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From Operators to the Path Integral

From Operators to the Path Integral

I Problem: evaluate 〈xF |e−iHT |xI 〉

I Discretize time: T = Nδt

* 〈xF |e−iHT |xI 〉 = 〈xF |e−iHδte−iHδt . . . e−iHδt |xI 〉

I Use completeness relation
∫
dx |x〉〈x | = 1 between each

operator

〈xF |e−iHT |xI 〉=(
∏N−1

i=1

∫
dxi)〈xF |e−iHδt |xN−1〉〈xN−1|e−iHδt ...e−iHδt |x1〉〈x1|xI 〉

Aleksandra S lapik, Poland & Willian Matioli Serenone, Brazil



Introduction - A bit of theory Numerical Approach to Evaluate Path Integrals Results Summary

From Operators to the Path Integral

I Evaluate 〈xi+1|e−iHδt |xi 〉
* 1

2πdp
∫
|p〉〈p| = 1

* H = p2

2m + V (x)

* 〈x |p〉 = e ipx

* e iTδt+iV (x)δt = . . . e
i
2 δt[T ,H]e iTδte iV (x)δt ∼= e iδtT e iδtV (x)

I Final result: Gaussian Integral

* 〈xi+1|e−iHδt |xi 〉 = e−iδtV (xi+1)

2π

∫
dp exp

[
−iδt p2

2m + ip(xi+1 − xi )
]

I Complete squares

* 〈xi+1|e−iHδt |qi 〉 =
( −im
2πδt

)1/2
exp

{
iδt
[( xi+1−xi

δt

)2 − V (xi+1)
]}

I We use this to rewrite 〈xF |e−iHT |xI 〉
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From Operators to the Path Integral

Time to go the continuum limit!
That means, keeping T = Na = const., we take the limit of
N →∞ and a→ 0

(
−im
2πa

)N−1
2

(
N−1∏
i=1

∫
dxi

)
→
∫
D[x(t)],

xj+1 − xj
a

→ ẋ ,

a
N−1∑
j=0

→
∫

dt,

We arrive then at the path integral formulation for Quantum
Mechanics

〈xF |e−iHT |xI 〉 =
∫
D[x(t)] exp

[
i
∫
dtmẋ2

2 − V (x)
]

=
∫
D[x(t)]e iS[x(t)]
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From Operators to the Path Integral
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From Operators to the Path Integral
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From Operators to the Path Integral
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From Operators to the Path Integral
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Connection With Statistical Mechanics

Connection With Statistical Mechanics
I Step back to discretized time
I Transform to Euclidean time: t → −it
I Same integral as the partition function!

Z ∝
∫
e [−βH(p1,p2,...,pN ,x1,x2,...,xN)] d3p1 d

3p2 . . . d
3pN d3x1 d

3x2 . . . d
3xN

β = 1
kbθ

ZFI =
( −im
2πδt

)N−1
2

(∏N−1
i=1

∫
dqi

)
exp

[
−δt

∑N−1
j=0

(
xj+1−xj
δt

)2
+ V (xj+1)

]
I Expectation value of an operator Â

〈Â〉 = Tr[e−HT Â]/Z = 〈Â〉 =

(∏N
i=0

∫
dxi

)
A(x1, x2, . . . , xn)e−S[x(t)](∏N

i=0

∫
dxi

)
e−S[x(t)]
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Connection With Statistical Mechanics

I Apply completeness relation for energy states
∑M

n=1 |n〉〈n| = 1
and the limit T →∞

* In our analogy with Statistical Physics, this is equivalent for
taking the limit of zero temperature

I We conclude that in this limit 〈Â〉 = 〈0|Â|0〉
I The ground state energy is given by

E0 = lim
T→∞

〈Ĥ〉 =

(∏N
i=0

∫
dxi [xiV

′(xi )/2 + V (xi )] e−S[x(t)]
)

(∏N
i=0

∫
dxi

)
e−S[x(t)]

Remark: We used the Virial Theorem here: 〈Ekin〉 = 〈xV ′(x)〉/2
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Connection With Statistical Mechanics

I n-point connected propagator

Γ
(n)
c =

n∏
i=1

∂

∂Ji
ln [Z (J)]

