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The Issue of Quantum Corrections

In Lecture 1, we have learned that quantum corrections of scattering
processes involve divergent integrals over a momentum k going around
internal loops.

We distinguish between UV divergences for k →∞ and IR divergences
for k → 0.

In order to proceed, the loop integrals have to be regularized. There are
various ways of doing this. The most obvious but not necessarily best
choice is to introduce momentum cut-offs.

Note also that in order to perform the loop integrals, we have to shift to
a Euclidean signature. Therefore one usesR∞
−∞ dk0f (k0) = −

R −i∞
i∞ dk0f (k0) (Wick rotation), and defines:

k0 = ik0
E , k i = k i

E ⇒ −k2 = k2
E = (k0

E )
2
+ (k1

E )
2
+ (k2

E )
2
+ (k3

E )
2
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Example: Consider the integralZ
d4k

(2π)4

„
1

k2 + iδ

«2

,

which is UV and IR divergent!

This can easily be seen by shifting to Euclidean coordinates and redefining the

integration variable. Then the above integral is proportional to
R∞

0
dx
x

.

Use dimensional regularization:

Idea: Evaluate the loop integral in d dimensions instead of 4.

If d < 4, the UV divergence vanishes.

If d > 4, the IR divergence vanishes.

We actually do not have to specify wether d < 4 ord d > 4. Just replace
4 → d + 2ε, then the UV and IR divergences are regularized at the same
time. The div. are transformed into poles 1/ε and double poles 1/ε2.

Dimensional regularization preserves all symmetries of the theory, opposed
to cut-off regularization, which breaks Lorentz invariance at the cut-off!
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Calculating d-dimensional integrals:

Sounds complicated, but it is not (if one knows the trick)!

Using the Gaussian integral
R

dx e−x2

=
√
π, one can show that the area

of the d-dimensional unit sphere is given by

Z
dΩd =

2πd/2

Γ(d/2)

Gamma function: Γ(z) =
R∞

0
dt e−t tz−1, Γ(n) = (n− 1)! for integer n

After Wick rotation, a typical momentum integral can be written in
d-dimensonal spherical coordinates:Z

ddkE

(2π)d

1

(k2
E + m2)2

=

Z
dΩd

(2π)d

Z ∞

0

dkE
kd−1

E

(k2
E + m2)2

=

Z
dΩd

(2π)d

1

2

„
1

m2

«2−d/2 Z 1

0

dx x1−d/2(1− x)d/2−1

Here, we have substituted x = m2/(k2
E + m2).
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Using
R 1

0
xa−1(1− x)b−1 = Γ(a)Γ(b)/Γ(a + b), we obtainZ

ddkE

(2π)d

1

(k2
E + m2)2

=
1

(4π)d/2

Γ(2− d/2)

Γ(2)

„
1

m2

«2−d/2

In order to compensate for the change of the mass dimension in the
integration measure, we multiply the d-dimensional integral with a
prefactor µ4−d with (mass) dimension [µ] = 1. The scale µ is known as
renormalization scale. We will talk about its meaning in the next section.

Expanding the above result for small ε around d = 4 one obtains

µ4−d

Z
d4kE

(2π)d

1

(k2
E + m2)2

d→4−→ 1

(4π)2

„
1

ε
− γE + log(4π) + log

„
µ2

m2

«
+O(ε)

«
You can find various master integrals in text books of QFT, for instance:Z

ddk

(2π)d

{1, k2, kµkν , (k2)
2
, kµkνkσkτ}

(k2 −∆)n

Torsten Pfoh LHC Theory Lecture 2: Energy Scales and LHC Observables



Regularization & Renormalization
The Renormalization Scale

Hadronic Cross Sections and Jets
New Physics at the LHC?

Using
R 1

0
xa−1(1− x)b−1 = Γ(a)Γ(b)/Γ(a + b), we obtainZ

ddkE

(2π)d

1

(k2
E + m2)2

=
1

(4π)d/2

Γ(2− d/2)

Γ(2)

„
1

m2

«2−d/2

In order to compensate for the change of the mass dimension in the
integration measure, we multiply the d-dimensional integral with a
prefactor µ4−d with (mass) dimension [µ] = 1. The scale µ is known as
renormalization scale. We will talk about its meaning in the next section.

Expanding the above result for small ε around d = 4 one obtains

µ4−d

Z
d4kE

(2π)d

1

(k2
E + m2)2

d→4−→ 1

(4π)2

„
1

ε
− γE + log(4π) + log

„
µ2

m2

«
+O(ε)

«

You can find various master integrals in text books of QFT, for instance:Z
ddk

(2π)d

{1, k2, kµkν , (k2)
2
, kµkνkσkτ}

(k2 −∆)n

Torsten Pfoh LHC Theory Lecture 2: Energy Scales and LHC Observables



Regularization & Renormalization
The Renormalization Scale

Hadronic Cross Sections and Jets
New Physics at the LHC?

