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Deep-Inelastic Scattering

Define Virtuality Q2 and variables

I X, y
I Q2 P.
Q= *q2: = Y= 7 :
2P - q P-I
q The inclusive differential cross sec-

tion can be written in terms of a

leptonic tensor and a hadronic ten-

}PF sor
,do 1

@3 T 4P /Q4

LW whv

The hadronic tensor reads
_ 1 ququ 2 quPv + qu Py Q? 2
W#V_g(gﬂﬂ_ e Fi(x, Q)+& PuPu‘i'T—ng Fa(x, Q7).

The differential cross section in terms of structure functions reads

do 27ra
dxdy XyQ2

(38
{[1+ Q- y)?] Fa(x, Q%) — y*Fi(x, Q¥)} . L\D v/
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According to the factorization theorem the structure functions decompose into
perturbative Wilson-coefficients and non-perturbative parton distribution functions

(PDFs) ‘
Fitx, @) => C(x, @)@ fi(x,u?), i=2L.
J

The Mellin convolution ® between two functions is defined as

1 1
[f © gl(x) = /0 dy /0 dzf (y)g(2)5(x — y2).

Introducing the Mellin transform of a function

P(N) = /1 o 1F(x),

0

the Mellin convolution decomposes into in an ordinary product

M[f @ g](N) = M[f](N)M[g](N).

Summary



In Mellin space the structure functions read

Fi(N, Q%) = > C/(N, @*)f(N, ?) .
j
The Wilson coefficients can be written as sum of light and heavy flavour parts

(N, Q% m?) = E(N, Q) + H/(N, Q% m?).

The heavy flavour part decomposes into light flavour Wilson coefficients and massive
operator matrix elements (OMEs)

HI(N, @, m?) =" CI(N, Q*)A; (N, m”).

@
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Regularization and Renormalization

Loop integrals lead to divergencies in D = 4 dimensions — One needs to regularize
the integrals
The prototype of the occuring momentum integrals is

d°k (k) T(r+D/T(m—r—D/2)
(2m)P (k2 + R2)™ — (4m)P/20(D/2)T (m)(R?)™~~P/2 "

The I'-function is an analytic function with a certain pole structure. We set D = 4 4 ¢
and expand in a Laurent-series. The analytic continuation of the dimension leads to
the introduction of a scale via the substitution

g — g(p?)~ /2.

g2

For convenience one introduces after the substitution as = @

Poles in £ always

occur in a combination with one factor per loop
1
Se = exp 58(’YE —In(47)) ¢ .

In the MS-regularization scheme the poles are subtracted in the form S, and set,t’&rﬁ/\
Se to unity after the calculation — Simplified result without any ~g. { BE‘S\\‘ )
%4
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Vacuum Polarization

The analytic expression of the amputated vaccum polarization diagram is

d% o . (k+B)+m
N (p) = — T O
ab (P) r (271_)[) Jl(k + p)2 — m?
ao [ APk (KE o pR)KY 4 (K 4 pU)KE — (k4 p) - kg + mPghv
=—4T¢g aab/
(2m)P ((k+p)* — m?)(k* — m?)

. Kt m
|g7“tﬁ§,,,|mlg7"t,l,’m

Steps to calculate the integral:
1. Perfom Wick-rotation

K=k, K= k2, /de:i/deE, /%E‘Si/
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2. Feynman-parametrization to combine denominators

1 e, i 1 xtmh
= ) [, ZX,
AL Al TG ---Tln) Jo =i

(XIAI +---+ XnAn)

L _Ta+p) [1,  x1=x)pt
ATBE ~ T(@)T(B) Jo © (xA+(1—x)B)*F

3. Use symmetric integration

/(‘;ﬁ)k kFF(K®) =0,

D v D
[ b £ [ S

4. D-dimensional momentum integration .

Summary

1),
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Result of this procedure

_ 1
7“(24”)5//22) (és*“”pzfp“p”)/0 doox(1—x)[m? —x(1—x)p?]P/272.