∣∣∣∣
J=0

Z (J) = Tr

[
exp

(
−HT +

n∑
k=1

xkJk

)]
I For n = 2 and T →∞

Γ
(2)
c (τ) = 〈0|x(0)x(τ)|0〉 − 〈0|x(0)|0〉〈0|x(τ)|0〉

I Using again the completeness relation, changing to the
Schrödinger representaion (x(τ)H = e−HτxSe

Hτ ) and taking
the limit τ →∞

Γ
(2)
c (τ →∞) = |〈0|x |1〉|2 e−(E1−E0)τ
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Numerical Approach

Numerical Approach

We applied Metropolis algorithm to generate random paths
between initial and final position of the particle. Instead of random
sampling we based on importance sampling, which is sampling
from a given distribution.

We considered a Boltzmann distribution with the action S treated
as a factor.

P(x) ∼ exp [−S(x)]. (1)

The expected value of any observable A is given by the expression

〈A〉 =
1

Z

∫
A(x) exp [−S(x)]Dx , (2)

where Z =
∫

exp [−S(x)]Dx is the partition function.
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Numerical Approach

Main Idea of our Computations

We need to find the way of generating random points xi with the
distribution

P(x) =
exp [−S(x)]∫

exp [−S(x)]Dx
, (3)

which will lead us to obtain the Monte Carlo estimate of the
expectation value 〈A〉

〈A〉 =
1

Npath

Npath∑
i=1

A(xi ), (4)

where Npath is the number of paths generated with Metropolis
Algorithm. Because Npath is a finite number, a statiscal error
occurs. We are going to discuss it later.
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Metropolis Algorithm

Metropolis Algorithm

Suppose that:

I S(x) is the action of the given system,

I ∆x is an algorithm parameter,

I x is a set of points representing coordinates in quantum
mechanics (fields in quantum field theory)

I N is the number of points on our time lattice and therefore
number of the particle path’s coordinates as well.
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Metropolis Algorithm

1. Generate any random path x = (x1, x2, . . . xN) between initial and
final position of the particle.

2. Choose the random point x ′i with uniform probability within the
interval

[xi −∆x , xi + ∆x ].

3. Replace point xi with new value x ′i and calculate the difference in
the action

∆S(x ′i , xi ) := S(x ′i )− S(xi ).

4. If ∆S(x ′i , xi ) < 0, then accept x ′i point and change initial path.

5. If ∆S(x ′i , xi ) ≥ 0, then generate random number r within [0, 1].
I If exp [−∆S(x ′i , xi )] > r , then accept x ′i point and change

initial path.
I Otherwise, reject x ′i and apply algorithm for the next point of

initial path.

This algorithm fullfills detailed balance
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Metropolis Algorithm

Thermalization
In order to get the proper sample of path’s points xi , we have to generate
several trajectories using given algorithm. Statistical calculation can be
done only after thermalization point is reached.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100

〈 
x

2
 〉

Number of Iterations

Figure: Thermalization of x2i values occurs rapidly after five iterations.
Axis: x - number of the path, y - value of x2i for i given path.
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Metropolis Algorithm

Thermalization
In order to get the proper sample of path’s points xi , we have to generate
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Statistical and Systematic Error Effects in the System

Statistical and Systematic Error Effects in
the System

There can appear some systematic effects due to the pseudo-random
mechanism and to the fact that the new coordinate depends on the old
one. We observe correlation between different paths and its impact on
expectated values. There are some statistical dependencies between
different configurations. To describe how similar two functions or
sequences are we define correlation function:

Cij(s, s
′) = corr(Xi (s),Xj(s

′)), (5)

where corr is given by the expression

corr(X ,Y ) = ρX ,Y =
〈(X − 〈X 〉)(Y − 〈Y 〉)〉

σXσY
. (6)

σX and σY are standard deviations for expected value of X and Y .
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Statistical and Systematic Error Effects in the System

Correlation

Correlation function for our algorithm is claimed to have an
exponential decay of the form

C (tNPaths
) ∼ e

−tNPaths
τc . (7)

The τc parameter is called correlation time and plays the main role
in statistical results.
Example. We run our algorithm 100 times and we generate 100 paths.