Using
R 1

0
xa−1(1− x)b−1 = Γ(a)Γ(b)/Γ(a + b), we obtainZ

ddkE

(2π)d

1

(k2
E + m2)2

=
1

(4π)d/2

Γ(2− d/2)

Γ(2)

„
1

m2

«2−d/2

In order to compensate for the change of the mass dimension in the
integration measure, we multiply the d-dimensional integral with a
prefactor µ4−d with (mass) dimension [µ] = 1. The scale µ is known as
renormalization scale. We will talk about its meaning in the next section.

Expanding the above result for small ε around d = 4 one obtains

µ4−d

Z
d4kE

(2π)d

1

(k2
E + m2)2

d→4−→ 1

(4π)2

„
1

ε
− γE + log(4π) + log

„
µ2

m2

«
+O(ε)

«

You can find various master integrals in text books of QFT, for instance:Z
ddk

(2π)d

{1, k2, kµkν , (k2)
2
, kµkνkσkτ}

(k2 −∆)n

Torsten Pfoh LHC Theory Lecture 2: Energy Scales and LHC Observables



Regularization & Renormalization
The Renormalization Scale

Hadronic Cross Sections and Jets
New Physics at the LHC?

Using
R 1

0
xa−1(1− x)b−1 = Γ(a)Γ(b)/Γ(a + b), we obtainZ

ddkE

(2π)d

1

(k2
E + m2)2

=
1

(4π)d/2

Γ(2− d/2)

Γ(2)

„
1

m2

«2−d/2

In order to compensate for the change of the mass dimension in the
integration measure, we multiply the d-dimensional integral with a
prefactor µ4−d with (mass) dimension [µ] = 1. The scale µ is known as
renormalization scale. We will talk about its meaning in the next section.

Expanding the above result for small ε around d = 4 one obtains

µ4−d

Z
d4kE

(2π)d

1

(k2
E + m2)2

d→4−→ 1

(4π)2

„
1

ε
− γE + log(4π) + log

„
µ2

m2

«
+O(ε)

«
You can find various master integrals in text books of QFT, for instance:Z

ddk

(2π)d

{1, k2, kµkν , (k2)
2
, kµkνkσkτ}

(k2 −∆)n

Torsten Pfoh LHC Theory Lecture 2: Energy Scales and LHC Observables



Regularization & Renormalization
The Renormalization Scale

Hadronic Cross Sections and Jets
New Physics at the LHC?

Renormalization

In order to absorb UV divergences induced by quantum corrections, we have to
redefine the parameters of the theory. Let us consider QED as an example.
Remember from Lecture 1 that

LQED = − 1
4
FµνFµν + ψ(iγµ∂µ −m0)ψ − e0 ψγ

µψAµ

where m0 and e0 denote the
”
bare“ input parameters of the Lagrangian.

Let us now define renormalization constants Zi , renormalized fields Ψr and Aµ
r ,

as well as a renormalized coupling e and mass m:

ψ =
√

Z2 ψr , Aµ =
√

Z3 Aµ
r , and e0 Z2

√
Z3 = e Z1.

Further define δi = Zi − 1 (i = 1, 2, 3) and δm = Z2m0 −m , then

LQED = − 1

4
(Fµν

r )2 + ψr (iγ
µ∂µ −m)ψr − e ψrγ

µψrArµ

− 1

4
δ3(F

µν
r )2 + ψr (iδ2γ

µ∂µ − δm)ψr − eδ1 ψrγ
µψrArµ
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LQED =−1

4
(Fµν

r )2 + ψr (iγ
µ∂µ −m)ψr − e ψrγ

µψrArµ

−1

4
δ3(F

µν
r )2 + ψr (iδ2γ

µ∂µ − δm)ψr − eδ1 ψrγ
µψrArµ

Renormalized Lagrangian

so-called counter terms

The idea of renormalization is to absorb divergent parts into the counter
terms. Only the renormalized part contributes to an observable quantity!

However, the definitions of the renormalization constants Zi are not unique!
For instance, you can always shift constant pieces between e and e0. One talks
about different renormalization schemes!
→ When theory is matched to experiment in order to determine the
renormalized parameters, one always has to tell which renormalization scheme
is used! One can shift from one scheme to another afterwards.

2 examples for dimensional regularization:

minimal subtraction (MS): Only poles 1/ε are stored into counter terms.

modified minimal subtraction (MS): The combination 1/ε− γE + log(4π)
(which always appears for any process) is stored into the counter terms.
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Field Strength Renormalization

In Lecture 1, we found that the two-point correlation function or Feynman
propagator of a free (scalar) theory is given by:

〈0|TΦ(x)Φ(0)|0〉 =

Z
d4p

(2π)4

i e−ipx

p2 −m2 + iδ
,

Equivalently, we can write:

Z
d4x e ipx〈0|TΦ(x)Φ(0)|0〉 =

i

p2 −m2 + iδ
.

Here, one has to use
R d4x

(2π)4
e i(p−p′)x = δ(4)(p − p′)

Within an interacting theory, we expect the two-point function to look like:Z
d4x e ipx〈Ω|TΦ(x)Φ(0)|Ω〉 =

iZ

p2 −m2 + iδ
+ contrib. from multiple-particle radiation
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Example: The Electron Self-Energy

For fermions, one has the two-point functionZ
d4x e ipx〈Ω|TΨ(x)Ψ(0)|Ω〉 =

iZ2(6p + m)

p2 −m2 + iδ
+ particle radiation

The factor Z2 is called field strength renormalization.

