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Abstract

The Path Integral is a mathematical entity used on Gauge Field Theories such
as Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). For
most physical systems it is impossible to evaluate the path integral analytically. In
our project we study the method of evaluating the path integral numerically on the
simpler case of a path integral formulation of non-relativistic quantum mechanics. We
use the Metropolis algorithm to do this evaluation on the test case of the harmonic
oscillator, which has an analytical solution.
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1 1 INTRODUCTION

1 Introduction

1.1 The Path Integral Formulation of Non-Relativistic Quantum Me-

chanics

To arrive at the path integral formulation of quantum mechanics we consider the
problem of calculating the probability of a particle leaving a position qI and arriving at a
position qF under the action of a potential V (q) in a time T . We will follow the steps �rst
made by Dirac to arrive at the path integral formalism [1]. The probability is given by
〈qF |e−iHT |qI〉 (we will be adopting natural units for all our calculations). We divide the
time T in N steps of size δt such as Nδt = T . This will result in

〈qF |e−iHT |qI〉 = 〈qF |e−iHδte−iHδt . . . e−iHδt|qI〉 . (1)

We insert then between each exponential the completeness relation
∫
dq|q〉〈q| = 1

〈qF |e−iHT |qI〉 =

(
N−1∏
i=1

∫
dqi

)
〈qF |e−iHδt|qN−1〉〈qN−1|e−iHδt . . . e−iHδt|q1〉〈q1|qI〉 . (2)

The interpretation is that we divide our time axis in N time slices and then compute
the probability amplitude for the particle leaving a position qi at time ti and reaching
the position qi+1 at time ti+1. The next step is to multiply these amplitudes to obtain
the probability amplitude for the particle leaving qI arrive at qF in a time T through a
speci�c path. We repeat this for all possible paths and sum the amplitudes for each path
to obtain the total probability amplitude 〈qF |e−iHT |qI〉. We proceed then to compute
〈qi+1|e−iHδt|qi〉 using the completeness relation for momentum base (

∫
dp|p〉〈p| = 2π)

〈qi+1|e−iHδt|qi〉 =

∫
dp

2π
〈qi+1|e−iHδt|p〉〈p|qi〉 . (3)

The Hamiltonian is written as H = p2/(2m) + V (q). We then write the exponential
as a power series of the operator H and use the relations 〈q|p|ψ〉 = ψ̇(x) and 〈q|p〉 = eipq.
The end result is the Gaussian integral

〈qi+1|e−iHδt|qi〉 =
e−iδtV (qi+1)

2π

∫
dp exp

[
−iδt p

2

2m
+ ip(qi+1 − qi)

]
,

which can easily be evaluated by completing squares

〈qi+1|e−iHδt|qi〉 =

(
−im
2πδt

)1/2

exp

{
iδt

[(
qi+1 − qi

δt

)2

− V (qi+1)

]}
. (4)

Now we have the amplitude for a particle leaving the position qi to arrive in the position
qi+1 in a time δt. We can insert eq. (4) into eq. (3) to obtain the total probability amplitude

〈qF |e−iHT |qI〉 =

(
−im
2πδt

)N−1
2

(
N−1∏
i=1

∫
dqi

)
exp

iδtN−1∑
j=0

(
qj+1 − qj

δt

)2

− V (qj+1)

 . (5)
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But time is not a discrete quantity. It means we must consider now the continuum
limit, making δt increasingly small (and conversely N increasingly large). On this limit we
de�ne (

−im
2πδt

)N−1
2

(
N−1∏
i=1

∫
dqi

)
→
∫
D[q(t)],

qj+1 − qj
δt

→ q̇,

δt
N−1∑
j=0

→
∫
dt,

to obtain the �nal expression for the probability amplitude

〈qF |e−iHT |qI〉 =

∫
D[q(t)] exp

[
i

∫
dt
mq̇2

2
− V (q)

]
.

We can see that the integral on the exponential is just the de�nition of the action.
Finally, we rewrite the probability amplitude as

〈qF |e−iHT |qI〉 =

∫
D[q(t)]eiS[q(t)] . (6)

1.2 The Quantum Mechanics Connection with Statistical Mechanics

The path integral has an analytical solution only on some simple cases, and then on
the way it appears in eq. (6) that it is not a good way to evalluate it numerically. Our
aim will be to relate the path integral with the partition function on statistical mechanics
and use the Metropolis algorithm to make a Monte Carlo simulation to evaluate the path
integral.

The �rst step is to transform from the Minkowski time to the Euclidean time, that
means t→ −it. The names comes because when we do this transformation the Minkowski
metric becomes the Euclidean metric. The second step is to step back from eq. (6)
to eq. (5), since we will be evaluating this integral on computers. The result of these
transformation will be

ZFI =

(
−im
2πδt

)N−1
2

(
N−1∏
i=1

∫
dqi

)
exp

−δtN−1∑
j=0

(
qj+1 − qj

δt

)2

+ V (qj+1)

 . (7)

Where ZFI = 〈qF |e−iHT |qI〉. Notice that on the Euclidean time the Lagrangian is the
Hamiltonian on Minkowski time. Also, the integral is now extremely similar to the partition
function on statistical mechanics. This means we can use statistic mechanics methods to
evaluate the integral and to obtain other measurable quantities such as the ground state
energy of the system.

