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1 1 INTRODUCTION AND THEORY1 Introdution and TheoryUsing theories on a lattie - that is, formulating these theories on a (Eulidean) spae-timegrid - has been established as a most valuable tool in quantum �eld theory and statistialmehanis to analyse and understand physial systems.In partiular, lattie methods have led to great suess in the non-perturbative setorof quantum hromodynamis, where exat solutions are not possible. Using massivelyparallel superomputers, observables for omplex quark-gluon systems may be auratelydetermined and ompared with experimental �ndings.Motivated by these appliations, we introdue the theoretial foundations of the lattie-based approah and apply it �rstly to a simple example, and then to a system with topolog-ial properties. During our studies we also investigated the quantum harmoni osillator,but the results are not inluded in this report. We refer the interested reader to theeduational paper by Creutz and Freedman[1℄ for further disussion of this system.1.1 The Feynman Path IntegralWe begin with a key theoretial omponent - the path integral. This quantum mehanialformalism uses the onept of a `sum over histories' to apture the dynamial properties ofthe system. In ontrast to the anonial formalism, it does not require the use of operatorson the Hilbert spae. As we shall see, it has a natural relationship to disretised spae-time,so one should not be surprised to see its extensive use in lattie-based theories.Before deriving the path integral, we �rst onsider the idea of the `sum over histories' togain some sense of the motivation for the approah. We begin with the lassial onept ofa single trajetory between endpoints and extend it (in the quantum fashion), to inludeall possible paths. This is simply the ase for quantum mehanial proesses, where theamplitude is given by a sum over alternative histories. The key point is that while eahpath ontributes to the total amplitude, it ontributes at a di�erent phase. We see this inFeynman's original version of the `integral',
K(b, a) =

∑

paths

const e
i
~
S[q(t)] (1)where K(b, a)1 is the quantum mehanial amplitude to reah a state (b) from a state (a).If we aept this expression, and see that the phase is given by i/~S[q(t)], the lassiallimit is retrieved as S ≫ ~. To see this more learly, we note that small variations arounda path giving an extremum in the ation (ie, a lassial path) will produe little hange inthe ation, and thus the phase will be approximately onstant. For `quantum paths', thesesmall variations produe huge �utuations in phase, ausing rapid osillations between -1and 1 whih tend to anel out the non-lassial paths.1This quantity is also alled the `propagator', as we shall see.



1 INTRODUCTION AND THEORY 2We are interested in the propagator between two points, (ti, qi) and (tf , qf ) - the proba-bility amplitude for the system being in state (tf , qf ) having been in state (ti, qi). This isdenoted by 〈tfqf |tiqi〉, and is equivalent to K(tf , qf ; ti, qi) in equation 1.To alulate this quantity we split the time interval into N disrete sub-intervals, eahof width ǫ. We then have
ti = t0, tN = tf , ǫN = tf − ti (2)

Figure 1: The time axis is divided into disrete inter-vals, and the qj values, orresponding to q(tj), takevalues between −∞ and ∞. Image from [2℄.

Thus the onnetion with lat-tie alulations is apparent. Thisformalism suits our methods verywell. We onsider that the systemhas to pass through eah time-point in the interval, suh thatthe propagator beomes a produtof inremental propagators, wherethe spae-oordinates in eah stepare variable.To enorporate all paths in ouronsideration, we integrate spaeat eah time point between −∞and ∞, while �xing the endpointsat qi and qf (see �gure 1.1). Math-ematially, this looks like
〈tfqf |tiqi〉 =

∫

. . .

∫ dq1dq2 . . . dqN−1〈tfqf |tN−1qN−1〉 . . . 〈tjqj|tj−1qj−1〉 . . . 〈t1q1|tiqi〉(3)We an write the element 〈tjqj|tj−1qj−1〉 using the time evolution operator,
|tjqj〉 = e

i
~
Ĥtj |q〉suh that

〈tjqj|tj−1qj−1〉 = 〈qj |e−
i
~
Ĥ(tj−tj−1)|qj−1〉 = 〈qj|e−

i
~
ǫĤ |qj−1〉 (4)For a typial Hamiltonian, after inserting a omplete set of momentum states, we obtain

〈qj|e−
i
~
Ĥ(p̂,q̂)|qj−1〉 ≃

∫ dp
2π~

〈qj|p〉〈p|qj−1〉e−
i
~
H(p,qk) (5)We may use the fat that 〈qj |p〉 = eipqj to further simplify this expression. The Hamil-tonian funtion H(p, qj)

2 appears due to a hoie in where to insert the momentum basisstates. We ould equally have made a di�erent hoie and obtained H(p, qj−1). Sine thesehoies are in our ase arbitrary, a `middle ground' is hosen for the resulting expression.Ultimately in the ontinuum limit, these onsiderations are unimportant. Combining all2Note that the Hamiltonian is no longer an operator, but instead at this point a funtion of (p, qj),yielding a number.