QED diagramatically:

Applying Feynmanrules of QED, the second diagram can be written as

i(6p + m0)

p2 −m2
0

0@Z
d4k

(2π)4
(−ieγµ)

i(6p±6k −m0)

(p ± k)2 −m2
0 + iδ

(−ieγµ)
−i

k2 + iδ| {z }
1A i(6p + m0)

p2 −m2
0

≡ −iΣ2(p)

!!! Note that we distinguish between m (phys. electron mass) in the full

propagator and the unphysical parameter m0 in the pert. expansion !!!
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The integral Σ2(p) is UV and IR divergent. It could be made convergent by
replacing

1

k2 + iδ
→ 1

k2 − µ2 + iδ
− 1

k2 − Λ2 + iδ

This is known as Pauli-Villars regularization. The parameter µ regulizes the IR
divergence by introducing a small photon mass. The second propagator
compensates the UV divergence of the first one. Λ is called the Pauli Villars
regulator. The original photon propagator is re-obtained in the limit Λ →∞
and µ→ 0. Using this regularization, we obtain (α = e2/(4π))

Σ2(p) =
α

2π

Z 1

0

dx (2m0 − x 6p) log

„
xΛ2

(1− x)m2
0 + xµ2 − x(1− x)p2

«
.

Obviously, this expression is infinite for Λ →∞.

Using dimensional regularization with 2ε = 4− d , we obtain

Σ2(p) = µ2ε α

(4π)d/2−1

Z 1

0

dx
2

`
(2− ε)m0 − (1− ε)x 6p

´
Γ(2− d/2)`

(1− x)m2
0 + xµ2 − x(1− x)p2

´2−d/2
.

(Note that also the Dirac algebra is modified in d dimensions!)
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Next, we want to find a systematic way to sum the whole perturbation series.
You can convince yourself, that all possible Feynman diagrams are covered byZ

d4x e ipx〈Ω|TΦ(x)Φ(0)|Ω〉 =

P + P(−iΣ(p))P + P(−iΣ(p))P(−iΣ(p))P + · · · , where P =
i(6p + m0)

p2 −m2
0

(let us drop +iε by now), and Σ(p) is the sum over all so-called one-particle

irreducible (1PI) diagrams

One-particle irreducible (1P1) diagrams:

1PI no 1PI
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Let us further write
i(6p + m0)

p2 −m2
0

6p2=p2

=
i

6p −m0
and Σ(p) = Σ( 6p), thenZ

d4x e ipx〈Ω|TΦ(x)Φ(0)|Ω〉 =

i

6p −m0
+

i

6p −m0

Σ(6p)

6p −m0
+

i

6p −m0

„
Σ(6p)

6p −m0

«2

+ · · · =
i

6p −m0 − Σ(6p)

(Geometric series)

The physical mass m is defined as the pole of the full propagator, which is the
solution of: “

6p −m0 − Σ(6p)
”˛̨̨
6p=m

= 0

For unstable particles like the muon or the τ -lepton, Σ(6p) is a complex
quantity. The imaginary part gives rise to a width.

Σ(6p) has to be determined order by order in powers of α. At LO we have
Σ(6p) = Σ2(p).
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• Close to the pole, the denominator of the full propagator can be expanded as:

(6p −m)

„
1− dΣ

d 6p

˛̨̨
6p=m

«
+O

“
(6p −m)2

”
=

p2 −m2

6p + m

„
1− dΣ

d 6p

˛̨̨
6p=m

«
+ · · ·

Combining this result with the definition of the field strength renomalization Z2

(see above), we find:

Z−1
2 = 1− dΣ

d 6p

˛̨̨
6p=m

• At LO in α, the difference between the bare mass m0 and the pole mass m is
given by: (use pole mass definition in first step and Σ2 = O(α) in the second)

δm ≡ m −m0 = Σ2(6p = m) = Σ2(6p = m0)
`
1 +O(α)

´

P.V .
=

α

2π
m0

Z 1

0

dx (2− x) log

„
xΛ2

(1− x)2m2
0 + xµ2

«
Λ→∞−→ 3α

4π
m0 log

„
Λ2

m2
0

«
d.r.
=

2α

(4π)1−ε
m0 µ

2ε

Z 1

0

dx

`
2− x − ε(1− x)

´
Γ(ε)`

(1− x)2m2
0 + xµ2

´ε
ε→0−→ 3α

4π
m0

1

ε
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Remarks:

• δm is divergent for Λ →∞/ε→ 0. As m is the observed particle mass, m0 is
an infinite quantity. As it is just a parameter in the theory, this is not forbidden
in first place. However, if we compare to experiment, we have to replace
m0 = m +O(α), where the

”
small“O(α) correction is actually infinite. Thus,

the validity of pertubation theory is no longer clear. Netherless, the
perturbation series can be rearranged such, that m0 is eliminated for m
everywhere! This is done by renormalization!

• The perturbative expansion of Z2 also involves an infinite term, when we
take Λ →∞/ε→ 0. However, this term compensates a divergent piece of the
so-called vertex correction at the same order in α!

