

1
n

(
ε

2

)n
ζn

)
1

(N + 1)(N + 2) . (3.20)

Putting together the individual contributions from the line and vertex insertion diagrams
and performing the ε-expansion to O(ε) one arrives at the 1-loop OME ÂQg

ÂQg = 1
as

(
A

(1)
Qg + A

(2)
Qg

)
=− TfSε

(
m2

µ2

)ε/2 1
ε
exp

(
N∑
n=2

1
n

(
ε

2

)n
ζn

)
8(N2 +N + 2)
N(N + 1)(N + 2)

=− TfSε
(
m2

µ2

)ε/2 (1
ε

+ ζ2

8 ε
)

8(N2 +N + 2)
N(N + 1)(N + 2) . (3.21)

Here we accounted for the fact that (3.18) and (3.20) both contribute twice. In case of (3.18)
the inner momentum flow has to be reversed too, giving rise to a factor 1+(−1)N

2 . Introducing
the leading order splitting function P̂qg one can write

ÂQg = Sε

(
m2

µ2

)ε/2 [
−1
ε
P̂qg + aQg + εāQg

]
. (3.22)

and identify

P̂qg = Tf
8(N2 +N + 2)
N(N + 1)(N + 2) ,

aQg = 0 ,

āQg = −ζ2

8 P̂qg .
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Note that the coefficient aQg vanishes to one-loop order. Expanding Eq. (3.21) to the constant
term yields the final unrenormalized O(as) OME

ÂQg = Sε

[
−1
ε
P̂qg −

1
2 ln

(
m2

µ2

)
P̂qg

]
. (3.23)

3.1.4 Renormalization of ÂQg

The last step in the calculation of the OME is their renormalization. The full description of the
renormalization theory of OMEs is far beyond the scope of this report, nevertheless we describe
the important steps.

At O(as) coupling constant and mass renormalization do not contribute to the renormaliza-
tion of ÂQg, cf. [20]. There are also no collinear singularities. Thus to this order one has to add
to the unrenormalized OME the inverse renormalization constant Z−1

qg only [14], to account for
the renormalization of the composite operator.

ArQg = ÂQg + Z−1
qg . (3.24)

This inverse Z-factor is given by
Z−1
qg = Sε

ε
P̂qg . (3.25)

The renormalized OME reads now

ArQg = −1
2 ln

(
m2

µ2

)
P̂qg . (3.26)

At higher loop orders the renormalization of the OMEs is a complex procedure involving the
calculation of the full set of renormalization constants Zij and so called transition functions Γij,
where the subscripts i, j denote the different parton types.

3.2 Two-Loop Diagrams
We will now calculate two graph-topologies at the two-loop level. In order to combine the
denominators to complete squares we need to introduce more Feynman parameters which in
their evaluation yield richer mathematical structures than in case of the one-loop diagrams. Since
the numerator merely just increases the number of terms and thus complicating the interesting
evaluation of the integrals we will neglect it here, and consider the scalar integrals only. The
corresponding results indicate the principle complexity being met.

3.2.1 First loop-topology

The first diagram to be studied is given in Fig. 5 and has been studied in [14, 18]. Its analytic
expression reads in the corresponding physical cases

I1 = −g4(m2)2
∫ dDk

(2π)D
dDl

(2π)D
1

(p− l)2
1

(l2)2
1

(k − l)2 −m2
1

k2 −m2 (∆ · k)N 1
k2 −m2 . (3.27)

We integrate loop by loop with the same techniques we used in the evaluation of the one-loop
diagrams, performing Wick-rotation, introducing the Feynman parametrization and perform the
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Figure 5: A pure singlet two-loop diagram. The dashed lines denote a massless quark

D-dimensional momentum integrations. After these steps, for each loop, the resulting expression
for the diagram is given by

I1 =Γ(6−D)
(4π)D g4(m2)−4+D(∆ · p)N

×
∫ 1

0
dxxN+3−D/2(1− x)4−D/2

∫ 1

0
dyyN+2(1− y)D/2−4

∫ 1

0
dzzN(1− z) . (3.28)

Here, the Feynman parameters decompose into Beta-functions, Eq. (3.17). The ε-expansion
performed with MAPLE yields

I1 =a2
sS

2
ε

(
m2

µ2

)ε
(∆ · p)NΓ(N + 1)

× exp(−εγE)Γ(2− ε)Γ(N + 2− ε/2)Γ(3− ε/2)Γ(−1 + ε/2)
Γ(N + 5− ε)Γ(N + 2 + ε/2)

