Colliders – part 1

Accelerator physics - Colliders

Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 30th July 2012

How electromagnetic fields accelerate particles

Why we need superconducting magnets

Differences between proton and electron accelerators

HERA (Hadron Electron Ring Accelerator) tunnel:

27.5 GeV

Synchrotron radiation

Dipole magnet

Which collider is better?

Circular colliders:

Applications of Accelerators (1)

Particle colliders for <u>High Energy Physics</u> (HEP) experiments

• fix target experiments:

Applications of Accelerators (1)

Particle colliders for High Energy Physics experiments

Example: the Large Hadron Collider (LHC) at CERN

superconducting magnets (inside a cryostat)

Applications of Accelerators (2)

Light sources for biology, physics, chemistry... experiments

Example: <u>Doppel-Ring-Speicher</u> (DORIS) 'double ring store' at DESY

Applications of Accelerators (2)

Applications of Accelerators (2)

X-ray crystallography

Ada Yonath Leader of MPG Ribosome Structure Group at DESY 1986-2004

2009 Nobel Prize of Chemistry together with T. Steitz and V. Ramakrishnan

- > About 120 accelerators for research in "nuclear and particle physics"
- > About 70 electron storage rings and electron linear accelerators used as light sources (so-called 'synchrotron radiation sources')

More than 7,000 accelerators for medicine radiotherapy (>7,500), radioisotope production (200)

> More than 18,000 industrial accelerators

ion implantation (>9,000) , electron cutting and welding (>4,000) \dots

For radioisotope production transmutation

proton beam + stable isotope

nutation radioactive isotope

For radiotherapy and radiosurgery:

- x-rays and gamma-rays
- ions (from protons to atoms with atomic number up to 18, Argon)
- neutrons

For radioisotope production For example:

18 MeV proton accelerator

Applications of Accelerators (3)

Applications of Accelerators (3)

For industrial applications:

Application	
Ion implantation	~ 9500
Electron cutting and welding	~ 4500
Electron beam and x-ray irradiators	~ 2000
Ion beam analysis (including AMS)	~ 200
Radioisotope production (including PET)	~ 900
Nondestructive testing (including security)	~ 650
Neutron generators (including sealed tubes)	~ 1000

approx. numbers from 2007 (worldwide)

with energies up to 15 MeV

For industrial applications:

an example: electron beam welding

- > About 120 accelerators for research in "nuclear and particle physics"
- > About 70 electron storage rings and electron linear accelerators used as light sources (so-called 'synchrotron radiation sources')

More than 7,000 accelerators for medicine radiotherapy (>7,500), radioisotope production (200)

> More than 18,000 industrial accelerators

ion implantation (>9,000) , electron cutting and welding (>4,000) \dots

...and there is more !!!

Applications of Accelerators (5)

Many millions of television sets, oscilloscopes using CRTs (Cathode Ray Tube)

Applications of Accelerators (5)

Many millions of television sets, oscilloscopes using CRTs (Cathode Ray Tube)

Circular accelerators: the synchrotron

Circular accelerators

Low Energy Antiproton Ring (LEAR) at CERN

DESY (Deutsches Elektronen Synchrotron)

RF cavity basics: the pill box cavity

Charges, currents and electromagnetic fields

LC circuit (or resonant circuit) analogy:

a quarter of a period later:

half a period later:

RF cavity basics: the pill box cavity

Pill box cavity: 3D visualisation of E and B

Superconducting cavity used in FLASH and in XFEL

Accelerating field map

Simulation of the fundamental mode: electric field lines

A collection of SRF cavities developed at Cornell University with frequencies spanning 200 MHz to 3 GHz

Circular accelerators: the synchrotron

Circular accelerators: the synchrotron

synchrotron: R is constant,

 \rightarrow increase B synchronously with p of particle

Dipole magnet

Dipole magnet

Max. B \rightarrow max. current \rightarrow large conductor cables

Power dissipated:
$$P = R \cdot I^2$$

Dipole magnet

C magnet + C magnet = H magnet

Pedro Castro | Introduction to Accelerator Physics | 30th July 2012 | Page 45

Dipole magnet cross section (another design)

Superconductivity

Superconductivity

Pedro Castro | Introduction to Accelerator Physics | 30th July 2012 | Page 48

Superconducting dipole magnets

Superconducting dipole magnets

IC DIPOLE : STANDARD CROSS-SECTION

CERN /

Introduction to Accelerator Physics | 30th July 2012 | Page 50

J = uniform current density

J = uniform current density

one conductor:

$$\begin{cases}
B_x = -\frac{\mu_0 J}{2} r \sin \theta \\
B_y = \frac{\mu_0 J}{2} r \cos \theta \\
B_x = \frac{\mu_0 J}{2} (-r_1 \sin \theta_1 + r_2 \sin \theta_2) = 0 \\
B_y = \frac{\mu_0 J}{2} (r_1 \cos \theta_1 - r_2 \cos \theta_2) = \frac{\mu_0 J}{2} d
\end{cases}$$

From the principle to the reality...

LHC dipole coils in 3D

LHC dipole coils in 3D

Computed magnetic field

Computed magnetic flux map

LHC DIPOLE : STANDARD CROSS-SECTION

Superconducting dipole magnets

LHC dipole magnet interconnection:

Summing-up of part 1

Applications:

- HEP (example: LHC)
- light source (example: DORIS, Ribosome)
- medicine (example: PET)
- industry (example: electron beam welding)
- cathode ray tubes (example: TV)

Circular accelerators: the synchrotron