Γµ(q = 0) = Z−1
1 γµ, Γµ includes the vertex corrections

• One can prove in general that to all orders in perturbation theory Z1 = Z2!
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The Photon Self-Energy

We can repeat the whole discussion and compute the self-energy of a photon.
This gives rise to a charge renormalization Z3.

LO:

=
−igµσ

p2
(−1)

Z
d4k

(2π)4
tr

»
(−ieγσ)

i(6k + m)

k2 −m2
(−ieγτ )

i(6k+ 6p + m)

(k + p)2 −m2

–
| {z }

−igτν

p2

≡ iΠστ
2 (p2)

p : photon momentum, k : loop momentum; The trace has to be taken w.r.t.
the product of γ-matrices, and we have to include a factor (-1) for a closed
fermion loop (this is also a Feynman rule).
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Sum over 1PI diagrams:

The sum over all 1PI diagrams is denoted as Πµν(p) and has to satisfy
pµΠµν(p) = 0 (Ward identity, follows from the classical continuity equation
∂µjµ = 0, which says that charge is conserved!). Thus we can write:

Πµν(p) = (p2gµν − pµpν)Π(p2)

=
−igµν

p2
+
−igµσ

p2

h
i(p2gστ − pσpτ )Π(p2)

i −igτν

p2
+ · · · = ... =

−igµν

p2(1− Π(p2))
[More details are given in Peskin, Schroeder, chap. 7.5]

charge renormalization:
1

1− Π(0)
≡ Z3 (residue of the p2 = 0 pole)

LO: Π2(p
2) = −µ4−d 8α

(4π)d/2−1

Z 1

0

dx (1− x)
Γ(2− d/2)`

m2
0 − x(1− x)p2

´2−d/2

d→4−→ −2α

π

Z 1

0

dx (1− x)

„
1

ε
− γE + log(4π) + log(µ2)− log(m2 − x(1− x)p2)

«
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Renormalizable Theories

Within a renormalizable QFT, one has to fix a finite number of
counter terms (→ experimental input needed!) in order to make
predictions for further experiments.

Does this work for any Lagrangian?

No!

For instance it does not work for a four-fermion operator (ΨΨ)(ΨΨ) or an
operator like ΨΨAµ∂µ∂νAν .

For these operators, every order in the perturbative expansion creates a new
operator, which was not there before. As a consequence, there are infinitely
many counter terms required and the theory can not be fixed!

What is the criterion?
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Answer: The mass dimension of the operator under consideration.

Note that also fields have a mass dimension. This is clear if we look at the
action S , which, in natural units, is dimesionsless!

Let us again take QED as example (in unitary gauge):

S =

Z
d4x|{z}


1

2
Aµ

“
∂2gµν − ∂µ∂ν| {z } ”

Aν − eψγµAµψ + ψ
`
i γµ∂µ −m| {z } ´

ψ

ff
0 − 4 2 1

We conclude that [Aµ] = 1 and [Ψ] = 3/2.
The coupling e on the other hand is dimensionless!

Renormalizable operators have mass dimension ≤ 4.

⇔ The coefficient of a ren. operator has non-negative mass dimension.
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Remarks:

Operators with mass dim. > 4 are called higher dimensional operators.
They only show up in so-called effective field theories with a hard
momentum cut-off Λ (→ no UV divergences).

In order to obtain the correct physical dimension, the coefficients of
higher dim. operators involve inverse powers of the cut-off scale Λ.
Therefore, these ops. vanish in the limit Λ →∞ (renormalizable theory).

The criterium of renormalizability allows only for a finite number of terms
in the Lagrangian. In fact, the QED und QCD Lagrangians are fixed by:
Lorentz invariance, gauge invariance, parity (→ no terms like
εµνστFµνF τσ), and renormalizabilty!

The four-fermion operator has mass dimension 6 and thus should be
multiplied with 1/Λ2. There is a nice historical example where this
operator is used: Fermi’s theory of β decay which is nowadays replaced by
the theory of weak interactions
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The Running Coupling

Remember that we have introduced the energy scale µ, in order to keep the
physiscal (mass) dimension of the d-dimensional loop integral equal to 4:R

d4k −→ µ4−d
R

ddk

For a coupling constant g (= −e for QED), we have defined the renormalized
couping g via g0 = Zgg .

Within a quantum correction (lowest order), the coupling enters squared as
there are 2 vertices. If we assume Zg to be dimensionless, then g 2 is prop. to
µ4−d . Let us chose d = 4− 2ε and define a dimensionless ren. coupling gR

g0 = µεZggR

• As evident from Π2(p
2) in the previous section, Zg is a function of µ.

• The bare coupling g0 obviously is independent of µ.