=a2
sS

2
ε

(
m2

µ2

)ε
(∆ · p)N 1

(N + 1)(N + 2)(N + 3)(N + 4)

×
[4
ε

+ (−5 + 4S1(N + 4)− 4S1(N + 1)) +O(ε)
]

(3.29)

This last expression contains single harmonic sums which are defined as

S1(N) =
N∑
k=1

1
k
. (3.30)

In general one can define multiple finite harmonic sums Sa1,··· ,an(N) as [21]

Sa1,··· ,an(N) =
N∑

k1=1

k1∑
k2=1
· · ·

kn−1∑
kn=1

sign(a1)k1

k
|a1|
1

· · · sign(an)kn

k
|an|
n

. (3.31)

The ε-expansion of Eq. (3.29) did not directly yield the result in terms of harmonic sums. Prior
to this we had to use the relation [22]

Sk(N) = (−1)k−1

(k − 1)!ψ
(k−1)(N + 1) + ζk , (3.32)

with ψ(k)(N) being the k-th derivative of the ψ-function, which is the logarithmic derivative of
the Γ-function. Making use of (3.30) one can write (3.29) as a purely rational function of the
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Figure 6: Two-loop diagram with external gluons.

Mellin-moment N .

I1 =− a2
sS

2
ε

(
m2

µ2

)ε
(∆ · p)N 1

(N + 1)(N + 2)(N + 3)(N + 4)

×
[

4
ε
− 5N3 + 33N2 + 58N + 16

(N + 2)(N + 3)(N + 4) +O(ε)
]
. (3.33)

As we saw, this first two-loop integral is of the same complexity as the one-loop integrals.

3.2.2 A Second loop-topology

Let us now study the diagram depicted in Fig. 6. The calculations for this diagram have been
carried out in [14,18,23]. Its Feynman-parametrization will lead to a new class of functions. The
analytic expression for the diagram is given by

I2 = −g4(m2)2
∫ dDk

(2π)D
dDl

(2π)D
1

(p+ k)2 −m2
1

(p+ l)2 −m2
1

l2 −m2

× 1
k2 −m2 (∆ · k)N 1

k2 −m2
1

(l − k)2 . (3.34)

Also here we perform the same steps as described above and obtain an expression consisting of
Feynman-parameter integrals only

I2 =Γ(6−D)
(4π)D (m2)−4+D

∫ 1

0
dx1dx2dx3dy1dy2dy3δ(x1 + x2 + x3 − 1)δ(y1 + y2 + y3 − 1)

[x3(1− x3)]−3+D/2(1− y1 − y3)y2−D/2
3

(
y1 + y3

x1

(1− x3)

)N (
1− y3 + y3

x3

)−6+D
. (3.35)

In contrast to the two-loop topology calculated above, the computation of the Feynman-parameter
integrals is more involved. At first we integrate x2 and y2 using the δ-distributions since they do
not appear in the integrand at other places. One has to rewrite these integrals in the following
way ∫ 1

0
dx2δ(x1 + x2 + x3 − 1) =

∫ +∞

−∞
dx2θ(x2)θ(1− x2)δ(1− x1 − x2 − x3) , (3.36)

where θ(z) denotes the Heaviside-function. Now the δ-functions can be integrated and the
remaining θ-functions restrict the integration range of x1 and y1. Performing the substitutions
x1 = z1(1− x3) and y1 = z2(1− y3) and setting x3 = x, y3 = y one obtains

I2 = Γ(6−D)
(4π)D g4(m2)−4+D

∫ 1

0
dxdyx−3+D/2(1− x)−2+D/2y2−D/2(1− y)2

(
1− y + y

x

)−6+D

×
∫ 1

0
dz1dz2(1− z2)[z2(1− y) + z1y]N . (3.37)

12



The z-integrals can be solved in terms of elementary functions giving

I2 = Γ(6−D)
(4π)D g4(m2)−4+D

∫ 1

0
dxdyx−3+D/2(1− x)−2+D/2y1−D/2

(
1− y + y

x

)−6+D

×
1 + yN

{(
1−y
y

)N
(y − 1)3 + y2[N(y − 1) + 2y − 3]

}
(N + 1)(N + 2)(N + 3) . (3.38)

At this point the interesting new mathematical structures appear. The x-integration is of the
form of the hypergeometric function 2F1 [24], which has an integral representation [19]

2F1(α, β; γ; z) = 1
B(β, γ − β)

∫ 1

0
dttβ−1(1− t)γ−β−1(1− zt)−α , Reγ > Reβ > 0 . (3.39)

We also consider analytic continuations of this function [19]. Using this relation one can solve
the x-integration for this Euler-function. The remaining y-integration can be done as follows.
Performing the substitution y = 1− z one obtains

