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Outline

QCD is our theory of the strong (nuclear) interactions; it is a Quantum Field Theory
(QFT)

what is a QFT?

Why do we need Lattice QCD

what can we compute in Lattice QCD?

some technical details

how is this done in practice?
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From Superposition principle to Path integral

If a system is observed in state A and then in state B [with no intermediate observations],
then the system must take all possible intermediate states between the two.

Double slit experiment:

each path associated with a phase (amplitude)

sum of two possible (classically) paths produces
interference

adding a barrier with infinite number of slits
should not change result

⇒ sum over all (infinite) paths, classical or not

PATH INTEGRAL

〈xb|e−iHT//h |xa〉 = ∑
paths

ei·(phase)
Physical paths satisfy (least action
principle):

δ
δx(t) (S[x(t)]) |xcl = 0
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then the system must take all possible intermediate states between the two.

Double slit experiment:

each path associated with a phase (amplitude)

sum of two possible (classically) paths produces
interference

adding a barrier with infinite number of slits
should not change result

⇒ sum over all (infinite) paths, classical or not

PATH INTEGRAL

〈xb|e−iHT//h |xa〉 =
∫
Dx(t)eiS[x(t)]//h

Destructive interference for xodd(t) if:

(S[xcl(t)]− S[xodd(t)])� /h
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Scattering in Quantum Mechanics

xa

xb

V(x)

number of particles conserved

finite (small!) number of degrees of freedom (dof)

macroscopic V(x) given a priori
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Relativistic Scattering

pi1

pi2

int.

p f 1

p f 2

p f 3
p f 4

local interaction⇒ initial and final states are (nearly) free

E = mc2 ⇒ particle creation-annihilation

intermediate states can have ∞ dof NEED a QFT
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Theorist path to need of QFT

non-relativistic energy
momentum

E = p2/(2m)

Schrodinger equation

−∇2
2m Ψ = i∂tΨ

solutions

Ψ(~x, t) = ei(~p·~x/
√

2m−ωt)

ω = ~p2/(2m)

relativistic energy momentum

E2 = p2 + m2

Klein-Gordon equation

(−∇2 + ∂2
t )Ψ = m2Ψ

solutions

Ψ(~x, t) = ei(~p·~x−ωt)

ω = ±
√
~p2 + m2

negative energy solutions

also in interacting theory

also if we try to obtain a first order equation using E =
√

p2 + m2, Dirac equation:

(/∂ −m)Ψ = 0 /γ = γµ∂µ
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QFT

QM for 1-particle (non-relativistic, h = 1):

variables:~x, ~p quantization:[~x, ~p] = i

QFT (scalar particle):

variables: φ(~x), π(~x) quantization:[φ(~x), π(~y)] = iδ(~x−~y)

[φ(~x), φ(~y)] = 0 [π(~x), π(~y)] = 0

φ(x) operator that creates particle in x

〈0|Tφ(x)φ(0)|0〉 6= 0 even if x is spacelike (eg x0 = 0, ~x 6= 0)

φ(x) and φ(0) are different variables, they can be related only if x is
timelike:

[φ(x), φ(0)] = 0 if x2 < 0 spacelike
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Path Integral, LSZ reduction formula and all that...
In QM we solve Sch. eq. for a given V(x), we get what we want: 〈xb|xa〉.
QFT: what do we want, how we get it?

1 out〈~p1, ....,~pn|~q1, . . . ,~qk〉in = (LSZ formula)

∏
i,j

∫
d4xid4yjeipi ·xi e−iqj ·yj 〈0|T (φ(x1) . . . φ(xn)φ(y1) . . . φ(yk)) |0〉

∏n
i=1

(
i
√

Z
p2

i −m2+iε

)
∏k

j=1

(
i
√

Z
q2

j −m2+iε

)

2 denominator obtained from 2-pt functions (Källen-Lehmann)

〈0|Tφ(x)φ(0)|0〉 = i∑
α

∫ d4 p
(2π)4 e−ip·x |〈0|φ(0)|α(~0)〉|2

p2 −m(α)2 + iε
.