Before the proceeding, we de�ne the average of an operator Â as

〈Â〉 = Tr[e−HT Â]/Z =

∫
〈x|e−HT Â|x〉 dx

Z
, (8)
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where Z is de�ned by (see ref. [2])

Z = Tr [ZFI ] =

∫
dx〈x|e−HT |x〉 =

∫
dqIdqF δ(qF − qI)ZFI . (9)

We �rst remark that Z is just ZFI with F = I and integrated over all possible values
for intial (and �nal) points and thus it is a path integral also. We can use this information
from eq. (9) to notice that eq. (8) is also a path integral. Alternatively, we can use the
same procedure exposed on section (1.1). The end result is that eq. (8) can be written as

〈Â〉 =

(∏N
i=0

∫
dxi

)
A(x1, x2, . . . , xn)e−S[x(t)](∏N

i=0

∫
dqi

)
e−S[x(t)]

(10)

If our system has M (M may be in�nity) discrete energy levels, we can insert the
completeness relation

∑M
n=1 |n〉〈n| = 1 on (8) and taking the limit T →∞ we �nd

〈Â〉 = 〈0|Â|0〉 . (11)

This way, we can isolate the ground energy level by observing the value of the Hamiltonian
behavior at large T , which means evaluating the path integral at eq. (10) for large T. For
our calculations we use the virial theorem

〈mẋ2〉 = 〈xV ′(x)〉 , (12)

that allow us to write eq. (10) as

E0 = lim
T→∞

〈Ĥ〉 =

(∏N
i=0

∫
dxi [xiV

′(xi)/2 + V (xi)] e
−S[x(t)]

)
(∏N

i=0

∫
dxi

)
e−S[x(t)]

. (13)

For calculation of the �rst excited state we need to introduce the connected n-point
propagator functions

Γ(n)
c =

n∏
i=1

∂

∂Ji
ln [Z(J)]

∣∣∣∣
J=0

, (14)

where J is just a complex number and Z(J) is modi�cate version of eq. (9)

Z(J) = Tr

[
exp

(
−HT +

n∑
k=1

xkJk

)]
. (15)

Notice that ∂Jk/∂Ji = δik.

If we choose n = 2 to evaluate eq. (14) and use eq. (8) we arrive at

Γ(2)
c = 〈x(0)x(τ)〉 − 〈x(0)〉〈x(τ)〉 .

We take then the limit of T →∞, which allow us to use eq. (11) and rewrite the expression
above as

Γ(2)
c = 〈0|x(0)x(τ)|0〉 − 〈0|x(0)|0〉〈0|x(τ)|0〉 .
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By inserting the completeness relation
∑

n=0 |n〉〈n| = 1 among x(0) and x(τ) we �nd

Γ(2)
c =

∑
n 6=0

〈0|x(0)|n〉〈n|x(τ)|0〉 . (16)

We must highlight that the operators x(τ) are in the Heisenberg representation. This
means there is a time dependence on the equation above. We can extract it by transforming
to the Schrödinger representation through the relation x(τ)H = e−HTxSe

HT . We arrive
then at

Γ(2)
c =

∑
n 6=0

|〈0|x|n〉|2 e−(En−E0)τ . (17)

If we consider the limit of large τ we actually manage to isolate the di�erence between
the ground state and the �rst excited state

Γ(2)
c = |〈0|x|1〉|2 e−(E1−E0)τ . (18)

This opens possibilities for two methods of determining E1. The �rst consists of plotting

the results for Γ
(2)
c as function of τ and then �t on these points the function eq. (18). The

other possibility is to compute the quantity Γ
(2)
c (τ + ∆τ)/Γ

(2)
c (τ). This will essentially

remove the constant accompanying the exponential in eq. (18) and then we �nally arrive
to the expression for E1

E1 = E0 −
1

∆τ
ln

[
Γ
(2)
c (τ + ∆τ)

Γ
(2)
c (τ)

]
. (19)

1.3 Analytical Solution of the Harmonic Oscillator with Path Integrals

The harmonic oscillator is one of the few systems which have an analytical solution,
which makes it an excellent system for testing our algorithm. Its solution may be found
on ref. [2] for the case of a particle of unitary mass. Here we will state these results and
generalise them.

The action used on ref. [2] is given by

S = a

N∑
j=1

(
xj+1 − xj

a

)2

+
µ2x2j

2
. (20)

and the average of the operator x2 is

〈x2〉 =
1

2µ
√

1 + a2µ2

4

(
1 +RN

1−RN

)
, (21)

where R is given by

R = 1 +
a2µ2

2
− aµ

√
1 +

a2µ2

4
. (22)

The ref. [2] also gives the expression for the correlation functions 〈xi+jxi〉

〈xi+jxi〉 =
Rj +RN−j

2(1−RN )µ
√

1 + a2µ2

4

(23)
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We use the value of 〈x2〉 to calculate the ground energy through the virial theorem [eq.
(12)]

E0 = µ2〈x2〉 =
µ

2
√

1 + a2µ2

4

(
1 +RN

1−RN

)
. (24)

We can use as well the correlation functions to calculate E1

E1 = E0 −
1

a
ln

[
Rj+1 −RN−j−1

Rj −RN−j

]
(25)

These calculations were all done with the mass set equal unity. However we are inter-
ested in the action

S = a
N∑
j=1

m

(
xj+1 − xj

a

)2

+
µ2x2j

2
. (26)

To solve our problem, we rescale x: x→ x/
√
m. The action then becomes

S = a

N∑
j=1

(
xj+1 − xj

a

)2

+
µ2x2j
2m

. (27)