3 1 INTRODUCTION AND THEORYof our braket terms and olleting exponents in equation 5, we obtain that 〈tfqf |tiqi〉 isequal to
lim
ǫ→0

N→∞

∫

. . .

∫ dq1 . . . dqN−1
dp1
2π~

. . .
dpN
2π~

exp




i

~

N∑

j=1

[

pj(qj − qj−1)− ǫH

(

pj,
qj + qj−1

2

)]


(6)Examining the expression in the exponential, we note that by extrating a fator of ǫ, andtaking the limit, we get
lim
ǫ→0

N→∞

i

~
ǫ

N∑

j=1

[

pj

(
qj − qj−1

ǫ

)

−H

(

pj,
qj + qj−1

2

)]

=
i

~

∫ tf

ti

dt (pq̇ −H(p, q))

=
i

~

∫ tf

ti

dtL =
i

~
S[q] (7)For Hamiltonians quadrati in the momentum, the integration over momenta is simple,and we arrive �nally at

〈tfqf |tiqi〉 ∝
∫

Dqe
i
~
S[q] (8)where ∫

Dq = lim
ǫ→0

N→∞

∫ dq1 . . . dqN−11.2 Relationship with Statistial MehanisThe result we have obtained for the path integral is valid for Minkowski spae. While weknow that rapidly hanging phase fators will tend to anel out physially improbablepaths, this e�et is only apparent after performing the alulation. Using a tehniquealled a `Wik rotation' we may immediately distinguish those paths whih do not on-tribute greatly to the propagator, while establishing an important relationship to statistialmehanis.A Wik rotation transforms a problem in Minkowski spae to one in Eulidean spaeby moving to imaginary time via the substitution τ = it. After suh a transformation, ourpath integral beomes
I =

∫

Dqe−
1
~
SE (9)Clearly, unimportant paths are now exponentially suppressed. More interestingly, we seethe formal similarity with a Boltzmann fator where ~ ats as a temperature. The ~ → 0(lassial) ase, where quantum �utuations are insigni�ant, is analogous to a T → 0ase where statistial �utuations in a physial system are `frozen out'. Thus, quantummehanis in imaginary time beomes statistial physis in real time. This is the power ofthe Wik rotation.The onnetion established here motivates the use of the ation for generating stateswith an appropriate distribution - this is the idea of `importane sampling', whih we useto perform Monte Carlo integrations.



1 INTRODUCTION AND THEORY 41.3 Monte-Carlo MethodsThe main problem in using the path integral formulation is that we have to evaluate theintegral over the phase spae PS . However, these integrals might not be analytiallysolvable and therefore it is neessary to obtain numerial approximations. One suitabletehnique is alled the Monte-Carlo Method or Monte-Carlo Integration. The purpose ofthis method is to approximate a de�nite integral using a �nite number of randomly sampledpoints. More spei�ally, one wishes to make the approximation
∫

PS

f(x)Dx ≃
∑

f(xi) ·∆xi (10)where xi ∈ PS. The question is now how to hoose these points xi? Two possible waysare the following:
• Random Sampling: means that we hoose the points xi randomly aording to auniform distribution over the whole phase spae. This is problemati if, for example

PS is very large. In this ase a large number of points is needed to the over the wholespae. If it happens that not all regions of PS ontribute equally - for example, inthe ase of a highly peaked probability distribution - then a lot of integration pointswill be wasted on unimportant areas.
• Importane Sampling: is designed to overome this disadavntage. The idea is to gen-erate phase spae points xi whih are not totally random, but instead more denselydistributed in dominant regions of the phase spae.Let us now study the realisation of importane sampling in the ontent of path integrals. Asseen previously in the onnetion to statistial physis, the ation S an be regarded, likea Boltzmann fator, as the generator of a probability distribution P (x) ∼ e−S . Therefore,the expetation value of some observable A is, within the notation of statistial physis,

〈A〉 =
∫
A(x)e−S(x)Dx
∫
e−S(x)Dx

(11)In this ase, the normalised probability distribution3 is P (x) = e−S(x)
∫
e−S(x)Dx

, with ∫
P (x)Dx =

1. The idea is now to somehow generate points xj ∈ PS aording to this distribution
P (x), i.e.:

P (xj)Dx =
e−S(xj)Dx
∫
e−S(x)Dx

(12)Hene, the Monte Carlo estimate Ā, with points distributed in the above manner, of theexpetation value 〈A〉 is given by:
Ā =

1

N

N∑

i=1

A(xi) {xi ∈ PS : i ∈ {1, 2, ..., N}} (13)where N is the total number of points generated aording to the distribution above.3Realling that S(x) is the ation of our system, we see that this distribution will tend to selet morepoints whih minimise the ation - a physially desirable result.