E2
~p(α) = m(α)2 + ~p2, Zα ≡ |〈0|φ(0)|α(~0)〉|2

3 correlation functions can be evaluated through a Path Integral:

〈0|T{φ(x1) . . . φ(xN)}|0〉 =

∫
Dφ φ(x1) . . . φ(xN)eiS[φ]∫

DφeiS[φ]
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Summary

to treat quantum relativistic systems we NEED QFT

using a path integral we can compute the correlation functions
〈0|T{φ(x1) . . . φ(xN)}|0〉
correlation functions contain all infos we need, eg scattering amplitudes

now let’s see what kind of QFT QCD is...
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Electromagnetism as a QFT (QED)

it is Lorentz invariant

it is gauge invariant

it can be formulated in a Lagrangian formalism to have Lorentz symetries manifest:

L = −1
4 FµνFµν Fµν = ∂µ Aν − ∂ν Aµ

Aµ → Aµ − 1
e ∂µα(x)

the other way around: F2
µν is the lowest dimensional operator Lorentz and gauge

invariant

add fermion fields (spin 1/2) with gauge transformations:

ψ(x)→ U(x)ψ(x) = eieα(x)ψ(x)

Lorentz and gauge invariance fix the interaction lagrangian:

LQED = ψ( /D−m)ψ− 1
4 F2

µν Dµ = ∂µ + ieAµ(x)
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Electromagnetism can be formulated as a gauge theory (QED)
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QCD
Is QED the only gauge theory in the Universe?

QED is a U(1) gauge theory⇒ ψα has only Lorentz index

(γµψ)α = (γµ)αβψβ (U(x)ψ(x))α = eieα(x)ψ(x)α U(x) ∈ U(1)

can we build a SU(N) gauge theory? (ψαa has Lorentz and gauge index)

(γµψ)αa = (γµ)αβψβa (U(x)ψ(x))αa = U(x)abψ(x)αb U(x) ∈ SU(N)

YES! (we assume also CP invariance)

L = −1
4 Fa

µνFa µν + ψ(i /D−m)ψ

Dµ = ∂µ + igAa
µτa Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ − g f abc Ab
µ Ac

ν

τa ∈ SU(N); [τa, τb] = i fabcτc
for N > 1 force carriers autointeract, unlike photons!

theory of the strong interactions (QCD) is a SU(3) gauge theory
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The strong interaction

Discovered as force that binds protons (p) and neutrons (n) into nuclei: Nuclear force

stronger than electromagnetic force at distances ∼ fm stable nuclei exist

strength rapidly (exponentially) decays with distance large nuclei are unstable

Today (QCD):

written in terms of quarks (ψ) and gluons (Aµ)

gluons are carriers of strong force (like photons)

charge is called color

strong force binds quarks and gluons in (p) and
(n)

asymptotic states are color singlets called
hadrons (confinement)

Nuclear force is the residual strong force
analogous to Van der Walls forces between
neutral atoms and molecules

How do we derive all these properties from QCD???
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Quark content
In Nature there are 6 quarks:

r r r rmtmbmcmsmdmu

10 102 103 104 105 MeV

ψ has now dimension: N f × Nc × 4 (N f = 6; Nc = 3)

L = −1
4 Fa

µνFa µν + ψ(i /D−M)ψ

Asymptotic states are color singlets (called hadrons). Some allowed interpolating operators
are

ψaΓψa (bosons, called mesons, eg π+ = ψ
u
a γ5ψd

a )

εcde(Cγ5)βγψαc(ψβdψγe − ψβdψγe) (fermions, called baryons, e.g.

p = εcde(Cγ5)βγψu
αc(ψ

u
βdψd

γe − ψd
βdψu

γe))
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QCD path integral

Example: quark propagator.