This means that on every expression it will be necessary to make the replacement µ →
µ/
√
m as well. We �nd then

〈x2〉 =
1

2µ
√
m+ a2µ2

4

(
1 +RN

1−RN

)
(28)

R =1 +
a2µ2

2m
− aµ

√
1

m
+
a2µ2

4m2
(29)

〈xi+jxi〉 =
Rj +RN−j

2(1−RN )µ
√
m+ a2µ2

4

(30)

E0 =
µ

2
√
m+ a2µ2

4

(
1 +RN

1−RN

)
= µ2〈x2〉 . (31)

Notice that the expression for E1 is the same as in eq. (25), but with the de�nition of R
given in eq. (29).
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2 Numerical Approach to Evaluate Path Integrals

As we have already discussed, often no analytical approach is possible to solve the path
integral. For this reason we are forced to use numerical methods and introduce numerical
approximations. To calculate path integrals we use Monte Carlo method, but not in its
ordinary way. We apply Metropolis algorithm to generate random paths between initial
and �nal position of the particle. The di�erence is that instead of random sampling we base
on importance sampling, which is sampling from a proposal distribution. Let us explain
the main idea of our computations.

The aim of using Monte Carlo method is to approximate any expectation by the sample
mean of a function of simulated random variables. Considering a random variable X with
probability density function fX(x) on a set of values A, the expected value of any function
g in dependence of X can be expressed by the following equation

E(g(X)) =
∑
x∈A

g(x)f(x) (32)

if X is discrete, and

E(g(X)) =

∫
x∈A

g(x)f(x)dx (33)

if X is continuous. After taking a n-sample of X random variables we compute the mean
of g(x) over the sample

ḡn(x) =
1

n

n∑
i=1

g(xi) (34)

which is the Monte Carlo estimate. According to the laws of large numbers, an obtained
average should be close to the expected value. In our project we used Monte Carlo method
to approximate a de�nite integral, which can be described by the formula∫

f(x)Dx ≈
∑

f(xi) ·∆xi, (35)

where xi are the elements of our space.
The most important matter is how to choose these xi points to get the best approxi-

mation in the most optimal way. There are two possible solutions. We can choose the xi
random points according to a uniform distribution over the whole space - this is what we
call random sampling. But if the given space is large, a huge number of points is needed
to cover it and this quickly becomes problematic. In such case not all regions in our space
contribute and, therefore a lot of integration points will be wasted on unimportant areas.

This is the reason of using importance sampling - generate xi points, which are not
totally random, but more densely distributed in dominant regions of the given space. The
idea is to choose a good distribution from which one simulates random variables.

Let us now introduce the realization of importance sampling concerning path inte-
grals. We consider a Boltzmann distribution with the action S treated as a factor, thus,
probability function can be interpreted according to the following

P (x) ∼ exp (−S). (36)

The expected value of any observable A is given by the expression

〈A〉 =
1

Z

∫
A(x) exp [−S(x)]Dx, (37)
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where

Z =

∫
exp [−S(x)]Dx (38)

is the partition function. We need to �nd the way of generating random points xi with the
distribution

P (x) =
exp [−S(x)]∫
exp [−S(x)]Dx

, (39)

which will lead us to obtain the Monte Carlo estimate Ā of the expectation value 〈A〉 as
shown below:

〈A〉 =
1

N

N∑
i=1

A(xi). (40)

2.1 Metropolis Algorithm

In this section we are going to present the main concept of the Metropolis algorithm.
The algorithm was named after Nicholas Metropolis who was one of the authors of the 1953
paper Equation of State Calculations by Fast Computing Machine, which �rst proposed the
algorithm for the speci�c case of the Boltzmann distribution. The most important attribute
of the algorithm is the use of importance sampling.

Suppose that S(x) is the action of the given system, ∆x is an algorithm parameter
and x is a set of points representing coordinates in quantum mechanics and �elds �elds
in quantum �eld theory. Assume that N is the number of points on our time lattice
and therefore number of the particle path's coordinates as well. Let the following scheme
explain the mechanism of Metropolis algorithm.

1. Generate any random path x = (x1, x2, . . . xN ) between initial and �nal position of
the particle. Let it be called initial path.

2. Choose the random point x′i with uniform probability within the interval

[xi −∆x, xi + ∆x].

3. Replace point xi with new value x′i and calculate the di�erence in action

∆S(x′i, xi) := S(x′i)− S(xi).

4. If ∆S(x′i, xi) < 0, then accept xi point and change initial path. Apply algorithm for
the next point of initial path.

5. If ∆S(x′i, xi) ≥ 0, then generate random number r within the [0, 1].

� If exp [−∆S(x′i, xi)] > r, then accept xi point and change initial path. Apply
algorithm for the next point of initial path.

� Otherwise, reject x′i and apply algorithm for the next point of initial path.

To minimize probability of correlation between following points xi, what will be dis-
cussed later, the Metropolis algorithm should be repeated severals times. According to [2]
we introduce the n̄ parameter, which is responsible for number of algorithmic iterations
for every xi point.



2 NUMERICAL APPROACH TO EVALUATE PATH INTEGRALS 8

In order to get the proper sample of path's points xi we have to generate several trajec-
tories using given algorithm. Statistical calculation can be done only after thermalization
point is reached. It means the point, when we can see that obtained con�guration is close
to the desired equilibrium distribution P (x). When the system accomplished thermaliza-
tion state, obtained values can be used to compute the Monte Carlo estimate for expected
value. In the �gure below 1a thermalization of x2i values can be easily seen.

