Top quark resonances in ATLAS simulation

Image: CERN

Stefanie Todt

TU Dresden, Germany

Final Presentation DESY Summer Student Programme, 2012 Zeuthen, 5th September 2012

Supervisor: Elin Bergeaas Kuutmann

Motivation and goal

Search for particles which decay into a top/anti top quark pair (m_t = 173 GeV/c²):

Top Resonances

> Theoretic model predicts novel gauge boson

 $Z' \longrightarrow t\bar{t}$

- hypothetical particle with the same properties as the Z-Boson but much larger mass
- Z' is so far unseen
- > Aim: Set upper limits on the Z' to $t\bar{t}$ cross section
- Study of different reconstruction methods of the tt system
 - invariant mass distributions
 - Mini-isolation for leptons

Top quark physics at LHC

Top quark production at LHC with proton-proton collisions at 8 TeV center-of-mass energy:

Event selection

➤ Top quark decay (99,8%): t → Wb

W-Boson decay:

W → pair of light quarks qq (67%)

 $W \longrightarrow$ lepton I + neutrino v (33%)

Semileptonic decay of top quark pair:

 $t\bar{t} \longrightarrow Wb + Wb \longrightarrow Ivb + qqb$

> One charged lepton: electron or muon

 \rightarrow lepton isolation requirement!

> Missing transverse energy in event,

 $E_{T}^{miss} \longrightarrow neutrino$

> Quarks form jets

 \rightarrow jet reconstruction from energy deposition in hadronic calorimeter with fixed radius parameter R

Reconstruction methods

Reconstruction of invariant mass of the $t\bar{t}$ system

- > Add neutrino longitudinal momentum p_z to E_T^{miss}
- > Add energy-momentum 4-vectors of all top decay products
- > Resolved reconstruction:
 - Consideration of angular distribution of the jets

tt system = remaining 3/4 $j_{0.4}$ + e/µ + v

> Boosted reconstruction:

 $t\bar{t}$ system = $j_{1.0}$ + Lepton jet $j_{0.4}$ + e/μ + v

Invariant mass:

$$m = \sqrt{\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} p_{i}\right)^{2}}$$

Comparison of $t\bar{t}$ and Z' simulated data

- Reconstructed invariant mass m_{tt} of the top/anti top decay for Standard Model tt and Z' (m_{Z'} = 1600 GeV) (electron channel)
- → Boosted event selection shifts to higher masses

Lepton isolation

- Selected event: isolated leptons required
- Standard isolation criterion: fixed cone isolation
 - Sum over all energy deposited in a fixed cone around the lepton

 $I_{\text{fixed cone}}^{l} = \sum_{\text{cluster in cone}} E_{T}$ $\Delta R(\text{lepton, energy cluster}) < \text{const}$

Problem: boosted events

 \rightarrow highly collimated decay products

 \rightarrow loss of signal due to standard isolation criterion

Mini-isolation: Cone radius is lepton p_T dependent

$$I_{\rm mini}^{\ell} = \sum_{\rm tracks} p_{\rm T}^{\rm track} \qquad \Delta R(lepton, track) = \frac{10 GeV}{p_{T}^{l}}$$

 \rightarrow hard leptons can be less isolated!

Comparison of fixed cone isolation and mini-isolation

Reconstructed invariant mass m_{tt} of the top/anti top decay for Standard Model tt and Z' (m_{Z'} = 1600 GeV) with mini-isolation and fixed cone isolation

mini-isolation enhances number of selected electrons

Summary

- Boosted event selection increases the sensitivity to new physics processes with massive particles
- Mini-isolation: better performance for electrons in boosted topologies than fixed cone isolation

Summary

- Boosted event selection increases the sensitivity to new physics processes with massive particles
- Mini-isolation: better performance for electrons in boosted topologies than fixed cone isolation

Thanks for your attention! Questions?

References

- Particle Data Group Collaboration, K.Nakamura et al., Review of particle physics, J.Phys. G37 (2010) 075021.
- [2] R. M. Harris, C. T. Hill, and S. J. Parke, Cross section for topcolor Z'(t) decaying to t anti-t, arXiv:hep-ph/9911288.
- [3] R. M. Harris and S. Jain, Cross Sections for Leptophobic Topcolor Z' decaying to top-antitop, arXiv:1112.4928 [hep-ph].
- [4] ATLAS Collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.
- [5] M. Cacciari, G. P. Salam, and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 0804 (2008) 063, arXiv:0802.1189 [hep-ph].
- [6] ATLAS Collaboration, Performance of large-R jets and jet substructure reconstruction with the ATLAS detector, ATLAS-CONF-2012-065, June 2012.
- [7] ATLAS Collaboration, A search for ttbar resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, submitted to JHEP (2012), arXiv:1207.2409v1 [hep-ex].
- [8] ATLAS Collaboration, A search for ttbar resonances with the ATLAS detector in $2.05fb^{-1}$ of proton-proton collisions at $\sqrt{s} = 7$ TeV, Eur.Phys.J. C72 (2012) 2083, arXiv:1205.5371v3 [hep-ex].
- [9] ATLAS Collaboration, Prospects for top anti-top resonance searches using early AT-LAS data, ATLAS public note, ATL-PHYS-PUB-2010-008, Jul, 2010.
- [10] K. Rehermann and B. Tweedie, Efficient Identification of Boosted Semileptonic Top Quarks at the LHC, JHEP 1103 (2011) 059, arXiv:1007.2221 [hep-ph].