We put p on shell in the integrand and perform the e-expansion
2\ €/2 oo
& By 2 op v m- 1 1 f)n
dan(g"” p” — p*p")Se (u2) - exp <nE_ . (2 Cn

8. 1 1 m? €
B tnaters s (Lo dn (7))
3 e 2 o 8

N4 (p) = 8Trg*dai
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Line-Insertion Diagram

The analytic expression of the amputated line insertion diagram reads

d® . (K—#)+
G — _my 5
@k P Gk —pp2 e "
f+m K+m _ .
i W A(A KN mémjlg’Yytfm7
with A being a light-like 4-vector. We project this Greens function on the massive
OME 1 1

_ b N
Ads = Wﬁ( 8uv)3™ (A - p) "G oy -
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We use the same steps as in the evaluation of the vacuum polarization diagram.
Only difference: effective vertex leads to more complicated numerator structure

N—1
BV = (AK+A-x)ap" = (
n=0

N-—-1

Ch)a—n@ k)N

Using the fact that A is light-like vector and the symmetric integration the numerator
simplifies. The remaining Feynman-parameter integrations lead to Beta-functions

re)riy)
Mx+y)’
The result for line insertion diagram is given by
2\ €/2 oo
W _ m° ! Lgy
e () e (£
“ 2(N + 1)(N +2) +e(N? + N +2)
N(N + 1)(N +2) ’

B(x,y) = /01 e 11— )yl = Re(x), Re(y) > 0.
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Vertex-Insertion Diagram

The analytical expression of the amputated vertex insertion diagram is given by

D
@,uv _ d°k . (k—p)+m N—2—j
Goap =-Tr (27r)D|(k e g dingti AF KX E W(A - k) J
Ck+m o
L m—— Smiig " th

Again we project to the OME and performing the same steps as above lead to result

AR = 32a,T;S (m2)6/2 - il<€>nc :

= —_ ——eX — | = n T ———
Qe sTroe 2teo: P \&n\2 (N+1)(N+2)/‘
(
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Only both diagrams together can be renormalized. Adding the unrenormalized results
and e-expanding yields

Aog = (A%)+A2))

2N e/? N4 (N? 4+ N +2)
= _ T;S. (F) *exp <Zn<> >/\I(N++)(/\7r+2)

n=2
—_ TS (12)5/2( 425 N2+N+2)
e\ 8 ) N(N+1)(N+2)"
The unrenormalized result can be written as
N m2 €/2 1A
AQg =S, (7> |:7*qu +agg + €§Qg:|
B €
with the splitting function
8(N2 + N +2) Qg

Pp=Tr—0— 1~ T =0, 30, =-—2P
ag fN(N+1)(N+2)’ aQg » 4Qg g



Expansion to the constant term in ¢ leads to
N 1. 1. /m?\
Age = Se |—=Pgg — =In | — | Pgg| -
Qg € c €7 5 112 ag
In this case the renormalization procedure reduces to add the inverse renormalization
factor
ro _ A —1
Ae = Ag + Zgg
which is in this case

Se 2
— Py .

PR

The final renormalized one-loop OME reads

1 m?\ &
2?g = —5111 (F) qu .

-1 _
qu
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Deep-Inelastic Scattering

For the computation of the two-loop graphs the Dirac-structure in the numerator has
been neglected.
The scalar part of the loop integrals reads

dPk dP1 1 1 1 1 1
£ | Gy Gy T PR G e A

We perform the momentum integrals loop by loop doing same steps as in one-loop
case yields Feynman-parameter integrals

Il :%g“(mﬂ_‘HD(A . P)N

L 1
y / dXXN+3_D/2(1 . X)4—D/2 / dny+2(1 _ y)D/2—4/ dzzN(l — jg,?sv\
0 0 °

= Integrals decompose into Beta-functions
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The e-expansion has been performed with MAPLE

2\ €
h =25 (%) (A-p)NI(N + 1)
x exp(—eng) ZZ TN +2 = ¢/2)1(3 = ¢/2)M(—1 +¢/2)

F(N+5—e)[(N+2+¢/2)
o2 (M AW 1
252 (%) @-p)

(N+1)(N+2)(N+3)(N+4)
4
X [E + (—=5+4S51(N+4) =45 (N+ 1))+ O(e)| ,
with the single harmonic sums

1)

x| =

N
SN =3
k=1

1PN G4
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An expression for general multiple finite harmonic sums is given by

Satysan(N Z Z Z sign(ar)®  sign(an)*

|a1] |an|
ki=lhky=1  kp=1 ki kn

Using the expression for the harmonic sums the result of the two-loop graph can be

written as a purely rational function in the Mellin-moment N

N 1
h= SSs(ug) B P NI DN T (N T 3N T 4)
e (N+2)(N+3)(N+4) .