 0
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 35

 40

 0  20  40  60  80  100

〈 
x

2
 〉

Number of Iterations

Expected value of x
2
 as a function of the number of Monte Carlo iterations

Figure 1: Thermalization of x2i values occurs rapidly after �ve iterations. Axis: x - number
of the path, y - value of x2i for i given path.

2.2 Error E�ects in the System

Computing errors of expection values in Monte Carlo simulations base on independent
measurements, what unfotunatelly is di�cult in practise. There can appear some system-
atic e�ects due to the pseudo-random mechanism and, more importantly, due to the fact
that the new coordinate depends of the old one. We observe correlation between di�erent
paths and its impact on expectation. Therefore there are some statistical dependencies be-
tween di�erent con�gurations. To measure how variables Xi(s) and Xj(s

′) are dependent
on each other in two di�erent points s, s′ we can use a correlation function

Cij(s, s
′) = corr(Xi(s), Xj(s

′)), (41)

where corr is given by the expression

corr(X,Y ) = ρX,Y =
E[(X − X̄)(Y − Ȳ )]

σXσY
. (42)

Symbols X̄ and Ȳ are expected values of the variables, σX and σY standard deviations
and �nally E stands for expected value of X and Y . Basically, correlation can assume
values from [0, 1] interval and it describes how similar two functions or sequences are. If
correlation value is equal to zero, we expect no connection between the data. Otherwise,
if value is equal to 1, functions or sequences are exacly the same.
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In order to truly understand obtained results we have to investigate correlation (more
speci�cally autocorrelation) between paths generated by Metropolis algorithm and take it
into account in error analysis. Autocorrelation function for our algorithm is claimed to
have an exponential decay of the form

C(t) ∼ e
−t
τac . (43)

The τac parameter is called autocorrelation time and plays the main role in statistical
results.

In more strict mathematical sense, algorithm which we use to generate the con�gura-
tions for each path is a Markov process. The problem with Metropolis algorithm is that
in Monte Carlo Markov Chain random walk following samples will usually be highly cor-
related, what can be seen in �g. 2a. Generated path is very similar to previous one and in
the end it e�ects in our statistical aproach. The true error is underestimated, because the
error does not decrease with the square root of the number of samples if the samples are
not independent of each other.

To avoid described situation we introduce several parameters according to the sugges-
tions made in [2]. We have n̄ value for repeating Metropolis algorithm for each xi point.
Thus we let the algorithm wander around initial point for some time, long enough to change
its position and be no longer closely related to the initial point. What we apply as well is
M value, which is the number of paths that are skipped while calculating expected value.
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Figure 2: Two subsequent paths, total number of paths: 105. Left: n̄ = 1. Right: n̄ = 5.

To verify mentioned treatments one can pick some observable and check how closely it
is correlated with the value of the previous state. It is typically found that the correlation
of an observable with its initial value decreases exponentially with the number of steps
made, which suggests that the state of the system itself decorrelates exponentially with
the number of algorithm's iterations. Consequently, if one let the system wander around
for a few system autocorrelation times between measuring samples, the measurements have
a good chance of being statistically independent of each other.
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3 Results for the Harmonic Oscillator

3.1 The Energy of the Ground State

We aim to compute the observables for the harmonic oscillator. Our program calculates
the expected value for the square of the position 〈x2〉, since through the virial theorem
[eq. (12)], E0 = µ2〈x2〉. The parameters chosen for our simulations was m = 0.5, µ2 = 2,
∆ = 2

√
a and n = 10. For these parameters we have on the continuum limit E0 = 1.0 and

that is the value we hope to �nd numerically.

On all cases we consider the equilibrium to be reached after 100 Monte Carlo iterations.
We also take measurements forM = 5, that is every each 5 Monte Carlo iterations. This is
to try to enforce that the quantities measured are completely decorrelated from each other.
Since we are interested on the continuum limit, we run our simulation with increasingly
small lattice spacing, but keeping the quantity Na �xed at 25. In each case we made 105

Monte Carlo iterations to ensure a good precision. The results can be seen on the table 1.

Table 1: Results for E0 using 105 Monte Carlo iterations, n = 10 and measurements made
every each 5 Monte Carlo iterations

Lattice Spacing a E0 Analytical E0 Computed Deviation from theory

5.0Ö10−1 0.89443 0.89416± 6.5Ö10−4 2.7000Ö10−4

2.5Ö10−1 0.97014 0.97205± 6.4Ö10−4 −1.9100Ö10−3

5.0Ö10−2 0.99875 1.01907± 6.3Ö10−4 −2.0320Ö10−2

2.5Ö10−2 0.99969 1.02280± 6.4Ö10−4 −2.3110Ö10−2

5.0Ö10−3 0.99999 1.03073± 5.4Ö10−4 −3.0740Ö10−2

Our estimate for the error is given by

∆E0 =
σ√
N
, (44)

where σ stands for the standard deviation from the data resultant from the Monte Carlo
simulation and N is the number of measurements.