I2 = Γ(6−D)
(4π)D g4(m2)−4+D

∫ 1

0
dzB(4−D/2,−1 +D/2)2F1

(
6−D, 4−D/2; 3, z

z − 1

)

×(1− z)−5+D/2
1− (1− z)N

{(
z

1−z

)N
z3 + (1− z)2[Nz − 2(1− z) + 3]

}
(N + 1)(N + 2)(N + 3) . (3.40)

In order to integrate this expression, the argument of the 2F1-function has to be transformed
using [19]

2F1

(
α, β; γ, z

z − 1

)
= (1− z)α2F1(α, γ − β; γ; z) . (3.41)

Combining Eq. (3.41) with Eq. (3.40) one can use the equality [19]∫ 1

0
dzzµ−1(1− z)ν−1

2F1(α, β; γ; z) = B(µ, ν)3F2(α, β, µ; γ, µ+ ν; 1) , (3.42)

in order to obtain

I2 =g
4(m2)−4+D

(4π)D
Γ(6−D)B(4−D/2,−1 +D/2)

(N + 1)(N + 2)(N + 3)
×
[
B(1, 2−D/2)3F2(6−D,−1 +D/2, 1; 3, 3−D/2; 1)
−B(N + 4, 2−D/2)3F2(6−D,−1 +D/2, N + 4; 3, N + 6−D/2; 1)
−NB(2, N + 4−D/2)3F2(6−D,−1 +D/2, 2; 3, N + 6−D/2; 1)
+ 2B(1, N + 5−D/2)3F2(6−D,−1 +D/2, 1; 3, N + 6−D/2; 1)
− 3B(1, N + 4−D/2)3F2(6−D,−1 +D/2, 1; 3, N + 5−D/2; 1)

]
. (3.43)

The function 3F2 is a generalized hypergeometric function [24] and part of the function class
pFq, which are well known in mathematical literature [19]. They all obey the following series
representation for |z| < 1

pFq(α1, · · · , αp; β1, · · · , βq; z) =
∞∑
k=0

(α1)k · · · (αp)k
(β1)k · · · (βq)k

zk

k! , (3.44)
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with the Pochhammer-symbol [24]

(α)k = Γ(α + k)
Γ(α) . (3.45)

The ε-expansion and the infinite summation can be done with the help of the computer
algebra package SIGMA [25] giving the result

I2 =a2
sS

2
ε

(
m2

µ2

)ε { 3 + 2N + 2N2 +N3

(N + 1)3(N + 2)2(N + 3)

+ 1
(N + 1)2(N + 2)(N + 3)

[3
2(N + 1)S2(N) + 1

2(N + 1)S2
1(N)−NS1(N)

]}
. (3.46)

The function S2(N) is a harmonic sum as defined for the general case in Eq. (3.31).

4 Summary
In this report we were dealing with the theory of deeply inelastic electron-proton scattering. In
tree-level approximation of electroweak theory we identified the hadronic tensor, Eq. (1.5), to be
the object of our interest. One particular part of the latter, the structure functions Fi(N,Q2),
contain the full information of the nucleon structure. At certain physical limits, namely large
virtualities, these functions factorize into perturbatively accessible Wilson coefficients Cj

i (N,Q2)
and non-perturbative parton distribution functions fj(N,µ2). The Wilson coefficients contain a
structure, called massive operator matrix elements Aij(N,m2). These OMEs or more precisely
the OME AQg(N,m2), contributing to the structure function F2 has been calculated and renor-
malized to one-loop order. In order to calculate the loop integral, different techniques had to
be applied: Wick-rotation, Feynman-parametrization and D-dimensional momentum integration
among others. Here, the Feynman-parameter integrals could be solved in terms of well known
Beta- and Γ-functions.

In addition to the one-loop calculations, the scalar parts of two two-loop topologies were
investigated. Integrating loop by loop, the first of these topologies could be treated exactly
in the same way as the one-loop integrals yielding the same mathematical structures. The
second topology investigated was more difficult to solve. Integrating out both loop momenta
the Feynman-parameter integrations could not be trivially performed. In their evaluation they
revealed rich mathematical structures. The function class we obtained there is called in the liter-
ature generalized hypergeometric functions. In both topologies the ε-expansion was performed.

To put it in a nutshell, the theory of deeply inelastic scattering is an attractive playground
for complex analysis. It is fascinating to see how new mathematics is generated by the evaluation
of simple Feynman diagrams and even more interesting that these mathematical structures have
a great application in physical theories as the theory of the strong interaction.
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