⇒ It follows that (even though dimensionless), gR is also a function of µ, such

that all µ-dependent terms cancel in the r.h.s. of the above equation.
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• Define β(gR) ≡ µ
d

dµ
gR and calculate

µ
d

dµ
g0 = 0 =µ

d

dµ
(Zg )µ

εgR + µ
d

dµ
(µε)ZggR + β(gR)µεZg

=

„
gRZ−1

g µ
d

dµ
Zg + εgR + β(gR)

«
Zgµ

ε

• Zg is a function of α = g 2
R/(4π)! For the leading quantum correction β0 we

can write

Z−1
g µ

d

dµ
Zg =

g 2
R

(4π)2
β0 =

α

4π
β0

• For d = 4 (ε = 0), we obtain (using µ d
dµ
α = gR

2π
µ d

dµ
gR)

µ
d

dµ

α

4π
=

d

d log(µ)

α

4π
= −2β0

“ α

4π

”2
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The solution of the latter equation is given by

α(µ)

4π
=
α(µ0)

4π

1

1 + α(µ0)
4π

β0 ln
“

µ2

µ2
0

”

or, choosing µ0 such that 1 = α(µ0)
4π

β0 ln
“

µ2
0

Λ2

”
,

α(µ)

4π
=

1

β0 ln
“

µ2

Λ2

”
Here, µ0 and Λ are some reference scales.

Interpretation?
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α(µ)

4π
=
α(µ0)

4π

1

1 + α(µ0)
4π

β0 ln
“

µ2

µ2
0

”
→ If we know α from a measurement with the center of mass (cms)
energy µ0, we can calculate its value at the energy µ.

The sign of the beta-fuction β(gR) = −β0g
3
R/(4π)2 is crucial!

If β0 > 0 (β(gR) < 0), α decreases with increasing energy and vice verca.

α(µ)

4π
=

1

β0 ln
“

µ2

Λ2

”
For µ→ Λ, the r.h.s. is divergent! However, this divergence is artificial:
Starting from some α(µ) < 1, the coupling becomes O(1) before reaching
the divergence! → Perturbation theory can no longer be applied and the
above formula becomes invalid!

The pole at µ = Λ is called the Landau pole, and is understood as the
scale where the theory becomes strongly coupled.
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We say that the coupling runs with energy, but what if we used a
different regularization sheme without the issue of a dimensionfull
coupling g , which has to be replaced by gR?

→ We would have needed some different regulator (with mass
dimension 1) in the propagator or simply a cut-off scale in the
momentum integral. The independence of the full cross section
w.r.t. to these scales would lead to the same conclusion!

The running of the SM couplings:

For weak and electromagnetic interactions, the beta function
is positive. The Landau pole of QED is at about 10277 GeV.

The beta function of QCD is negative! The Landau pole of
QCD is at about 200 MeV!

Remark: The sign of the QCD-beta function (calculated in the late 70ths by Gross, Politzer, and Wilczek) was

worth a Nobel price in 2004! Actually, t’Hooft calculated it before but did not publish. However, he got a Nobel

price in 1999 for his proof of the renormalizability of the electroweak theory.
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Confinement vs. Asymptotic Freedom

QCD predicts that the strong coupling αs = g 2
s /(4π) increases with

decreasing energy and vice verca! This explains why we do observe quarks

as fundamental particles in collider experiments, but not at low energies:

At energies of the Z -mass (= 91GeV/c2), we measure αs(mZ ) ≈ 1.2 and
are well in the perturbative regime. Quarks are weakly coupled und thus
observable as individual particals. → Assymptotic freedom

At 1GeV, we measure αs(µ) ≈ 0.4. Going below 1 GeV the perturbativity
of QCD breaks down. In the nucleus at rest, we have αs of O(1).

Further remember that gluons interact with each other.

In combination with the strong coupling, we are now able to understand
the so-called quark confinement, e.g. the fact that only color-neutral
bound states (=hadrons) are observed at low energies!
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Confinement

Consider the interaction of two color-charged (anti)quarks (lines are gluons):

When the quarks are separeted, the gluons form a strongly coupled web.

The energy which is stored in the web increases linearily with the
separation distance of the quarks (like a rubber band).

At some distance, the web provides enough energy to create a new
quark-antiquark pair:

Conclusion: Whenever one tries to seperate color-charged particles at low

energies, the linear potential creates a new color-neutral bound state.
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QCD bound states

For the color-charge, there is a nice analogon to the spectral colors
of light (therefore the name!)

In the vector representation of SU(3) (quarks), there are 3 colors:
Lets call them red, blue & green.

There is also a conjugate representation for the anti-quarks with the
colors anti-red, anti-blue & anti-green.

Obviously, the combination color and anticolor is color-neutral.

Also (known from the mixing of light), the combination red-blue-green is
color neutral (same for anti colors).

Therefore, the most simple bound states of QCD are
mesons qi q̄ī , baryons εijkqiqjqk , and anti baryons εī j̄ k̄ q̄ī q̄j̄ q̄k̄ .
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Charge Sreening

For QED, we find a positive beta function.
⇒ The electromagnetic coupling increases with energy. This can
be understood by an intuitive picture:

• The electron charge is sreened by virtual e+/e− pairs, which are created and
annihilated in the quantum vacuum.

• If we increase the energy of our scattering experiment, we penetrate

positron-electron cloud and thus observe a stronger charge.
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The running mass

The self-energy corrections to fermion propagators will cause a
running mass!