The main feature we see in this graph is that the smaller a we get, more we deviate
from the analytical value. One possible reason is that our paths are much alike even after
5 entire Monte Carlo iterations when a is small, which violates our work hypothesis for
applying our algorithm. To test if that is really the case, we increase the number of Monte
Carlo iterations between each measurement for M = 25 and test the program with the
same set of parameters. To keep the total number of measurements the same (what would
a�ect our error) we increase the number of Monte Carlo simulations to 499600. The results
are on the table 2.

Table 2: Results for E0 using 499600 Monte Carlo iterations, n = 10 and measurements
made every each 25 Monte Carlo iterations

Lattice Spacing a E0 Analytical E0 Computed Deviation from theory

5.0Ö10−1 0.89443 0.89242± 2.9Ö10−4 2.01Ö10−3

2.5Ö10−1 0.97014 0.96998± 2.8Ö10−4 1.60Ö10−4

5.0Ö10−2 0.99875 0.99963± 2.8Ö10−4 −8.80Ö10−4

2.5Ö10−2 0.99969 0.99546± 2.7Ö10−4 −4.23Ö10−3

5.0Ö10−3 0.99999 1.00418± 3.1Ö10−4 −4.19Ö10−3
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We can see clearly a reduction on error, althought not enough to our computed value
and analytical value to agree. Ideally, we should increase the number of simulations between
measurements to M = 50 in order to obtain a more precise value. However this would
require approximatelly one million Monte Carlo iterations to keep �xed the number of
measurements. Because of this, it becomes too expensive to make such a simulation.

We proceed to plotting the data from table 2. The idea now is to �t on these data a
function and then take the limit a→ 0. Since this problem has an analytical solution given
by eq. (31), we use it treating the mass m and the parameter µ as free parameters from
our �t. Since this method is not general, we try also �t in a polynomial. But from Fig. 3
we see this function approaches the continuum value asymptotically. This means at least
its �rst derivative will be zero at a = 0. This hints us an even function and therefore we
will include only even powers on the polynomial. At last we try also an ad hoc function
f(a) = A+Ce−Ba. The �ts are shown on Fig. 3 and the resulting parameters on table 3.

Figure 3: Continuum limit analysis for E0
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Table 3: Fitting parameters of functions at Fig. 3

E0/
√

1 +Bx E0 +Ax2 A+ CeBx Calculated

E0 = 1.000± 0.002 E0 = 0.999± 0.002 A = 1.02± 0.01
B = 1.02± 0.02 A = −0.43± 0.02 B = 3.6± 0.8

C = −0.02± 0.01

The �rst point to notice is that for larger lattices we have bigger �uctuations than
expected by our estimate of the error. This can be again explained by the fact that the
paths between measurements are not completely decorrelated for small a. But since these
�uctuations are random, our �t converges for the expected value of E0 [see eq. (31)]. Also
we see that the best result is, as expected the �t for the analytical expression. But since
this is a special case and the �t to a second order polynomial yielded a good result as well,
this will be our prefarable �tting method from now on.
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3.2 The Energy of the First Excited State

We want also to predict the energy of the �rst excited state. As stated on section
1.2, we use two strategies. One is the �t of the correlation function between lattice sites

Γ
(2)
c and the other the direct application of eq. (19). Our program do these calculations

automatically and for the same run where we obtained the values at table 2 we have the
results of table 4.

Table 4: Results for E1 using 499600 Monte Carlo iterations, n = 10 and measurements
made every each 25 Monte Carlo iterations

Lattice Spacing a E1 Analytical E1 Calculated E1 Calculated
Through Fit Through Eq. (19)

5.0Ö10−1 2.81928 2.687± 2.2Ö10−2 1.94438± 6.4Ö10−4

2.5Ö10−1 2.94987 2.863± 1.2Ö10−2 2.79011± 4.6Ö10−4

5.0Ö10−2 2.99792 2.889± 3.7Ö10−2 2.96684± 5.7Ö10−4

2.5Ö10−2 2.99948 2.844± 6.7Ö10−2 2.96918± 5.6Ö10−4

5.0Ö10−3 2.99998 2.228± 4.0Ö10−1 2.94124± 6.3Ö10−4

We can see clearly these results are not in agreement with the analytical formula. This
means the correlation e�ects a�ects more the calculation of E1 than the calculation of E0.
To get better results, we increase the number of Monte Carlo iterations to 999100 paths,
but we choose to make a measurement only at each 50 Monte Carlo iterations. With the
purpose to make the program run faster, we reduce the parameter n to 5. We summarize
the results on table 5.

Table 5: Results for E1 using 999100 Monte Carlo iterations, n = 5 and measurements
made only every 50 Monte Carlo iterations

Lattice Spacing a E1 Analytical E1 Calculated E1 Calculated
Through Fit Through Eq. (19)

5.0Ö10−1 2.81928 2.8212± 3.8Ö10−3 2.49800± 5.2Ö10−4

2.5Ö10−1 2.94987 2.94069± 9.4Ö10−4 2.94307± 4.4Ö10−4

5.0Ö10−2 2.99792 2.99614± 7.5Ö10−4 3.00084± 4.1Ö10−4

2.5Ö10−2 2.99948 2.99709± 4.4Ö10−4 2.99732± 4.0Ö10−4

5.0Ö10−3 2.99998 2.98905± 2.8Ö10−2 2.98908± 4.4Ö10−4

We can see that even though we have not achieved a total agreement with the analytical
value, we have some more reasonable results. We proceed in taking the continuum limit
by the same procedure used for obtaining the value of E0. Again we see an asymptotic
behavior of the points and therefore we use a polinomial E1 +Bx2.