5 1 INTRODUCTION AND THEORY1.4 Metropolis AlgorithmWe have seen that importane sampling is the desired method to hoose points with anappropriate distribution for approximating physial quantities. However, the spei� im-plementation has to be disussed in further detail. We need to know how to generate thesepoints. One realisation is the so-alled Metropolis Algorithm whih will be the subjet ofthis setion and is also the basis for all subsequent programming steps.The best way to explain the algorithm is pseudo ode:1. Let S(x) denote the ation of the system under onsideration, d a variable simulationparameter, and xi old point or starting point.2. Choose randomly (with uniform probability) the new point (proposal) x′i suh that
x′i ∈ [xi − d, xi + d].3. Compute the di�erene in ation between the new and old `on�guration'4,

∆S(x′i, xi) := S(x′i)− S(xi)4. The deision step is realised by the following:IF ∆S(x′i, xi) < 0 IF ∆S(x′i, xi) ≥ 0THEN aept x′i THEN randomly r ∈ [0, 1]IF ∆S(x′i, xi) > r IF ∆S(x′i, xi) ≤ rTHEN aept x′i THEN rejet x′iThe term `aepted' means that the proposal will be the starting point for the nextiteration step: xi+1 = x′i. `Rejeted' means that in the next step we still have thesame old point, i.e. xi+1 = xi.An important point to realise is that we have to use the Metropolis algorithm several timesto �nd the appropriate sample of points {xj}. Another way of desribing this is to saythat eah time we apply the Metropolis algorithm to an old `on�guration' xj we get anproposal x′j . This point is eventually aepted (if it leads to a derease in ation or witha ertain probability if ∆S(x′j, xj) ≥ 0)5.After repeating this step several times we get a on�guration {xeq} whih is loser tothe desired equilibrium distribution P (x) in the sense that the distribution of the points
{xeq} resembles P (x) . This sample {xeq} an then be used to ompute the Monte Carloestimate for the expetation value.This an also be understood in physial terms. The relaxation of the on�gurationsinto equilibrium orresponds to thermalisation, beause the system starts at some hosenstarting on�guration and evolves over (iteration-) time into the equilibrium on�guration.This is analogous to the situation desribed above.4Here our on�guration onsists of a single point. Later, we onsider the omplete path of a partilewith spei�ed boundary onditions as a single on�guration.5This ondition enables the system to esape from loal minima in the ation. In statistial mehanis,it an be thought of as resulting from the �nite temperature of the system.



1 INTRODUCTION AND THEORY 61.5 CorrelationFor the later appliations, mostly in analysing and evaluating the reliability of our simula-tion data, we need to onsider some systemati e�ets due to the nature of the MetropolisAlgorithm. We speak of the orrelation (more spei�ally autoorrelation) between dif-ferent on�gurations. We an think of this as giving some measure of how related thedi�erent on�gurations are to eah other.We are aiming for a sample of on�gurations of the system suh that these on�gura-tions are distributed aording to the desired probability distribution and also are inde-pendent of eah other. This independene ondition is important and neessary to obtaingood statistial results and to lose independene of the initial onditions.The design of the above algorithm suggests that we are dealing with an ideal Markovproess. Markov proesses (or hains) are often used to model the on�gurations of a systemwithin the assumption of limited dependene. This means that suessive on�gurationsan only depend on a �nite number of previous steps - ideally only the previous one.However, in the ase of the Metropolis algorithm, we �nd that the on�gurations alwayshave some residual dependene on previous states. A fator in this is the hosen parameter
d, whih determines how quikly we an obtain an entirely new on�guration. As we shallsee, the hoie of d is not a trivial matter.Thus, we need to investigate the `autoorrelation' of our on�gurations {x}j to have anidea of the extent of these residual e�ets, and to take them into aount while performingerror analysis.In general, the orrelation between two ontinuous funtions g, h : R → R is given bythe integral[3℄ Corr(g, h)(τ) := ∫ ∞