Summary



The scalar part of the two-loop diagram with external gluons reads

4, aw [ dPk dPiI 1 1 1
h=—g"(m%)
(2m)P (2m)P (p+ k)2 = m? (p+1)> —m? 2 — m?
1 ! 1
sz_mz(A'k)

k2 —m2 (I — k)2~
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The integration of the Feynman-parameter integrals is more involved than in the
previous examples. An ntermediate result is given by

r6—D) ,

1 —64D0
_ _ _ _ y
b g (m?) 4+D/ dxdyx~3TD/2(1 — x)=2+D/2,2=D/2(1 _ 2 (1 y )
(47) 0 X

1
></ dz1dzy(1 — z)[z2(1 — y) + z1y]V
0

The z-integrals can be calculated in terms of elementary functions

r6—D) ,

"7 P

—6+D
g (m?)~ 4+D/ dxdyx—3D/2(1 — x)~2+D/2,1-D/2 (1_y+ g)

1+yN{(kTy>N(Y— 1)* + y?[N(y — 1)+2y—3]}
(N + 1)(N +2)(N +3) '

The remaining x-integration is of form of the hypergeometric function

X

2oFi(a, B 2) = / dtt’ 11— )Y P11 —zt)™™, Rey >Ref >0
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The substitution y = 1 — z yields

h = %g“(mﬂ*%o /01 dzB(4— D/2,—1+ D/2),F1 (6 - D,4—D/2;3, ﬁ)
_ —z N z Nz3 —z 2 1y — _
x(1— z)*5+D/21 -2 {(172) +(1 -2 [Nz —2(1 - 2) + 3]} ,

(N+1)(N+2)(N+3)
In order to solve the integral, one has to transform the argument via

z

2F1 (a,ﬁ;% :) =1-2z2)%F(,y—=Bivz).

We use the iterative relation

1
/ dzzH N1 — 2)" "R (e, Bi i 2) = B, v)sFa(a, B, iy, p+ vi 1),
0

with the generalized hypergeometric function 3F,
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The functions 2 F; and 3F; are part of the function class ,Fgq. They have a series
representation for |z| < 1

o (1) -~ ()i 2
E, 1B, BgiZ) = (B, . (B, kI
P q(Oéh , ap; B Bq z) kZ:O (ﬂl)k"’(ﬁq)k k!

with the Pochhamer symbol
(@) = Mo+ k)
T )
Using the iterative relation and setting D = 4 4 ¢ we obtain
5 (mQ)E r2—e)B(2—¢/2,14+¢/2)
/2 :aSSE ey
2 (N+1)(N+2)(N+3)

x [B(1,—¢/2)3F(2 —€,14¢/2,1;3,1 —¢/2;1)
—B(N+4,—¢/2)3F2(2—¢,1+¢/2,N+ 4,3, N+4—¢/2;1)
—NB(2,N+2—¢/2)3F(2—¢e,14+¢/2,2;3,N+4—¢/2;1)
+2B(1,N+3—¢/2)3F(2—¢,14¢/2,1;3,N+4—¢/2;1)
—3B(1,N+2—¢/2)3F(2—¢,1+¢/2,1;3,N+3 —¢/2; 1)} .

Summary



The e-expansion and infinite summation was done with the computer algebra package
SIGMA. Our final result for the second loop graph is given by
b 262 <m2>5{ 3+ 2N+ 2N% + N3
=3 —_—
2752 LINF 13N+ 2)2(N +3)
1

T INF 12N+ 2)(N+3)

[g(N +1)S(N) + %(N+ 1)S2(N) — NSl(N)] } .

-
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Summary

The substructure of the nucleus can be accessed through the deep-inelastic
scattering process.

The differential scattering cross section is related to structure functions,
describing composition of nucleons.

The structure functions decompose into the perturbative Wilson coefficients and
non-perturbative parton distribution functions.

The Wilson coefficients contain massive and massless contributions.
The renormalized massive OME Ag, has been calculated to one-loop order.
Several scalar integrals at two-loop order have been computed.

It is interesting to note that the evaluation of the integrals of OMEs generate
naturally new mathematics.
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