Table 6: Parameters used for the �t of the graph in Fig. 4

Lattice Spacing a E1 Calculated Through Fit E1 Calculated Through Eq. (19)

E1 2.993± 0.004 3.01± 0.02
A −0.69± 0.03 −2.0± 0.17
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Figure 4: Continuum limit analysis for E1 using the two methods described in section 1.2
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As we can see by the graph in Fig. 4, the point calculated using eq. (19) for a = 0.5
completely disagree with the analytical solution. There is two sources of systematical errors
that can potentially explain these errors.

The �rst of them is that according to the theory exposed at section 1.2, the application
of the eq. (25) can only be used for τ → ∞ (large j). We actually do not do this and
our j is always setted equal 4. The second source of error comes from the imposition of
periodic boundary conditions. Since we impose that x(τN+1) = x(τ0) it is expected that

Γ
(2)
c (τN+1) = Γ

(2)
c (τ0). By the same reason, Γ

(2)
c (τN ) = Γ

(2)
c (τ1) and so on. The e�ect is

that on the plot of Γ
(2)
c (τ) instead of a single decaying exponential there is a contribution

of a rising exponential as well. The e�ect of this rising exponential is negligible near the
origin, but becomes bigger at large τ originating deviations like the ones that can be seen
at Fig. 5 for τ = 2.5. This indicates we needed to �nd a ballance between these two
sources of errors.

On our case, our program keep �xed the value of j at 4 in eq. (25). Since τj = ja,
keeping j �xed means we are using smaller τ on the calculations and therefore minimizing
the e�ects of the errors due the in�uence of boundary conditions. The cost of that is an
increase on errors due escaping our working hypothesis conditions. However since the errors
coming from the use of eq. (25) usually get smaller for smaller a we can say the e�ects
of the boundary conditions are far superior. We must highlight however this analysis is
just an qualitative approach. These errors should be carefully analysed in a quantitative
way. This analysis should also include also the propaagation of the errors of E0 on the
calculation of E1, since on all cases we calculate just the di�erence E1−E0 and then adds
E0 to the result. We do not do these analysis here however due time constraints.
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Figure 5: 〈x(0)x(τ)〉 as function of τ for a = 0.5
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We turn our attention again on the analysis of Fig. 4 and the parameters of Table
6. We can observe that the value of E1 for the case where the �t was made using the
values of E1 obtained through eqhese calculation were all done with the mass set equal
unity. (19) do not agree with the analytical value of E1 = 3, which is expected given our
explanation of why this method is giving worst results. However, we reach agreement with
the analytical solution using the method where we �t our data at eq. (18).

4 Conclusions

During our stay here at DESY Zeuthen we studied the path integral formulation of non-
relativistic quantum mechanics. As it was presented in the report, we used the Metropolis
algorithm to make this calculation for the harmonic oscillator, which has an analytical
solution and thus comparrison with theoretical results was possible.

At the begining we spent a long time learning about theoretical aspects of the problem,
relying on references [3] and [2]. When we accomplished theoretical researches and got
familiar with the path integral and lattice approach to quantum mechanics, we started to
deal with computational tasks concerning the harmonic oscillator. A signi�cant part of
the time was spent coding, performing the simulations and data analysis. Every time we
had some doubts, we consulted our supervisors to have a clear idea about the next steps.

For the implementation of the algorithm we wrote programs using the FORTRAN
programming language. For plots and data analysis we used GNUPLOT program. The
numerical Monte Carlo method was adopted for the example of E0 and E1 calculations,
which gave us insight into topics of thermalization and correlation e�ects. We could ob-
serve how numerical simulations behave due to changes in the input parameters and how
the quantum mechanics paths evolve in time. In particular, we studied how the discretized
quantum mechanical system approaches the continuum limit. For this we performed simul-
lations at smaller and smaller lattice spacings, keeping the physical time constant.

Our �nal results are compatible with the analytical values. Thus we can conclude our
code has been veri�ed and works properly. As discussed in the report, there appeared some



15 A DERIVATION OF THE KERNEL FOR A FREE PARTICLE

systematic errors, which we cannot discuss here because of lack of time to analyze them.
Nonetheless, the computation we have made for the harmonic oscillator can be repeated
and used for other potentials, such as the anharmonic oscillator.Therefore, what we have
accomplished in the DESY Zeuthen Summer Student Programme can serve as a basis for
future investigations of quantum mechanical systems in the path integral formulation.
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Appendixes

A Derivation of the kernel for a free particle

On these appendixes we will derive the kernel [K(b, a) = 〈b|e−iHt|a〉 - see eq. (6)] for
the harmonic oscillator. First for illustration of our method we do this calculation for the
simpler case of an one dimensional free particle, which has the Lagraangian

L[ẋ, x, t] =
m

2
ẋ2 . (45)

We assume
x(t) = x̄(t) + y(t) , (46)

where x̄(t) is a classical path and y(t) stands for the di�erence between the classical path
x̄(t) and a given path x(t) (see Figure 6).

We use eq. (46) and the Lagrangian given in 45 to write the action as

S[x(t)] =

∫ tb

ta

[m
2

˙̄x2 +
m

2
ẏ2 +

m

2
˙̄xẏ
]
dt (47)

= Scl + S[y(t)] +
m

2

∫ tb

ta

˙̄xẏ dt .