−∞

g(t+ τ) · h(t)dtWhih resembles the de�nition of the onvolution of g and h. Nevertheless, for disretesequenes gk and hk (whih have to be periodi in N), the orrelation is given as:Corr(g, h)(j) := N−1∑

k=0

gk+j · hkHowever, the orrelation desribes how similar those two funtions or sequenes are. Whihmeans that the orrelator is ideally zero if there is no onnetion between the data. Onthe ontrary, we need to investigate the dependene of the data of itself. Therefore, weompute the orrelation of the �nite sequene {xj} with itself. Let us onsider for simpliitya 1-dim. on�guration x with a given number of iterations N , i.e. j ∈ {1, 2, ..., N}. Sinewe do not have periodiity, we normalise the orrelation:
C(j) :=

1

N∗
j

·
k+j≤N
∑

k=1

xk+j · xkwhere N∗
j is the number of summations obeying k + j ≤ N for a given j ∈ N.As shown by Buendía[4℄6, we expet the autoorrelation funtion for the Metropolis algo-6While this paper disusses the autoorreation funtion for the Langevin algorithm, the priniple is thesame for the Metropolis algorithm.



7 2 AN INTRODUCTORY EXAMPLE...rithm to have an exponential deay of the form
C(t) ∼ e−

t
τac (14)Where τac is the so-alled autoorrelation time.1.6 General RemarksFor the implementation of the algorithm and all of the following systems we wrote twoindependent programs using either C or FORTRAN as the programming language. Theadvantage of this strategy is that it is possible to ross-hek results, avoid bugs andimprove the ode.2 An introdutory example...In order to get aquainted with Monte Carlo methods, Metropolis Algorithm and Impor-tane Sampling, we onsider the following task:Compute the expetation value of x2 within the normalised probability distribution:

P (x) =
e−x2

∫∞

−∞
e−x2dx (15)and ompare the results with the analytial solution.2.1 Analytial SolutionThe expetation value of x2 is given as:

〈x2〉 :=
∫ ∞

−∞

x2 · P (x)dxLooking at the �rst part of the integral, and splitting the limits, we get
I =

∫ ∞

−∞

x2e−x2dx =

∫ ∞

0
x2e−x2dx

︸ ︷︷ ︸

t:=x2,x≥0

+

∫ 0

−∞

x2e−x2dx
︸ ︷︷ ︸

s:=x2,x<0

=
1

2

∫ ∞

0

√
te−tdt− 1

2

∫ o

∞

√
se−sds = ∫ ∞

0
t
3
2
−1e−tdt = Γ

(
3

2

)We now prove the following property of Gamma funtion Γ(z + 1) = z · Γ(z):
Γ(z + 1) =

∫ ∞

0
tz+1−1e−tdt = −tze−t|t=∞

t=0 + z

∫ ∞

0
tz−1e−tdtwhere lim

t→0
−tze−t = 0 and lim

t→∞
−tze−t = 0as tze−t = ez ln t−t → 0 as t → ∞Hene we get I = Γ

(
3
2

)
= 1

2Γ
(
1
2

). Furthermore, we know the value of the Gaussianintegral and an apply the same steps as above to obtain:
∫ ∞

−∞

e−x2dx = Γ

(
1

2

)

=

√
π

2Thus, the analytial solution is: 〈x2〉 = 1
2 .



2 AN INTRODUCTORY EXAMPLE... 82.2 Simulation ResultsThe simulation of this system requires only three parameters:
• d, determining the range of the proposal
• Niter, the number of iterations
• x0, the starting point
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Figure 2: Value x2 going into equilibrium for di�erentvalues of the inrement d.

First, we look at the behaviourof x2 as funtion of the iterationtime with respet to di�erent val-ues of the inrement d (see �g.2). As we an see, the valueof the parameter d learly in�u-enes how fast the system ther-malises (settles into equilibrium)if we have a badly hosen startingpoint. This means that if we haveno idea about the equilibrium on-�guration (e.g. no analytial solu-tion) then we might want to takea large value of d to reah equilib-rium faster. On the other hand, ifwe look at the �utuations aroundthe analytial solution then we re-alise that overly large values of d lead to averages with large errors.Before the analysis of further results, it is neessary to de�ne the aeptane rate R ofthe Metropolis Algorithm by:
R :=