〈ψ(x)ψ(0)〉 =

∫
DψDψDA ψ(x)ψ(0)e

∫
dx4LQCD∫

DψDψDAei
∫

dx4LQCD

Remember:
LQCD = −1

4 Fa
µνFa µν + ψ(i /D−M)ψ

Dµ = ∂µ + igAa
µτa Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ − g f abc Ab
µ Ac

ν

If g� 1 we can expand LQCD inside the integral:

〈ψ(x)ψ(0)〉 '

∫
DψDψDA ψ(x)ψ(0)(1 + ig

∫
dx4Lint − g2

2 (
∫

dx4Lint)
2)e

∫
dx4L f ree∫

DψDψDAei
∫

dx4LQCD

L f ree is bilinear in ψ, ψ⇒ All gaussian integrals
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Feynman diagrams

〈ψ(x)ψ(0)〉 '

∫
DψDψDA ψ(x)ψ(0)(1 + ig

∫
dx4Lint − g2

2 (
∫

dx4Lint)
2)e

∫
dx4L f ree∫

DψDψDAei
∫

dx4LQCD

+ + + . . .

mnemonic device to keep into account all terms coming from expanding the exponential

Feynman rules allows how to write each diagram in terms of a product of polarization
vectors, propagators, integrals over allowed internal momenta (in loops)

1 is g small in Nature?

2 how do we relate quark scattering amplitudes to hadrons scattering amplitudes?

F. Bernardoni 6 August 2012 15



Feynman diagrams

〈ψ(x)ψ(0)〉 '

∫
DψDψDA ψ(x)ψ(0)(1 + ig

∫
dx4Lint − g2

2 (
∫

dx4Lint)
2)e

∫
dx4L f ree∫

DψDψDAei
∫

dx4LQCD

+ + + . . .

mnemonic device to keep into account all terms coming from expanding the exponential

Feynman rules allows how to write each diagram in terms of a product of polarization
vectors, propagators, integrals over allowed internal momenta (in loops)

1 is g small in Nature?

2 how do we relate quark scattering amplitudes to hadrons scattering amplitudes?

F. Bernardoni 6 August 2012 15



The running coupling

In QED:

electron-positron pairs can pop
out of the vacuum

they screen the electron charge

at high momentum µ (or short
distance) expect larger electric
charge

⇒ β(e) = µ
∂e(µ)

∂µ > 0
In QCD:

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν

gluons have nonzero color charge: autointeraction

⇒ charge bigger at large distances (confinement?)

⇒ charge smaller at short distances (asymptotic freedom)

g2(µ) =
g2(M2)

1−β(g(M2)) log(µ2/M2)/g(M2)
β(g) ' − g3

(4π)2

(
11
3 Nc − 2

3 N f

)
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Asymptotic freedom, QCD tests at high energies

p

P=(Ep,p
A

p) Xp

x•P
Xq

q

e+

k=(Ee,p
A

e)

e+ / ie

k’

if Q2 = −q2 � 1 GeV strong
interactions not able to keep
quark in proton (α(Q2)� 1)

collinear gluon production very favored⇒ Hadronization

initial and final states are hadrons (jets) but we can compute amplitude as process
happened for free quarks (Parton Model)

dσ
dQ2 =

∫ 1

0
dξ ∑

f
f f (ξ)Q

2
f

2πα2

Q4

[
1 + (1− Q2

ξs )2
]

θ(ξs−Q2)

p = ξP

one can improve precision and compute NLO perturbative corrections to the above
(Altarelli-Parisi)
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QCD as the theory of strong (and nuclear) interactions

QCD in the perturbative regime
tested in wide range of high energy
experiments: success!

Can we use the above theory to
describe nuclear interactions (our
starting point)? Hadron spectrum?
Decays and scattering processes
involving hadrons, at low energy?

WE NEED NON PERTURBATIVE METHODS!
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QFT on a lattice

It is impossible to compute an infinite dimensional integral:

〈0|T{φ(x1) . . . φ(xN)}|0〉 =

∫
Dφ φ(x1) . . . φ(xN)eiS[φ]∫

DφeiS[φ]

However:

we can discretize spacetime

(t , x , y , z) = (nta, nxa, nya, nza) ni ∈ Z

consider a box of finite length

0 ≤ t, x, y, z ≤ Na = L

take the limits a→ 0, L→ ∞
numerically
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Monte Carlo Integration
Huge number of variables O(V/a4)× dF (φ): only feasible method is Monte Carlo.