It can be shown that (see Appendix C)

m

2

∫ tb

ta

˙̄xẏ dt = 0 , (48)
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Figure 6: An arbitrary path may be written as the classical path x̄(t) plus a �uctuation
y(t) around it.

Classical

Path

xa

xb

xHtL

ttbta

Non-classical

Path

A

B

yHxL

and therefore
S[x(t)] = Scl + S[y(t)] . (49)

Then we can compute eq. (6) as

K(b, a) =

∫ tb

ta

D[x(t)] e
i
~S[x(t)] = e

i
~Scl

∫ tb

ta

D[x(t)] e
i
~S[y(t)] . (50)

Since the end points are �xed, y(ta) = y(tb) = 0 and therefore y(t) has a period
T = tb − ta. Considering a Fourier transform for y(t), we derive

y(t) =

∞∑
n=−∞

an sin

(
nπt

T

)
, (51)

ẏ2 =
∞∑

n=−∞

∞∑
k=−∞

anak
nkπ2

T 2
cos

(
nπt

T

)
cos

(
kπt

T

)
. (52)

When integrating eq. (52) over the period, the sum on k will be only non-zero for
n = k, when it yelds T/2. Therefore the integral is given by∫

ẏ2 dt =

∞∑
n=−∞

a2n
n2π2

T 2

T

2
=

∞∑
n=−∞

a2n
n2π2

2T 2
. (53)

Wherefore, kernel for the system can be rewritten as

K(b, a) = e
i
~Scl

∫ ∞
−∞

∞∏
i=1

e
im
2~ a

2
n
n2π2

2T2 D[(y(t)] . (54)

Substituting ωn for nπ
T we transform y(t) expression 51 to

y(ti) =

N−1∑
i=1

a(ωn) sin(ωnti) . (55)
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Then,

∂y(ti)

∂a(wk)
=

N−1∑
i=1

δkn sin (wnti) = sin (wkti) . (56)

The jacobian J of the transformation is given by a constant value. Using all derived
results we express kernel as

K(b, a) =

[
lim
ε→0

lim
N→∞

A

∫ ∞
−∞
· · ·
∫ ∞
−∞

N∏
n=1

e
im
2~ ·

a2nn
2π2

2T da1 · · · daN−1

]
e
i
~Scl . (57)

After integrating, we �nally obtain

K(b, a) = lim
ε→0

lim
N→∞

A

N∏
n=1

√
4i~T
n2π2m

e
i
~Scl , (58)

and therefore

K(b, a) = lim
ε→0

lim
N→∞

Ā e
im
2~T (xb−xa)2 , (59)

since the productory of the square root above is just a constant on the limit N →∞ and
Ā in eq. (59) stands for the normalization constant in the kernel expression. It may be
choosed in a way that once the limit is evaluated, the kernel will result on the one obtained
on [3, pg. 42]

K(b, a) =

√
2πi~T
m

exp

[
im(xb − xa)2

2~T

]
. (60)

B The Kernel For The Harmonic Oscillator

We will now use the same procedure to evaluate the kernel for the harmonic oscillator
problem. Its Lagrangian is given by

L[ẋ, x, t] =
mẋ2

2
− mω2x2

2
. (61)

We use the same procedure of considering �uctuations around the classical path to
describe any given path. The Lagrangian becomes

L[ẏ, y, t] =
m ˙̄x2

2
− mω2x̄2

2
+
mẏ2

2
− mω2y2

2
+m ˙̄xẏ −mω2x̄y . (62)

The same reasoning as before is used to conclude that y(t) is periodic with period
T = tb − ta and therefore may be expanded as a fourier series

y(t) =

N−1∑
n=1

a(ωn) sin(ωnt) . (63)

Where ωn = nπ/T . Notice that there is no cossine term on this series. This is because
we may choose without losing generality ta = 0 and tb = T . Since we know that y(0) = 0,
if we set all the coe�cients accompanying the cossines to 0, we automatically meet this
condition.
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From classical mechanics we write the classical path

x̄(t) = A cos(ωt+ ϕ) . (64)

We then substitue eq. (64) and eq. (63) into eq. (62) and integrate the result on time
from 0 until T to obtain the action through this path. The end result will be

S = SCl +
N−1∑
n=1

m

{
a (ωn)

√
T (ω2

n − ω2)

2
− Aω [cos(ωT + ϕ)(−1)n − 1]√

T (ω2
n − ω2)

}2

(65)

− A2ω2 [cos(ωT + ϕ)(−1)n − 1]2

T (ω2
n − ω2)

.

Here it was used the orthogonality relationship between the functions sin (ωnt) and
sin (ωkt) as well between cos (ωnt) and cos (ωkt)∫ T

0
sin (ωnt) sin (ωkt) dt =

∫ T

0
cos (ωnt) cos (ωkt) dt = δnk

T

2
, (66)

and the result is adjusted to eq. (65) by completing squares. Note that our integral over
an arbitrary path, was changed to the integral over the �uctuations around the classical
path. Therefore when we calculate eiS/~ the term containing the classical action will be
seen as a constant to the integral. Also, when we considered to describe the �uctuations as
a fourier series, our variable changed again to the fourier series coe�cients. We need then
to relate these two integral variables. This is done by discretising the time in a lattice with
spacing ε in such way that Nε = T . This way we estabilish the relationship

D [y(t)] = lim
N→∞

B(N, ε)
N−1∏
i=1

dy(ti) (67)

= lim
N→∞

B(N, ε)

∣∣∣∣ ∂ [y(t1), y(t2), · · · , y(tN−1)]

∂ [a(ω1), a(ω1), · · · , a(ωN−1)]

∣∣∣∣N−1∏
i=1

da(ωi) .