number of aepted proposalstotal number of proposals (16)The hoie of d is ruial, as seen above. In order the determine the appropriate value itis neessary to look at the autoorrelation time τac and the aeptane rate R as funtionsof d (see �gure 3).First, we fous on �gure 3a where the autoorrelation funtion for di�erent d is shown.The most immediately apparent behaviour is the exponential deay, as predited by equa-tion 14. To obtain τac from the simulation data we use the open soure program R withlibrary hadron and the uwerr funtion. Extrating the values of τac from the autoorrela-tion funtions, we an ompare them and R as funtions of d in one graph (see �g. 3b).We observe three di�erent regions:
• d ≤ 1: The aeptane rate rapidly approahes one, while the autoorrelation timestrongly inreases as d → 0. This suggests that one should avoid this region for thefollowing reason: due to the small range of proposals, the probability of randomlyseleting a point whih is aepted is high. In detail, the probability of hoosing a
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Figure 3: Left: orrelation for di�erent d ; Right: aeptane rate and autoorrelation timefor di�erent dpoint with dereasing ation or similar ation is high. Hene, if we have a slightinrease in ation: ∆S ≪ 1 ⇒ e−∆S ≈ 1 − ∆S, whih implies that the point isaepted for most of the random variables r of the Metropolis Algorithm. However,sine d is so small, the on�gurations are highly orrelated whih leads to a large τac.
• d ≥ 5: R dereases and τac inreases as d inreases. This behaviour is due to the largerange of new proposals. It follows that probability of hoosing a point with inreasingation is high. The onsequene is the rejetion of most of the proposals, and a lowaeptane rate. Sine a on�guration is repeated when the proposal is rejeted,this results in an inreasing autoorrelation time, as subsequent on�gurations areidential.
• 1 < d < 5: This region seems to be the appropriate range of d values for our sim-ulations, as the autoorrelation length is small (on�gurations beome independentquikly) and the aeptane is between 20% − 50% (whih ensures fast thermalisa-tion).Sine we wish to hoose d suh that1. The aeptane rate R is not too small and2. The autoorrelation time τac is as small as possiblewe onlude from this analysis that d ≈ 2 is appropriate, as τac ≈ 2 and R is still over

50%. We �x d at 2 for all subsequent simulations.For the omputation of 〈x2〉 by equation 13, we average our funtion f(x) = x2 over thepoints xi whih are distributed aording to the probability distribution 15. We know thatthe points xi have taken on this equilibrium distribution when the system is thermalised.Thus we must only start averaging after this point has been reahed. Determination ofthis point is not exat, and is based on examining a graph suh as �gure 2. Having doneso, we �nd our simulation to produe approximated values of 〈x2〉 whih agree well withthe analytial solution.



3 TOPOLOGICAL ACTIONS 103 Topologial Ations3.1 MotivationBefore going into the details of the model we have onsidered, it is useful to spend sometime on the motivation for topologial theories.Consider the following mesons η, η′ and K and their quark ontent7:meson omposition approx. mass
K0 ds̄ , sd̄ 498MeV
K+ us̄ 494MeV
K− sū 494MeV
η uū , dd̄ , ss̄ 548MeV
η′ uū , dd̄ , ss̄ 958MeVThe approximation of the mass of the η and η′ by using the quark-ontent of the K'sand the mass of the u quark (mu ≈ 1.7 − 3.3MeV) yields:

mη ≈ mη′ ≈ 〈mK〉+ 2 ·mu ≤ 500MeV + 2 · 3.3MeV < 510MeVWith this estimation it is already di�ult to justify the η mass, but by no means is itpossible to explain the huge mass of η′. The quark model seemingly annot explain thispuzzle. However, there is an amazing mehanism arising from topologial e�ets of gluon�eld on�gurations whih is believed to provide the very large mass of the η′ meson. Wemay better understand the notion of topologial e�ets by onsidering objets alled in-stantons. Mathematially, these are lassial solutions to Yang-Mills equations minimisingthe energy of the system with topologially nontrivial properties[5℄. These properties aredesribed by a quantity alled the topologial harge, a quantum number related to non-trivial homotopi properties of the system, whih an intuitively be understood as a kindof `winding number' for the solution.The result is that it is possible to explain the anomalous mass of the η′ using thesetopologial onsiderations[6℄.In addition, there exists the remarkable Witten-Veneziano formula8
f2
π

2Nf

(
m2

η +m2
η′ − 2m2

K

)
= χtopwhih onnets physial quantities (the masses of the mesons, mK , mη, mη′) with a purelytopologial quantity, alled the topologial suseptibility χtop, whih measures the �utua-tion of the topologial harge.However, instead of looking at the very demanding model of QCD itself, this report willontinue with a simpler, but illustrative model. We will �nd that problems enountered inmuh more sophistiated systems also appear in this one dimensional model. Therefore,the analysis of these phenomena will be the main part of this setion.7The mesons are atually a superposition of these quarks.8Here Nf is the number of quark �avours, and fπ is a pion deay fator.