1 perform a Wick-rotation

evaluate the PI at imaginary times by analytic continuation

t→ it
∫

d4x → i
∫

d4x LLorentz → LEuc eiS[φ] → e−S[φ]

⇒ 3dim quantum system↔ 4dim statistical system

2 generate sample of φ configurations with probability distribution P[φ] = e−S[φ]

3 evaluate correlation function on sample, compute average and statistical error

Typically ∼ O(1000) independent cfgs: P[φ]
must satisfy

is positive defined

is bounded from above

no strong oscillations

reasonable precision for a small set of
observables
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QCD on a lattice

Typical requirements when building Llat
QCD on the lattice:

Llat
QCD → LQCD when a→ 0

hermiticity (to maintain transfer matrix)

gauge invariance

locality

some symmetries of LQCD have to be broken at a 6= 0 (eg: Lorentz): recovered in
continuum limit

⇒ there is a lot of freedom in the choice!

∂µψ(x)→ 1
2 [ψ(x + µ̂)− ψ(x− µ̂)]
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Hadron Spectrum

Källen-Lehmann parametrization of 2-point correlator:

〈0|Tφ(x)φ(0)|0〉 = i∑
α

∫ d4 p
(2π)4 e−ip·x |〈0|φ(0)|α(~0)〉|2

p2 −m(α)2 + iε

also valid for composite operators, eg φ(x)γφ(x)

Suppose we want to compute the π+ mass (E(~p = 0)):

build a composite operator made out of ψ, ψ and Aµ with the right quantum numbers
(Lorentz, isospin, color)

ψ, ψ and Aµ are colored, π are color singlets

compute the 2-point function and project at ~p = 0

fit the mass from exponential decay at large time separations

example π(x) = ψγ5ψ(x)
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Hadron Spectrum

...after Wick-rotation and projection over momentum ~p:

c2(x0) =
∫

d3~xe−i~p·~x〈0|Tφ(x)φ(0)|0〉 = ∑
α

Zα
2E(α) e−E(α)x0 −−−→

x0→∞
Z1

2E(1) e−E(1)x0

also valid for composite operators, eg φ(x)γφ(x)

Suppose we want to compute the π+ mass (E(~p = 0)):

build a composite operator made out of ψ, ψ and Aµ with the right quantum numbers
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Example: pion mass

0 5 10 15 20 25 30 35 40 45

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

plateau

excited states
contamination

at T = ∞, −∂0 log c2(x0) −−−→x0→∞
mπ a

at finite T, c2(x0) −−−−→
x0large

e−mπ x0 + e−mπ(T−x0)

⇒ I plot acosh ((c2(x0 + a) + c2(x0 − a))/(2c2(x0))) −−−→x0→∞
mπ a

weighted average in the plateau range gives mπ a

T ∼ 6.2 fm, a ∼ 0.065 fm
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Example: pion mass

Looks easy...

1 how do we know a?

2 other hadrons? protons and neutrons in particular...
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Example: pion mass

Looks easy...

1 how do we know a?

2 other hadrons? protons and neutrons in particular...
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Continuum limit
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lim depends on the path

lim
x, y→0

x2y
x4+y2

= 0 if y = kx

= 0.5 if y = x2

if we take the a→ 0 limit of the PI naively we obtain ∞
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Continuum limit

Consider QCD, with u, d quarks, mu = md ⇒ g, m free parameters

1 choose one g(a)

2 take two input variables, e.g. mπ , mp

3 tune m until mπ
mp lat

=
(

mπ
mp

)
phys

4 find a in physical units comparing
(mπ a)lat with (mπ)phys

5 close enough to continuum, any other
observable O will satisfy:

Olat = Ophys +O(a) RENORMALIZABILITY

6 repeat with smaller g (closer to a = 0)

g

amq

g1

g2

g3

g4

A B C

We let m(a) and g(a) in such a way to maintain physics constant (up to O(a)).
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Example: proton mass
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LL correlator

SS correlator

thanks to V. Drach

interpolating field: L(x) = εabc((ψ
u
a )

TCγ5ψd
b )ψ

u
c (x)

noise to signal ratio increases at large separations

invent another (non local) interpolating field S(x) with less overlap with excited states
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Example: B meson mass