The factor that accompanies the di�erentials of the fourier coe�cients is the Jacobian
and it is easy to show using the Jacobian de�nition and eq. (63) that it independs of a(ωi)
and therefore it is treated as a constant. B(N, ε) is a normalization constant that needs
to be determined. The kernel will be then

K(b, a) = lim
N→∞

B(N, ε)J
N−1∏
i=1

exp

[
i

~
Scl

]
exp

{
− iA

2ω2 [cos(ωT + ϕ)(−1)n − 1]2

~T (ω2
n − ω2)

}
(68)

∫ ∞
−∞

exp

 im
~

{
a (ωn)

√
T (ω2

n − ω2)

2
− Aω [cos(ωT + ϕ)(−1)n − 1]√

T (ω2
n − ω2)

}2
 da(ωn) .

This is a Gaussian integral, which can be easily evaluated to

K(b, a) = lim
N→∞

B(N, ε)J exp

[
i

~
Scl

]
(69)

N−1∏
i=1

exp

{
− iA

2ω2 [cos(ωT + ϕ)(−1)n − 1]2

~T (ω2
n − ω2)

}√
4i~

mT (ω2
n − ω2)

.
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We can rewrite this as

K(b, a) = lim
N→∞

B(N, ε)J exp

[
i

~
Scl

](
4i~
mT

)(N−1)/2 N−1∏
i=1

(
n2π2

T 2

)−1/2
(70)

N−1∏
i=1

exp

{
− iA

2ω2 [cos(ωT + ϕ)(−1)n − 1]2

~T (ω2
n − ω2)

}
N−1∏
i=1

(
1− T 2ω2

n2π2

)−1/2
.

We can use now the property exposed in [3, pg. 73]

lim
N→∞

N−1∏
i=1

(
1− T 2ω2

n2π2

)−1/2
=

√
ωT

sin(ωT )
(71)

and the classical action for the harmonic oscillator [3, pg. 28] (see Appendix E)

SCl =
mω

2 sin(ωT )

[
(x2a + xb2) cos(ωT )− 2xaxb

]
(72)

to arrive at the �nal expression

K(b, a) = C exp

{
imω

2~ sin(ωT )

[
(x2a + xb2) cos(ωT )− 2xaxb

]}√ ωT

sin(ωT )
, (73)

where C is a normalization constant and it is the result of all the remaining factors collected
together and on the limit of N →∞. We can recover it noticing that on the limit of zero
frequency, we should recover the free particle. By this procedure we can see that

C =

√
m

2πi~T
(74)

and therefore

K(b, a) =

√
mω

2πi~ sin(ωT )
exp

{
imω

2~ sin(ωT )

[
(x2a + xb2) cos(ωT )− 2xaxb

]}
. (75)

C Calculation of the integral of the crossed term in the free

particle action

Considering
x̄(t) = x̄0 + ˙̄xt, (76)

where
˙̄x =

xb − xa
tb − ta

, (77)

the last expression in eq. (47) change to

m

2

∫ tb

ta

˙̄xẏ dt =
m ˙̄x

2

∫ tb

ta

ẏ dt . (78)
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Substituting the Fourier tramsform to ẏ in eq. (51), integral above becomes zero

∫ T

0
ẏ dt =

∫ T

0

n=N∑
n=1

anωn cos (ωnt) dt = 0 . (79)

D Classical action for the free particle

We know that Lagrangian L for the free particle is equal to

L[ẋ, x, t] =
m

2
ẋ2 . (80)

The action S is given by the expression

S =

∫ tb

ta

L(ẋ, x, t) dt . (81)

Using the Lagrange's equation

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 , (82)

we will derive an expression for the classical action corresponding to the classical motion
of a free particle. Substituting Lagrangian given in eq. (80 into eq. (82), we get

d

dt

∂L

∂ẋ
− ∂L

∂x
=
m

2

d

dt
ẋ− 0 = 0,

d

dt
ẋ = 0 =⇒ ẋ = constant . (83)

Therefore

Scl =

∫ tb

ta

m

2
ẋ2 dt =

m

2
ẋ2
∫ tb

ta

dt =
m

2
ẋ2(tb − ta) . (84)

Since ẋ is time independent, it can be expressed as

ẋ =
xb − xa
tb − ta

. (85)

Finally, the classical action is

Scl =
m

2

(xb − xa)2

tb − ta
. (86)



21 REFERENCES

E Classical Action for The Harmonic Oscillator

The Lagrangian for the Harmonic Oscillator is given by eq. (61). Using eq. (82) we
arrive at the di�erential equation

ẍ+ ω2x = 0 . (87)

The solution for this equation is widely known to be eq. (64). We also impose the
initial conditions

xa = cos(ωta + ϕ) (88)

xb = cos(ωtb + ϕ) .

We then substitute eq. (64) into eq. (61) and integrate on time from ta to tb to obtain
the classical action. The obtained result will be

SCl =
mωA2

2
[sin(ωtb + φ) cos(ωtb + φ)− sin(ωta + φ) cos(ωta + φ)] . (89)

We use then that tb = T + ta and eq. (88) to rearrange the above equation, arriving at
the expression exposed on [3, pg.28] and written on eq. (72).
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