I If τc = 1000, then C (t100) ∼ e
−100
1000 = e−0.1 ≈ 0.9

I If τc = 1, then C (t100) ∼ e
−100

1 = e−100 ≈ 3.7× 10−44

For long enough time, the position will be no longer closely related to the
previous point. Therefore the measurements will become approximatelly
independent of each other.
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Statistical and Systematic Error Effects in the System
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If we let the system wander around for a few system correlation times
between measuring samples, the measurements have a good chance of
being statistically independent of each other.
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Ground Energy for The Harmonic Oscillator

Ground Energy for The Harmonic Oscillator

I We will use as the system action

S = a
N∑
i=1

m

2

(
xi+1 − xi

a

)2

+
µ2x2i

2
(8)

I from Virial theorem E0 = µ2〈x2〉
I m = 0.5, µ2 = 2 and T = 25
I First trials with one measurement each 5 Monte Carlo

iterations (approximately 20,000 measurements).
* Results deviated highly from the analytical prediction for small

a (possibly high correlation between paths on this limit).
* For a = 5× 10−3

- E
0,analytical = 0.99999

- E
0,computed = 1.03073± 5.4× 10−4
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Ground Energy for The Harmonic Oscillator

I Increased for one measurement each 25 Monte Carlo
iterations

* Observed improvement on the results

I For getting the continuum limit, try to fit points to functions

* E0(a) = E0/
√

1 + Ba2 (Inspired by the analytical solution)
* E0(a) = E0 + Aa2 (Taylor series in a plus assymptotic

approach to the continuum value)
* E0(a) = A + CeBa (ad hoc function)
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Ground Energy for The Harmonic Oscillator
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Calculated E0

Fit to analitical expression

Fit to E0 + A*a
2

A+C*e
B*a

E0/
√

1 + Ba2 E0 + Aa2 A + CeBa Calculated

E0 = 1.000± 0.002 E0 = 0.999± 0.002 A = 1.02± 0.01
B = 1.02± 0.02 A = −0.43± 0.02 B = 3.6± 0.8

C = −0.02± 0.01
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Energy of the First Excited for the Harmonic Oscillator

Energy of the First Excited for the
Harmonic Oscillator

I It is determined in two ways

I through the formula E1 = E0 − 1
a ln
[
〈x0xi+1〉
〈x0xi 〉

]
I through the fit of the data into

Γ
(2)
c (τ →∞) = |〈0|x |1〉|2 e−(E1−E0)τ

I One measurement each 25 Monte Carlo iterations is not good
enough

* E1,analytical = 2.99998

* E1,computed = 2.94124± 6.3× 10−4

I Increase to one measuremnt each 50 iterations
I To get the continuum limit, we adopt the same procedure as

E0: record E1 as a function of a and fit a function
E1(a) = E1 + Ba2
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Energy of the First Excited for the Harmonic Oscillator
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Fit E1 - Calculus through eq.

Parameters Calculated through fit Calculated through

of the fit e−(E1−E0)τ E1 = E0 − 1
a ln
[
〈x0xi+1〉
〈x0xi 〉

]
E1 2.993± 0.004 3.01± 0.02
B −0.69± 0.03 −2.0± 0.17
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Energy of the First Excited for the Harmonic Oscillator

I Huge disagreement between data for a = 0.5
I Two sources of systematic error:

* Periodic boundary conditions adds growing exponential
* On practice, we cannot take τ →∞ (We use τ = 4a here)

I Most drastic source of error here is the first one, since the
choise of τ = a improve results

I However for small a the second source of error starts to
dominate
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So what we actually did in here...?!

I Studied the lattice approach to the path integral formulation
of non-relativistic quantum mechanics.

I Adopted Monte Carlo method for calculations of E0 and E1

for the harmonic oscillator.

I Observed how the quantum mechanics paths evolve in time.

I Observed how discretized quantum mechanical system
approaches the continuum limit.

And finally, what is the most important: our final results are
compatible with the analytical values!
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Thank you for your
attention!!!
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Analytical Results for the Harmonic Oscillator

Analytical Results for the Harmonic
Oscillator

〈x2〉 =
1

2µ
√
m + a2µ2

4

(
1 + RN

1− RN

)

R =1 +
a2µ2

2m
− aµ

√
1

m
+

a2µ2

4m2

〈xi+jxi 〉 =
R j + RN−j

2(1− RN)µ
√
m + a2µ2

4

E0 =µ2〈x2〉

E1 =E0 −
1

a
ln

[
R j+1 − RN−j−1

R j − RN−j

]
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