For the case of the electron, we computed the field strength normalization Z2

to leading order, where δm = Z2m0 −m. Let us now define

m0 = Zmm , γ =
µ

Zm

dZm

dµ
≡ γ0

α

4π
+ γ1

“ α

4π

”2

= · · ·

The function γ is called anomalous dimension. Typically one considers α = αs .

Again, the bare parameter m0 does not depend on µ. Therefore

µ
d

dµ
m0 = 0 = Zm

„
γ + µ

d

dµ
m

«
LO

=⇒ µ
d

dµ
m = −γ0

α

4π
m

On the other hand we already know that µ d
dµ

= −2β0

“
α(µ)
4π

”2
d

dα(µ)/(4π)
.
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α(µ)
d

dα(µ)
m =

γ0

2β0
m =⇒ m(µ) =

„
α(µ)

α(µ0)

« γ0
2β0

m(µ0)

Conclusion:
The scale dependence of α causes a scale dependence of the mass. We observe
that fermion masses become smaller, when extracted at higher energies!

Final remarks on the running of α(s) and m:

For quarks, the leading contributions to the running mass come from the
running of the strong coupling αs . Contributions from the running of the
electromagnetic coupling are small, as α itself is very small.

Both, the theoretical predictions for αs(µ) and m(µ) depend on the
renormalization sheme. This dependence would vanish if we could
evaluate the full perturbation series. In practice, one distinguishes
between MS-mass, pole mass, etc.

The particle masses given by the particle data group (PDG) correspond
to the masses at the production threshold of the respective particle.
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Theory Errors

The renormalization scale µ can be used to get an estimate on the unknown
contributions of higher order corrections, and thus a theory error to a fixed
order calculation!

Obviously, the exact theoretical prediction for an arbitrary scattering cross
section (full perturbation series) must not depend on µ. On the other
hand, this is not true for a truncated series!

There are good choices for µ (the series converges quickly), and bad
choices (the series converges slowly).

It turns out that a good choice is µ ≈ ŝ, where ŝ is the partonic cms
energy.

We expect the scale dependence to decrease, the more orders are taken
into account.

If we vary µ against its choosen value, for instance ŝ/2 < µ < 2ŝ, we get
an estimate on the contribution of higher order corrections.

Of course, this variation and the choice of scales is arbitrary and there is
no statistical interpretation. Nethertheless, it proved to produce serious
estimates, which were confirmed by higher order calculations.
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Consider again the picture of proton-proton interactions:

So far, we discussed how partonic cross sections can be calculated from
scattering amplitudes of the interacting partons.

Now we need a handle on which interactions we expect in proton-proton
collisions. In other words, we need to know the propabilities for all
possible interactions in a pp collision.

Maybe you are not surprised to hear that these propabilities depend on
the cms energy of the collision.
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Parton Distribution Functions (PDFs)

Def.: parton distribution function fp(x , µ); fp(x , µ)dx gives the propability to
find a parton p with longitudinal momentum fraction x of the proton’s total
momentum at the energy scale µ.

• Without going into detail we note that PDFs are obtained from deep
inelastic scattering (DIS) experiments with electron-proton collisions.
(Experiments have been performed at SLAC, CERN, Fermilab and DESY).

• As the electron has no inner structure and no strong interaction, it is the
perfect candidate to probe the distribution of quarks inside the proton!

[picture taken from desy.de]
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Parton Distribution Functions (PDFs)

[picture taken from desy.de, published in JHEP 1001 (2010) 109, also available on arXiv:0911.0884 [hep-ex]]
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Parton Evolution

Why do the PDFs depend on the cms energy of the scattering experiment?

A parton (quark, anti-quark or gluon) moving inside the proton can split
into other partons.

The splitting propabilty can be calculated from QCD. Here, we define a
splitting function Pij(z) which gives the propability that a parton of type i
with mom. p converts into a parton of type j , carrying the fraction z of p.

Obviously, the calculations of the splitting functions involve the strong
coupling αs , which is a function of the energy µ.

The so-called parton evolution along the energy µ is described by a set of
differential equations, the Altarelli-Parisi equations, where the PDFs
fi (x/z , µ) are convoluted with the splitting functions Pij(z). If you know
the PDFs at a scale µ from experiment, you can compute them for a
different scale µ′ by using these equations.
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Parton Evolution

The parton evolution can be
understood as follows:

In a scattering experiment you probe

the inner structure of the proton.

With increasing scattering energy,

you resolve more and more substruc-

tures. New virtual particles show up!

Thus, a collider serves as a micro-

scope for subatomaric distances!

However, the measurement itself e.g.

the scattering process, is so to say

part of what you measure. As a con-

sequence, your measurement depends

on the scattering energy.
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Hadronic Cross Section

Consider as ex. top-quark pair production plus some remnant X:

pp → tt̄ + X

At the partonic level you have:

qq̄ → tt̄ + X and gg → tt̄ + X

We define

the hadronic cms energy s

the partonic cms energy ŝ = x1x2s
(x1, x2 denote the parton’s momentum fractions)

dimensionless variables ρh =
4m2

t

s
and ρ =

4m2
t

ŝ
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Factorization Approach

We can factorize the hadronic cross section into the PDFs and the partonic
cross section σ̂ij , which describes the hard (=high energetic) interaction:

σpp→tt̄X (ρh,m
2
t )

=
X

ij=q,q̄,g

Z 1

0

dx1

Z 1

0

dx2

Z 1

ρh

δ

„
ρh

x1x2
− ρ

«
fi (x1, µ

2
f ) fj(x2, µ

2
f ) σ̂ij(ρ,m

2
t , µ

2
f , µ

2
r )

We have to integrate over all possible parton mom. fractions x1 and x2.