Resolved tf reconstruction

Resolved events = low energy top quark pairs

• 4 small jets $j_{0.4}$ with radius parameter R = 0.4

<u>OR</u> 3 jets $j_{0.4}$ with $m_{j0.4} > 60$ GeV for one of these

- "b-tagging" of any jet in the event
- Reconstruction of invariant mass of the tf system:
 - add neutrino transverse momentum p_z to E_T^{miss}
 - Consideration of angular distribution of the jets

tf system = remaining 3/4 $j_{0.4}$ + e/µ + v

Boosted tf reconstruction

> Boosted events = high energy top quark pairs

- Hadronic top decay = one fat jet j_{1.0} with large R = 1.0 and high p_T, m_{j1.0}
- Study of fat jet substructure
- One small jet with R = 0.4 with "b-tagging"
- Back-to-back creation of top and anti top quark
- \rightarrow Closest jet to lepton = Lepton jet

Large angular separation between fat jet and Lepton jet/lepton

Reconstruction of invariant mass of the tf system:

```
tf system = j_{1,0} + Lepton jet + e/\mu + v
```


Jet trimming

- > LHC at design luminosity:
 - About 20 collisions per bunch crossing → "pile up"
 - Every event is superposition of several interactions
 - Interaction of interest (hard scattering) is always accompanied by soft interactions → Mass resolution of large jets diminishes
- \rightarrow Jet trimming on large radius jets (R = 1.0)
 - reduces influence of soft-scatter contributions
 - Uses structural difference between jets from light quarks or gluons and large jets which contain hard-scatter quarks

Date: 2012-04-15 16:52:58 CES

Stefanie Todt | Final Presentation | 5th September 2012 | Seite 15

Impact of jet trimming on the m_{tt} reconstruction

Invariant mass reconstruction with trimmed and untrimmed large jets (only boosted selection)

→ Mass of large jet shifted to lower values due to subjet sorting

 \rightarrow Less events for trimmed reconstruction due to mass drop

Numbers of selected events

	$t\overline{t}$		Z'	
Channel	Electrons	Muons	Electrons	Muons
resolved (mini-isolation)	$3,\!29~\%$	$4,04\ \%$	4,70 %	$4,91 \ \%$
boosted (trimmed, mini-isolation)	0,02 %	0,02~%	1,4~%	1,8 %

Table 1: Number of selected events for the resolved and boosted event selection with respect to the total number of events before selection cuts were applied.

	$t\overline{t}$		Z'	
Channel	Electrons	Muons	Electrons	Muons
resolved (mini-isolation)	3,29 %	4,04 %	4,70 %	4,91 %
resolved (standard isolation)	2,77 %	4,05 %	2,89 %	4,91 %
boosted (trimmed, mini-isolation)	0,02 %	0,03~%	1,4~%	1,8 %
boosted (trimmed, standard isolation)	0,01 %	0,03~%	0,80 %	1,63~%

Table 2: Number of selected events for the resolved and boosted event selection for standard and mini-isolation with respect to the total number of events before selection cuts were applied.

	$t\overline{t}$		Z'	
Channel	Electrons	Muons	Electrons	Muons
boosted (untrimmed, mini-isolation)	0,03~%	0,04~%	1,70~%	$2,\!19\ \%$
boosted (trimmed, mini-isolation)	0,02~%	0,02~%	1,4~%	1,8~%

Table 3: Number of selected events for the resolved and boosted event selection for trimmed and untrimmed large-radius jets with respect to the total number of events before selection cuts were applied.

Summary

- > Boosted event selection increases the sensitivity to new physics processes with massive particles
- Mini-isolation: better performance for electrons in boosted topologies than fixed cone isolation
- > Jet trimming on large radius jets in boosted reconstruction
 - Reduction of sensitivity to pile-up on the invariant mass reconstruction
 - Improvement of the mass resolution
 - Consideration of further background studies needed