11 3 TOPOLOGICAL ACTIONS3.2 The 1-d O(2) modelWe start with an overview of the system in question. This is a 1-d O(2) spin system,equivalent to the quantum mehanial rotor[7℄ and analytially solvable in the ontinuum(see [7℄,p.5). 1-d refers to the fat that the system is �xed in spae and O(2), the orthogonalgroup of 2 × 2 matries, to its rotational freedom. The basi priniple of the rotor is apartile with mass M onstrained to move on a irle with radius R, having a moment ofinertia I = MR2. The oordinate degree of freedom we onsider is ϕ, the angle desribingthe postion of the partile on the irle (or equivalently, the orientation of the spin). Wede�ne β = 1
T
(where T is the `temperature' of the system), whih beomes the volume ofour time-lattie in its disretised form.The Eulidean ontinuum ation is

S [ϕ] =

∫ β

0
dtI

2
ϕ̇2 (17)We introdue the topologial harge for this system as:

Q [ϕ] =
1

2π

∫ β

0
dtϕ̇ ∈ Z (18)Using periodi boundary onditions, this harge is simply the number of omplete revolu-tions the rotor/spin makes in the spei�ed time period, with an assoiated diretion.In addition, we list some neessary relations and quantities without further justi�a-tion9:1. De�ne the topologial suseptibility by χt :=

<Q2>
β2. In the limit β → ∞ we get the onnetion: χt =

1
4π2I3. De�ne the orrelation length10 ξ and obtain, again in the β → ∞ limit, the energygap between ground state and �rst exited state: ξ = 1

E1−E0
= 2I (see setion 3.7.1for derivation)3.3 Computational TasksAs already mentioned, the system under onsideration an be equivalently regarded as aspin variable ϕ ∈ (−π, π]. We let the spin evolve in time (i.e. ϕ = ϕ(t)) and want toompute the ation S [ϕ] (see eqn. 17) between �xed time endpoints. A disrete timelattie with lattie spaing a and number of timepoints Npath is introdued11, suh that

β = a · Npath. Hene the ontinuous ϕ(t) turns into a �nite set of spin orientations
{ϕ(a · j) : j ∈ {0, 1, ..., Npath − 1}}. Furthermore, it is neessary to disretise the timederivative of ϕ. For simpliity, let ϕj := ϕ(a · j):

S [ϕ] =

∫ β

0
dtI

2
ϕ̇2 → I

2

Npath−1
∑

j=0

ϕ̇2
j · a9We diret the interested reader to Bietenholz et al.[7℄, where this model is disussd in detail.10Note: this is not related to the orrelation funtions over Monte Carlo iterations we disussed earlier.This arises from orrelation funtions over physial, and not Monte Carlo time, and has physial meaningfor the system.11We have already seen this proedure in setion 1.1



3 TOPOLOGICAL ACTIONS 12where one an hoose a simple way of disretising the derivative by:
ϕ(t+ a) = ϕ(a) + ϕ̇(t) · a+

1

2
ϕ̈(t) · a2 +O(a3) by Taylor Theorem

⇒ ϕ̇j =
ϕj+1 − ϕj

a
+O(a) (19)Consequently, the disrete ation has the following form:

S [ϕ] =
I

2a

Npath−1
∑

j=0

((ϕj+1 − ϕj) mod 2π)2 (20)In the same way one gets for the topologial harge (see eqn. 18):
Q =

1

2π

Npath−1
∑

j=0

((ϕj+1 − ϕj) mod 2π) ∈ Z (21)Figure 4 provides examples demonstrating paths with di�erent topologial harges. Alonger time path had to be taken to demostrate the Q = 3 ase, as this harge is veryunlikely for short paths.
example path, Q = 0

example path, Q = 1

example path, Q = -1

example path, Q = 3

Figure 4: Examples of paths with various topologial harges. Time goes from left to right,with periodi boundary onditions. These are purely illustrative examples, as paths usedin simulations ontain orders of magnitude more points.Before ontinuing to the next setion, some remarks about the implementation of themodel are appropriate: The main di�erene ompared to the simple �rst system is the



13 3 TOPOLOGICAL ACTIONSextension of the algorithm from a on�guration onsisting of a single point, to one givenby a path of points separated on a time lattie. This is realised as seen in �gure 5.12The algorithm now goes as follows:

Figure 5: realisation of Metropolis Algorithm for a path1. Create a starting on�guration: i.e. {x(0, j) : j ∈ {0, 1, ..., N}}2. At the updating step for x(i, j) to x(i + 1, j)13, the following on�gurations areompared to eah other:
x := {x(i, 0), x(i, 1), ..., x(i, j − 1), x(i, j), x(i, j + 1), ..., x(i,N)}
x
′ := {x(i+ 1, 0), x(i + 1, 1), ..., x(i + 1, j − 1), x̃, x(i, j + 1), ..., x(i,N)}Where x orresponds to the old on�guration and x

′ to the partially updated on-�guration with the new proposal x̃ for the point x(i, j).3. Perform the normal deision step ∆S(x′,x), like in the zero dimensional ase.It is important to realise that we need not ompute the full ation for the on�gurationat eah step. Sine the `interation' between neighbouring timepoints is of �rst order(that is, only nearest neighbours ontribute) ∆S(x′,x) depends only on three points -
x(i, j), x(i, j + 1), x(i + 1, j − 1) and the proposal. This loal harater in the ationenables us to perform the Metropolis algorithm orders of magnitude faster than having toalulate the full ation at eah step.3.4 Remarks: Statistis, Skipping and Boundary ConditionsAs shown in previous setions, the autoorrelation time presents a problem for generatingtruly independent on�gurations and hene for averaged quantities. Sine we an onlyonsider independent on�gurations in our Monte Carlo averages, an autoorrelation timegreater than one redues our e�etive statistis. An idea to overome this problem would beto inrease the number of iterations Niter by the order of τac to regain the desired number ofindependent measurements. We de�ne a �xed number of measurements for good statistial12The notation x(i, j) refers to the spin variable ϕ(t) at iteration step i, at time position j on the lattie.13At this point, all spins x(i+ 1, k) for k ∈ {0, j − 1} have already been updated.
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Figure 6: ontinuum limit: left graph: β = 200, I = 1, 00 and d = 2; right graph: β = 100,
I = 0, 25 and d = 2results, and vary the number of iterations depending on the autoorrelation length (we tryto hoose lcorr ≥ τac),

Niter = Nmeasure · lcorrIn our simulation, we only take into aount every lcorrth on�guration for alulating theobservables, thus ensuring independent measurements.However, this presents immediate omputational problems, greatly inreasing the timeit takes for simulations to run. For a simple system suh as ours, this is not an unsur-mountable problem, but for highly omplex QCD alulations, this `brute fore' method isnot a viable solution. We must �nd a better way to redue the autorrelation time. Onemethod is with a speial hoie of boundary onditions, whih we introdue now.Formulae 20 and 21 indiate that it is neessary to deal with boundary onditions, sinewe have a �nite system. The boundary onditions a�et espeially terms like ϕ−1 and
ϕNpath

. A disussion of two di�erent types of boundary onditions (b..'s) is appropriate:
• Periodi: the priniple requirement is ϕ0 = ϕNpath

. This yields two statements:
ϕ−1 := ϕNpath−1 ∧ ϕNpath

:= ϕ0

• Open: Aording to Lüsher et al.[8℄, open boundary onditions may be used to reduethe problem of autoorrelation times. The idea is that ϕ0 has no left neighbour, i.e.there are no terms like (ϕ0 − ϕ−1) and, similarly, ϕNpath−1 has no right neighbour.3.5 Topologial SuseptibilityAs we have mentioned earlier, one interesting observable of the spin-system is the topo-logial suseptibility. In partiular, we want to onsider the ontinuum limit, whih meansthe following:
(a → 0) ∧ (Npath → +∞) with the onstraint: β = a ·Npath = constWe ran the simulation for two di�erent set of parameters ((I = 1, β = 200), (I = 0.25, β =



15 3 TOPOLOGICAL ACTIONS
100)) as an be seen in �gure 6. The left graph shows the results for open and periodiboundary onditions with a �xed number of measurements of 100, 000 and the right graphwith 10, 000 measurements. Although both graphs in �gure 6 seem to show di�erentbehaviour, it is possible to resale the a-axis as follows: going bak to equation 20 to pikup the oe�ient of I

2a . For two sets of paramaters (I1, a1) and (I2, a2), it it possible totransform one into the other, in the sense that we an resale one to have the same a axis.
I1
a1

=
I2
a2

⇒ a1 =
I1
I2

· a2The ombined plot an be seen in �g. 7. One observes a resemblane in the behaviour for
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• The �rst region (1) is due to �nite lattie spaing e�ets, that is, the manner in whihthe derivative ϕ̇ has been disretised (see equation 19) produes lattie artifats,