The delta function relates the partonic to the hadronic cms energy.

The factorization approach neglets small interferences between the hard
interaction and the parton evolution.

We distinguish between

factorization scale µf : scale at which we evaluate the PDFs as well as
real radiation corrections in higher orders of perturbation theory.

renormalization scale µr : used in renormalization of UV-divergences
caused by virtual (loop) corrections, see discussion above.
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Jets

What do we expect after the collision has taken place?

[picture from the CMS homepage: http://cms.web.cern.ch]

Heavy particles, which are primary produced, will decay inside the
detector. Color-charged particles will hadronize. This means that
the decay products form colour-neutral bound states, as the energy
goes down due to the various splittings. One observes a whole
bunch of decay products which is called a jet.
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A typical top- anti top event at the Tevatron (pp̄ collision):

For the LHC, just replace the antiprotons by protons.
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Particle tracks (curved, due to the magnetic field) are displayed by in the
inner detector (→ momentum reconstruction).

The stable or
”
long-living“particles are stopped via emmision of

bremsstrahlung in the calorimeter (→ energy measurement).
There are hadronic and leptonic calorimeters.

Muons (heavy electrons) manage to travel through the inner detector

layers and produce signals in the so-called muon chambers.
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Event Simulation

In order to compare theory to experiment, one has to simulate
events. This is done with so-called event generators.

Event generators produce parton showers, using Monte Carlo methods.

At high energies, perturbative QCD can be applied.

At low energies where hadronization begins, different approaches are
required!

Simulated Higgs event from the ATLAS homepage
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Why New Physics (NP)?

The Standard Model of Particle Physics explains all forces
(besides gravity) and elementary particles, which have been probed
by collider experiments so far. It has been tested to energies up to
several hundered GeV.

Do we expect it to hold for all energies?

Rather not.

There are various reasons...
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... from experimental Astrophysics:

From the rotation of galaxies and certain gravity-lensing effects, one
concludes that there is more matter we actually see → Dark matter.
This could be explained by weakly interacting massive particle (WIMPs).
However, there is no candidate in the SM!

The observed accelarated expansion of the universe further asks for an
unknown form of energy. As we don’t know anything about it, we call it
Dark energy.

The observed universe consits of matter and radiation. There is no
anti-matter. After the big-bang, nearly all matter annihilated with
anti-matter. For some reason, there must have been more matter at the
beginning. Indeed, the SM predicts a matter/anti-matter asymmetry in
weak decays! However, this is not sufficient. The LHCb experiment is
designed to adress this question.
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... from the experimental observation that neutrinos have masses:

The SM predicts neutrino to be massless. In fact, no neutrino masses have
been determined so far. On the other hand one has observed the phenomenon
of so-called neutrino oscillations. This requires a non-vanishing mass.

There are various ways to obtain masses:

by adding right-handed neutrinos, which are neutral w.r.t. to all SM
forces: This is a trivial extension of the SM. I personally would still call it
standard model.

by allowing for lepton-number violating processes: This allows for
so-called Majorana masses of neutral particles. The lepton-number is a
conserved quantity in the SM. However, this is not a necesarrily needed.
In order to answer this question, people are searching for neutrinoless
double-beta decays, which would violate lepton number.

by simply assuming that the SM is an effective theory with cut-off Λ:
Then you can write a dimension 5 operator ν̄LH

∗HνL/Λ consisting of
(left-handed) neutrinos and the Higgs field, which produces a mass via
the Higgs mechanism.
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... from the expectation, that quantum gravity effects should
become important at the Planck length.

The SM does not describe gravity, which is com-
pletely negligible for elem. particle interactions.
It assumes a smooth spacetime. On the other
hand, general relativity predicts that masses and
energy bend the space. If the cms energy of
an interaction is high enough (about the Planck
scale MPl =

p
~c/G ≈ 1019GeV), it would

create a black hole (which immediately decays
again). In that energy region, effects of gravity
have to be taken into account, as the assumption
of a smooth spacetime is no longer true.
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Finally, there is no theoretical prediction for the values of the SM input
parameters (18 of them are independent). They have to be taken from
experiment. Especially, the strong hierarchy of the observed fermion masses is
non-understood:

[taken from www-d0.fnal.gov]

On the other hand, the ratio mW /mZ is predicted as a function of the so-called

weak-mixing or Weinberg angle θW , which also relates the strength of the e.m.

and weak interactions. Here, theory and experiment match within errors!
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If we now assume, that the SM has a cut-off Λ, it does not have any UV
divergences by construction. Nethertheless, we still have to distinguish between
bare parameters in the Lagrangian and physical parameters, which take into
account the quantum effects of the theory.

If we compute quantum corrections to the bare Higgs mass mh0 due to a
virtual particle of mass m, we find

δm2
h = −a Λ2 + b m ln

„
Λ

m

«
+ · · ·

On the other hand we want to have

m2
h = mh0

2 + δm2
h ≈ (125.5GeV)2

If Λ = MPl = 1019 GeV, we have to tune mh0 in 34 digits!!!
This is considered to be unnatural and one speaks of the hierarchy
problem of the SM.

If however m ≤ Λ ≈ 1TeV, there is no tuning! That is why we expect NP
within the reach of the LHC!

Torsten Pfoh LHC Theory Lecture 2: Energy Scales and LHC Observables



Regularization & Renormalization
The Renormalization Scale

Hadronic Cross Sections and Jets
New Physics at the LHC?

If we now assume, that the SM has a cut-off Λ, it does not have any UV
divergences by construction. Nethertheless, we still have to distinguish between
bare parameters in the Lagrangian and physical parameters, which take into
account the quantum effects of the theory.

If we compute quantum corrections to the bare Higgs mass mh0 due to a
virtual particle of mass m, we find

δm2
h = −a Λ2 + b m ln

„
Λ

m

«
+ · · ·

On the other hand we want to have

m2
h = mh0

2 + δm2
h ≈ (125.5GeV)2

If Λ = MPl = 1019 GeV, we have to tune mh0 in 34 digits!!!
This is considered to be unnatural and one speaks of the hierarchy
problem of the SM.

If however m ≤ Λ ≈ 1TeV, there is no tuning! That is why we expect NP
within the reach of the LHC!
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Supersymmetry

Symmetry between fermions and bosons:

For each SM spin 1 boson, there is an addtional (spin 1/2) fermion with
the same quantum numbers (colour, electroweak isospin, charge).

For each SM fermion, there is an additional spin 0 boson.

There are two complex Higgs doublets giving rise to 5 different Higgs
fields (2 of them charged).

[taken from etp.physik.uni-muenchen.de]
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Supersymmetry

The SUSY partners need to be heavy, as they have not been observed yet.
⇒ SUSY must not be an exact symmetry of nature. Otherwise, the additional
particles would have the same masses as their respective SM partners.

SUSY is an interesting extension of the SM because

it cancels the Λ2 term in δm2
h, because the quantum corrections due to

the superpartners involve Λ2 with the opposite sign!

It provides a candidate for dark matter, the lightest so-called Neutralino
(spin 0), which is stable.

Collider signals:

The Neutralino would escape detection. A typical
SUSY signal is therefore missing transverse Energy,
which can be reconstructed from momentum con-
servation. On the right, you see a simulated event
of the ATLAS collaboration.
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Extra dimensions

Idea: Gravity propagates in n compact extra dimensions and
thus gets deluted. [Arkani-Hamed, Dimopoulos, Dvali (ADD), 1998]

[picture from www.stanford.edu]

The
”
true“ Planckscale MPl(4+n) of

the higher dimensional theory is close

to the electroweak scale mW of the

SM. → no hierarchy problem (HP).

The extra dim. have to be smaller

than the current bound R ≤ 44µm,

to which the 1/r -potential of gravity

has been testet.

Alternative Ansatz [Randall, Sundrum, 1999]: One curved or
”
warped“ extra

dimension of the Planck size. This also solves the HP and can be used to

explain the fermion mass hierarchies, if all SM fields live in the full
”
bulk“.
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Collider Signals

Large extra dimensions (ADD):
Black hole production!

As the n-dim. Planckscale is within the reach

of the LHC, microscopic black holes are cre-

ated which immediately decay
”
democrati-

cally“to SM particles.

Warped Extra dimensions:

Besides black holes, one may observe a spectrum of so-called Kaluza-Klein
(KK) excitations with masses in the TeV regime.

KK excitations always arise, when SM particles and gravitons are locked into a

compact dimension. In analogy to QM particles in a box, there will be ground

states (associated with the SM particles) and excitations! These are also there

in the ADD modell, but the spectrum is very dense such that one observes a

continous enhancement of the cross section but no peaks!
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Summary & Outlook

In order to calculate cross sections for LHC processes, the problem is factorized
into various pieces.

The partonic cross section: describes the hard scattering interaction;
It can be calculated perturbatively with the help of Feynman rules.
The theoretical uncertainty can be estimated by variation of the
renormalization scale.

The initial parton distribution: taken from DIS experiments;
It can be applied to LHC physics with the concept of parton evolution
(Altarelli Parisi equations).

The parton showering: Achieved by event generators based on Monte
Carlo simmulations, which use LO perturbative QCD as input.

The factorization works because the individual processes appearing at different

energy scales have tiny interference with each other.
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Summary & Outlook

For high precision predictions, one also has to consider bound-state effects at
lower energies. These can be obtained by non-perturbative approximations like
non-relativistic QCD or lattice QCD.

The physics of baryons (3-quark bound states) and mesons (2 quarks) can also

be desribed with the help of chiral perturbation theory, which assumes the

quark-bound states as the fundamental degrees of freedom.
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