0 5 10 15 20 25
0.3

0.35

0.4

45 smearing
iterations

225 smearing
iterations

B+ is like π+ but quark content: ub instead of ud

noise to signal ratio increases at large separations

use smeared interpolating fields Pk
hl , k = 1, . . . , n

Pk
hl = ψ

(k)
l γ0γ5ψh ψ

(k)
l (x) =

(
1 + κG a2 ∆

)Rk
ψl(x)

the larger the radius the smaller the overlap with excited states
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Spectrum
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BMW collaboration, 2008

methods exist to extract masses of excited states (resonances): GEVP
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Check unitarity of CKM-matrix

νll

b u

W

gweak

gweak

flavor changing processes
through exchange of W boson
(weak interaction)

happen at the quark level, but
involve hadrons

at small energy (wrt MW ∼ 90
GeV) and leading order in gweak
fermi effective theory

At LO in gweak and e amplitude factorizes into a strong and an EW part. Examples:

K → π + e + νe and K → µνµ (for |Vus|)
B→ π + l + νl and B→ τντ (for |Vub|)
. . .
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Check unitarity of CKM-matrix

νll

b u

GF

flavor changing processes
through exchange of W boson
(weak interaction)

happen at the quark level, but
involve hadrons

at small energy (wrt MW ∼ 90
GeV) and leading order in gweak
fermi effective theory

At LO in gweak and e amplitude factorizes into a strong and an EW part. Examples:

K → π + e + νe and K → µνµ (for |Vus|)
B→ π + l + νl and B→ τντ (for |Vub|)
. . .
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B→ τν in the Standard Model

BSM(B→ τν) = f 2
B |Vub|2

G2
FmBτB

8π
m2

τ

[
1− m2

τ

m2
B

]2

from lattice we need fB: 〈0|ψuγµγ5ψb|B(p)〉 = −i fB pµ

in perturbation theory (EW theory) we can compute 〈τντ |ψτγµγ5ψν|0〉
using Källen-Lehmann again:

c(t) = ∑
~x
〈Phl(x)Phl(0)〉 −−−−−−→T→∞,t→∞

f 2
BmBe−MBt(1 + O(e−∆1,0t)) (t = x0)
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B→ πlν in the SM

At LO in αEM and ml = mν = 0

dΓ
dq2 =

G2
F|Vub|2

192π3m3
B

λ3/2(q2)
∣∣∣ f+(q2)

∣∣∣2 qµ = pµ
B − pµ

π

〈π(pπ)|Vµ|B(pB)〉 = f+(q2)

[
pµ

B + pµ
π − m2

B −M2
π

q2 qµ

]
+ f0(q2)

m2
B −M2

π
q2 qµ

Typically on the lattice one computes (B at rest):

〈π(pπ)|Vµ|B(pB)〉 = lim
T→∞, tB, π→∞

R(tπ , tB)eEπ tπ /2emBtB/2

R(tπ , tB) ≡
∑

~xπ ,~xB

e−i~p·~xπ 〈Pll(xπ + xB)Vµ(xB)Phl(0)〉√
∑
~xπ

e−i~p·(~xπ )〈Pll(xπ)Pll(0)〉 ∑
~xB

〈Phl(xB)Phl(0)〉
.

π Vµ Btπ tB

Pll and Phl are interpolating
operators

other ratios are possible

F. Bernardoni 6 August 2012 32



R(tπ, tB)
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always smeared interpolating operators

large finite T effects at large x0 separations

computation reliable for momenta pπ � 1/a
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Conclusions 1

Lattice QCD already helped testing QCD, and measuring parameters of the SM

Need to compute some quantities with better precision to understand some
discrepancies e.g. in determination CKM

for computational reasons one usually uses m > mu,d and extrapolates
use ChPT, based on spontaneous chiral symmetry breaking
with present lattice spacings a ∼ 0.05 fm cannot simulate b directly
use effective theories (HQET, NRQCD), extrapolate from m < mb
critical slowing down, topology freezing make it difficult to reduce a
need better algorithms

Simulations are run on machines (on parallel), with limited computational power a lot of
work is done, trying to optimize programs, communication
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Conclusions 2

Lattice is a regularization of a QFT, that can be used to approach other issues of particle
physics:

study beyond the SM models, like technicolor, quantum gravity...

attack some issues as whether the SM can be the ultimate fundamental theory
triviality of scalar theories

study QCD in extreme situations of temperature and pressure
understand neutron stars, heavy ion collisions
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