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From part 1

RF cavities:
pill-box cavity

superconducting cavities

Dipole magnets:
normal conducting dipoles

superconducting dipolesvacuum chamber
magnet

accelerating device

injector

straight sections
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Need of focusing

beam / bunch

pp

vacuum chamber
magnet

accelerating device

injector

straight sections
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Need of focusing

beam / bunch

pp
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Need of focusing

quadrupole magnet:
four iron poles

B
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Quadrupole magnets

quadrupole magnet:

B

beam
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Quadrupole magnets

quadrupole magnet:
four iron pole shoes of hyperbolic contour

hyperbola

x

y

xgBy ⋅−=
ygBx ⋅=

)gradient quadrupole (  2
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Quadrupole magnets

xgFxgB xy ⋅−=⋅−=

quadrupole magnet:
four iron pole shoes of hyperbolic contour

ygFygB yx ⋅=⋅=

focusing !

defocusing

x

y

B ࢟࢟
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Quadrupole magnets

QD + QF =  net focusing effect:

charged particle

defocusing
quadrupole

focusing
quadrupole

center of quad
1x 2x

21 xx <
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Quadrupole magnets

QD + QF =  net focusing effect:

charged particle

defocusing
quadrupole

focusing
quadrupole

center of quad

1݂∗ ൌ 1݂  1݂ி െ ݂݀ ி݂

d

݂: focal length

(light optics)

1݂∗ ൌ ݂݀ଶ  0if   ݂ ൌ െ ி݂ ൌ ݂
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Quadrupole magnets

QD + QF =  net focusing effect:

focusing
quadrupole

defocusing
quadrupole

beam

y-plane:

defocusing
quadrupole

focusing
quadrupole

beam

x-plane:
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Quadrupole magnets

QD + QF =  net focusing effect:

defocusing
quadrupole

focusing
quadrupole

beam

x-plane:
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Circular accelerator

cell

dipole
magnet

dipole
magnet

defocusing
quadrupole

focusing
quadrupole

focusing
quadrupole

beam
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Circular accelerator

cell

dipole
magnet

dipole
magnet

defocusing
quadrupole

focusing
quadrupole

focusing
quadrupole

beam

PETRA
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HERA collider and injector chain

HERA: 4 arcs + 4 straight sections

arc

PETRA: 8 arcs + 8 straight sections

hall 
PETRA III
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PETRA III

beam

~300 m
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Why are the energies so different?

HERA (Hadron Electron Ring Accelerator) tunnel:

protons
at 920 GeV

electrons at 27.5 GeV
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Circular and linear colliders

E

B B

Circular colliders:

Linear colliders:

E E
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Synchrotron radiation

Dipole magnet

B
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dipole antenna

Radio antenna
radiation power pattern:
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Radiation of an oscillating dipole

v = 0

Radiation of a moving oscillating dipole

v = 0.9 c

Radiation of a dipole antenna
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Radiation of a moving oscillating dipoleRadiation of an oscillating dipole

Radiation of a dipole antenna

) :amplituden oscillatio( λ<a

v = 0.9 cv = 0

local oscillator: moving oscillator:
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Lorentz-contraction

cv 5.0= cv 9.0=

dipole radiation: electron trajectory

electron
trajectory

electron
trajectory

15.1≅γ 3.2≅γ

Radiation of a oscillating dipole under relativistic conditions

DORIS:
PETRA: 12000=γ

8900=γ
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Synchrotron radiation

Power radiated by one electron in a dipole field B:

2

4

0

2

6 r
qcP γ
επ

=
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0cm
E=γ

Dipole magnet

p
Bq

r
=1

vacuum permitivity
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Synchrotron radiation

Total energy loss after one full turn:

HERA electron ring: HERA proton ring:
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Synchrotron radiation

Total energy loss after one full turn:

HERA electron ring: HERA proton ring:

need acceleration = 87 MV per turn

the limit is the max. dipole field = 5.5 Tesla
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Synchrotron radiation

Total energy loss after one full turn:

HERA electron ring:
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LEP collider:

need acceleration = 87 MV per turn
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Colliding beams with ܧெ ൌ 500 GeV

Project for a future e-e+ collider: ILC

The International Linear Collider

e+ e-

more about ILC:  lecture on ‘Linear Collider’ by S. Riemann (24th Aug.)
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Project for a future e-e+ collider: ILC

The International Linear Collider

e+ e-

15 km

Colliding beams with ܧெ ൌ 500 GeV

using superconducting cavities for acceleration:
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Superconducting cavities for acceleration

• International Linear Collider (ILC)

• European X-ray Free-Electron Laser (XFEL)

• Free-electron LASer in Hamburg (FLASH)

(future project)

(in construction)