3 TOPOLOGICAL ACTIONS 16deviations of order a. This explains the observed deviations from the ontinuumvalue of χt.
• In the seond region (2) the data agrees well with the theoretial expetation.
• Last, we fous on the region for the smallest lattie spaings (3). To understand thebehaviour there, it is neessary to look at the topologial harge Q as a funtion ofiteration time at di�erent lattie spaings (see �gure 8).Examining �gure 8 yields the following analysis:
• For relatively large lattie spaings (a ≥ 0.5) the topologial harge osillates around

0 over iteration time. This is beause one may expet that the topologial harge isGaussian distributed. Indeed, this is re�eted by the histogram in �gure 8g.
• For smaller lattie spaings (a ≈ 0.05) one reognises a hange in the graph. It is nolonger learly distributed around zero. We begin to see the e�ets of autoorrelationas the topologial suseptibility `wanders' for hundreds of thousands of iterations inapproximately the same diretion.
• Finally, for very small spaings (a ≈ 0.01) the topologial harge is frozen. Thismeans that it is onstant over several 100, 000 or even 1, 000, 000 iteration steps.This is seen most dramatially in �gure 8e, where the topologial harge is �xed at3 for over 15 million iterations. The reason for this lies in the ation (equation 20),where we observe a dependene of ∼ 1

a
. The onsequene is that the hange in ationbeomes very large unless the hange in the angle is very small. We then have thatnew points are simultaneously unlikely to be aepted (whih inreases the e�etiveautoorrelation time as we have seen, thus e�etively reduing our statistis), andthose whih are aepted annot signi�antly alter the spin on�guration. Sinethe 〈Q2〉 is a measure for the �utuation of Q, and Q is onstant over millions ofiterations, we annot get a reliable value of χt.In addition, a more detailed disussion about open and periodi boundary onditionsis appropriate. As seen in �gure 8, the freezing of the topologial harge at small lattiespaings is a serious problem for periodi b.'s whih is di�ult to overome. One ideasuggested by Lüsher et al.[8℄, is to use the open boundary onditions we introdued above.In the ase of periodi boundary onditions one requires x0 = xNpath

. This makes it di�ultto hange to a on�guration with a di�erent Q and leads to the freezing of the topologialharge. An intuitive explanation for this is to imagine trying to remove the twist in alosed belt - impossible without �rst separating the ends. As Lüsher et al. desribe it,open bounary onditions enable the topologial harge to smoothly `�ow' in and out ofthe system. The expetation for open b..'s is to obtain better results for smaller lattiespaings and to extend the limit until whih we an ompute reliable values.Indeed, if we ompare the results for a = 0.01 between open and periodi boundaryonditions, the di�erene is remarkable. While the open b..'s display signi�ant auto-orrelation e�ets, the topologial suseptibility is not entirely frozen, as in the ase forperiodi boundary onditions. We see the problem is, if not solved (we �nd open b..'s tobreak down eventually in the ontinuum limit), then ameliorated by the hoie of boundaryonditions.
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3 TOPOLOGICAL ACTIONS 18This development an also be seen in the histograms in �gures 8g, 8h, 8i where thefrequeny of the integer values of Q for open b..'s with di�erent lattie spaings is diplayed.On the left is the plot for the largest a and it shows a Gaussian-like distribution. This isreasonable, as there is no external fore ating on the system. However, going to smaller
a's it seems that the normal distribution is broken. This learly indiates that for thislattie spaing there are not enough measurements to reover the underlying Gaussiandistribution. This is evidently due to the extremely long auto-orrelation times.3.6 Energy Gap3.6.1 DerivationWe are interested in the energy gap between the ground state and the �rst exited state,
∆E = E1 − E0. We an relate this quantity to the moment of inertia, I, of the system,realling the earlier relation

ξ =
1

E1 − E0
= 2I (22)First, we obtain an analytial expression for the quantity ∆E.Consider the 2-point orrelation funtion (or propagator), 〈q(t)q(0)〉 = Γ(t). It is im-portant to emphasise that this is not the same orrelation funtion as we have previouslybeen disussing with respet to the autoorrelation time, though they have formal similar-ities. This orrelator is alulated over a single path in physial time, while our previousorrelators are between on�gurations in Monte Carlo time. As we know from statistialmehanis, the expetation value in the anonial ensemble is given by

〈q(t)q(0)〉 = tr




e−βĤ q̂(t)q̂(0)

tr
(

e−βĤ
)



 (23)This is equivalent to equation 13 due to the duality we have established between the pathintegral and the partition funtion.The operator q̂(t) an be written in the Shrödinger piture (realling we are usingEulidean spae, so t → iτ) using the time evolution operator, as
q̂(t) = etĤ q̂e−tