Improving Time Resolution of BCM1F

Overview

Introduction: CMS, Discriminators (recap)

Experiments

- Objective and Methodology
- Results: Time resolution, Double-peak resolution

Simulations

- Methodology
- Results: Time resolution
- Conclusions
- Questions

CMS

Monitor beam condition around CMS interaction point

- Need to improve resolution to see halo peaks within main peak caused by collision products
- Beam halo arrives 12 ns before collision products

Figure (left) from Hempel, M., Data analysis for BCM1F4LHC Figure (right) from Lohmann, W., BCM1FWorkshop Report

Discriminators

- Current: Fixed Threshold Discriminator
- Possible replacement: Constant Fraction Discriminator

Discriminators

- CAEN v258B (Fixed Threshold Discriminator)
- CAEN v812, PSI CFD950 (Constant Fraction Discriminator)

Experiments: Objective and Methodology

Compare performance of discriminators

Measure time resolution using TDC (time-to-digital converter)

Results

Results

- RMS of histogram as time resolution
- Compare time resolution by taking ratio
 - RMS_{Fixed Threshold Discriminator} / RMS_{Constant Fraction Discriminator}

Input amplitude /mV	v8I2	CFD950
47	3.286	2.05 I
105	1.531	I.874
202	1.137	I.450
298	1.236	1.385

- Both CFD are comparable
- v812 has better time resolution for small input signals

Double-peak resolution

- Input signals
 - Rise time = 25 ns
 - Trailing edge = 80 ns
 - Amplitude = 24 mV
- Discriminators
 - Threshold = -10 mV

Discriminator	Туре	Double-peak resolution /ns
v258B	Fixed threshold	90±20
v812	Constant fraction	145±2
CFD950	Constant fraction	No stable output for input signals < 50 mV

Double-peak resolution

- Input signals
 - Rise time = 25 ns
 - Trailing edge = 80 ns
 - Amplitude = 24 mV
- Discriminators
 - Threshold = -10 mV

Discriminator	Туре	Double-peak resolution /ns
v258B	Fixed threshold	90±20
v812	Constant fraction	145±2
CFD950	Constant fraction	No stable output for input signals < 50 mV

Simulations

C++, ROOT

10

- Summing original with inverted delayed signal
- Triggering at zero-crossing
- Using signals sampled by analog-to-digital converter(ADC)

Simulation Parameters

- Constant fraction = 0.2
- Internal delay = 4 ns
- Threshold = 2 ADC counts (9.2 mV)
- Baseline calculation between 4000ns and 6000ns

Simulation Results

Top figure: Simulation of fixed threshold discriminator by Olga Novgorodova

Conclusions

CFD does improve time resolution

- Experiment : v812 improves time resolution by factor of 3, CFD950 improves time resolution by factor of 2.
- Simulation: CFD improves time resolution by factor of 2.

Double-peak resolution

- ▶ v812 (CFD) double-peak resolution factor of 1.5 poorer.
- No signals from CFD950 for input signals smaller than 50mV.

Questions

Thank you

Summing over various input amplitudes

20mV amplitude modulation

In the lab

Function generator, attenuator

NIM crate

Constant fraction 0.2

Constant fraction 0.4

Possible beam halo. Constant fraction 0.4