(in operation)
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Cavities inside a cryostat

beam
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Number of cavities 8
Cavity length 1.038 m
Operating frequency 1.3 GHz
Operating temperature 2 K
Accelerating Gradient 23..35 MV/m

beam

beam
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Cavities inside a cryostat
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Cavities inside a cryostat

beam

module installation in FLASH (2004)
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Undulators for Free-Electron Laser

• International Linear Collider (ILC)

• European X-ray Free-Electron Laser (XFEL)

• Free-electron LASer in Hamburg (FLASH)

(future project)

(in construction)

(in operation)
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Increase of number of photons

dipoledipoleeph NPNP ××=

2
dipoledipoleeph NPNP ××=

dipoleeph PNP ×=

Power radiated by one electron
in a dipole field
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Motion of electrons inside an undulator magnet

Example: undulator at FLASH: μm6.2ˆ   , mm27u == xλ

undulator period length

electrons

electrons
+ photons

undulator
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Increase of number of photons

dipoledipole NBB ×=

2
dipoledipole NBB ×∝

dipoleB

Photon brilliance emitted by
an electron bunch in a dipole field

anglesolidareasource
flux spectral

anglesolidareasource
bandwidth 0.1% / s / photons  Brilliance

×
=

×
=
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electrons

electrons
+ photons

undulator

Motion of electrons inside an undulator magnet

Undulator 
spectrum

Dipole 
spectrum

Photon Energy (keV)

Ph
ot
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lu
x 

(1
/s
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Undulators

beam
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Development of synchrotron light sources

anglesolidareasource
bandwidth 0.1% / s / photonsBrilliance

×
=
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Increase of number of photons

2
dipoledipolee NBNB ××∝

dipoledipole NBB ×=

2
dipoledipole NBB ×∝

dipoleB

Photon brilliance emitted by
an electron bunch in a dipole field
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• European X-ray Free-Electron Laser (XFEL)

• Free-electron LASer in Hamburg (FLASH)

(in construction)

(in operation)

… and you need a very long undulator

6 undulators (4.5 m long) at FLASH
http://xfel.desy.de

http://flash.desy.de

300 m,  1.2 GeV,   4.1 nm

3.4 km, 18 GeV,   0.1 nm
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accelerator
control room

Free-electron LASer in Hamburg (FLASH)
300 m,  1.2 GeV,   4.1 nm
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European X-Ray Free Electron Laser (XFEL)

PETRA

HERA

3.4 km, 18 GeV,   0.1 nm
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 0 ?? 56   kW / m dissipated at
the cavity walls
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Advantages of RF superconductivity

resistance

critical temperature (Tc):
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Advantages of RF superconductivity

resistance

critical temperature (Tc):

for DC currents !

at radio-frequencies, there is a “microwave surface resistance”

which typically is 5 orders of magnitude lower than R of copper
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m dissipated at
the cavity walls
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m
at 2 K

dissipated at
the cavity walls
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2nd law of Thermodynamics

“Heat cannot spontaneously flow from a colder location to a hotter location”

CH

C
c TT

T
−

=η air conditioners,
refrigerators, …

max. efficiency
most common 
applications

H

CH
c T

TT −=η thermal power stations,
cars, …

Carnot efficiency:
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m
at 2 K

dissipated at
the cavity walls

Carnot efficiency: 007.0
300

=
−

=
T

T
cη x cryogenics

efficiency
20-30%
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m
at 2 K

for E = 1 MV/m 1   kW / m 56   kW / m

dissipated at
the cavity walls

Carnot efficiency: 007.0
300

=
−

=
T

T
cη x cryogenics

efficiency
20-30%
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m
at 2 K

for E = 1 MV/m 1   kW / m 56   kW / m

dissipated at
the cavity walls

for E = 1 MV/m 1   kW / m 112   kW / m including RF generation
efficiency (50%)

Carnot efficiency: 007.0
300

=
−

=
T

T
cη x cryogenics

efficiency
20-30%
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Advantages of RF superconductivity

Example:  comparison of 500 MHz cavities:

superconducting
cavity

normal conducting
cavity

for E = 1 MV/m 1.5   W / m 56   kW / m
at 2 K

for E = 1 MV/m 1   kW / m 56   kW / m

dissipated at
the cavity walls

for E = 1 MV/m 1   kW / m 112   kW / m including RF generation
efficiency (50%)

>100  (electrical) power reduction factor

Carnot efficiency: 007.0
300

=
−

=
T

T
cη x cryogenics

efficiency
20-30%
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Third summing-up

Circular colliders (synchrotrons with R=const.):

• proton synchrotrons              dipole magnet

• electron synchrotrons         synchrotron radiation 

limitation

Linear accelerators:

• International Linear Collider (ILC)

• European X-ray Free-Electron Laser (XFEL)

• Free-electron LASer in Hamburg (FLASH)

based on
S.C. cavities

Beam focusing in synchrotrons: quadrupole magnets



Pedro Castro |  Introduction to Accelerator Physics  |  31st July 2012  |  Page 57

pedro.castro@desy.de

Thank you for your attention


