Colliders – part 2

Accelerator physics - Colliders

Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 31st July 2012

From part 1

Need of focusing

Need of focusing

beam / bunch

Need of focusing

quadrupole magnet: four iron poles

Pedro Castro

QD + QF = net focusing effect:

QD + QF = net focusing effect:

QD + QF = net focusing effect:

Pedro Castro | Introduction to Accelerator Physics | 31st July 2012 | Page 11

QD + QF = net focusing effect:

Circular accelerator

Circular accelerator

PETRA

HERA collider and injector chain

HERA: 4 arcs + 4 straight sections

PETRA: 8 arcs + 8 straight sections

PETRA III

Why are the energies so different?

HERA (Hadron Electron Ring Accelerator) tunnel:

electrons at 27.5 GeV

Circular and linear colliders

Circular colliders:

Dipole magnet

Radio antenna

Radiation of a dipole antenna

Radiation of an oscillating dipole

Radiation of a moving oscillating dipole

Radiation of a dipole antenna

Radiation of an oscillating dipole

moving oscillator: $P = \frac{q^2 a^2}{12\pi\varepsilon_0 c^3} \gamma^4 \omega^4$ $\gamma = \frac{E}{m_0 c^2}$

Radiation of a moving oscillating dipole

Radiation of a oscillating dipole under relativistic conditions

Dipole magnet

Total energy loss after one full turn:

$$\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}} [\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}$$

Total energy loss after one full turn:

$$\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}} [\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}$$

Total energy loss after one full turn:

$$\Delta E_{\text{turn}} = \frac{q^2}{3\varepsilon_0} \frac{\gamma^4}{r} \implies \Delta E_{\text{turn}} [\text{GeV}] = 6.032 \times 10^{-18} \frac{\gamma^4}{r[\text{m}]}$$

Project for a future e-e+ collider: ILC

Colliding beams with $E_{CM} = 500 \text{ GeV}$

more about ILC: lecture on 'Linear Collider' by S. Riemann (24th Aug.)

Project for a future e-e+ collider: ILC

Colliding beams with $E_{CM} = 500 \text{ GeV}$

using superconducting cavities for acceleration:

Superconducting cavities for acceleration

- <u>International Linear C</u>ollider (ILC) (future project)
- European <u>X</u>-ray <u>Free-Electron Laser</u> (XFEL) (in construction)
- <u>Free-electron LASer in Hamburg (FLASH)</u> (in operation)

Cavities inside a cryostat

Cavities inside a cryostat

Cavities inside a cryostat

module installation in FLASH (2004)

Pedro Castro | Introduction to Accelerator Physics | 31st July 2012 | Page 34

Undulators for Free-Electron Laser

- <u>International Linear Collider (ILC)</u> (future project)
 - European <u>X</u>-ray <u>F</u>ree-<u>E</u>lectron <u>L</u>aser (XFEL) (in construction)
- <u>Free-electron LAS</u>er in <u>Hamburg</u> (FLASH) (in operation)

Increase of number of photons

Bending Magnet

Motion of electrons inside an undulator magnet

Example: undulator at FLASH: $\lambda_u = 27 \text{ mm}$, $\hat{x} = 2.6 \mu \text{m}$

Increase of number of photons

Motion of electrons inside an undulator magnet

Undulators

Development of synchrotron light sources

Increase of number of photons

Photon brilliance emitted by an electron bunch in a dipole field

 $B = B_{\text{dipole}} \times N_{\text{dipole}}$

 $B_{\rm dipole}$

 $B \propto B_{\text{dipole}} \times N_{\text{dipole}}^2$

 $B \propto N_{\rm e} \times B_{\rm dipole} \times N_{\rm dipole}^2$

... and you need a very long undulator

6 undulators (4.5 m long) at FLASH

 European <u>X</u>-ray <u>Free-Electron Laser</u> (XFEL) (in construction)

3.4 km, 18 GeV, 0.1 nm

<u>Free-electron LAS</u>er in <u>Hamburg</u> (FLASH) (in operation)

300 m, 1.2 GeV, 4.1 nm

http://xfel.desy.de

http://flash.desy.de

European X-Ray Free Electron Laser (XFEL)

	superconducting cavity	normal conducting cavity	
for E = 1 MV/m	0 ??	56 kW/m	dissipated at the cavity walls

at radio-frequencies, there is a "microwave surface resistance"

which typically is <u>5 orders of magnitude</u> lower than R of copper

	superconducting cavity	normal conducting cavity	
for E = 1 MV/m	1.5 W/m	56 kW/m	dissipated at the cavity walls

	superconducting cavity	normal conducting cavity	
for E = 1 MV/m	1.5 W / m at 2 K	56 kW / m	dissipated at the cavity walls

2nd law of Thermodynamics

"Heat cannot spontaneously flow from a colder location to a hotter location"

	superconducting cavity	normal conductir cavity	ng
for E = 1 MV/m	1.5 W / m at 2 K	56 kW/m	dissipated at the cavity walls
Carnot effici	ency: $\eta_c = \frac{T}{300 - T}$	x = 0.007 x	cryogenics 20-30% efficiency

	superconducting cavity	normal conducting cavity	
for E = 1 MV/m	1.5 W / m at 2 K	56 kW/m	dissipated at the cavity walls
Carnot effici	ency: $\eta_c = \frac{T}{300 - T}$	x = 0.007 x	cryogenics 20-30% efficiency
for E = 1 MV/m	1 kW / m	56 kW/m	

	superconducting cavity	normal conducting cavity	
for E = 1 MV/m	1.5 W/m at 2 K	56 kW/m	dissipated at the cavity walls
Carnot effici	ency: $\eta_c = \frac{T}{300 - T}$	x = 0.007 x	 cryogenics 20-30% efficiency
for E = 1 MV/m	1 kW / m	56 kW/m	
for $E = 1 MV/m$	1 kW / m	112 kW/m	 including RF generation efficiency (50%)

Example: comparison of 500 MHz cavities:

	superconducting cavity	normal conducting cavity	
for E = 1 MV/m	1.5 W / m at 2 K	56 kW / m	dissipated at the cavity walls
Carnot effici	ency: $\eta_c = \frac{T}{300 - T}$	x = 0.007 x	 cryogenics _{20-30%} efficiency
for E = 1 MV/m	1 kW / m	56 kW / m	
for $E = 1 MV/m$	1 kW / m	112 kW/m	<pre>including RF generation efficiency (50%)</pre>

>100 (electrical) power reduction factor

Third summing-up

Beam focusing in synchrotrons: quadrupole magnets

Circular colliders (synchrotrons with R=const.):

- proton synchrotrons
 dipole magnet
- electron synchrotrons synchrotron radiation

Linear accelerators:

- <u>International Linear Collider (ILC)</u>
- European <u>X</u>-ray <u>Free-Electron Laser</u> (XFEL)
- <u>Free-electron LAS</u>er in <u>Hamburg</u> (FLASH)

based on S.C. cavities

Thank you for your attention

pedro.castro@desy.de

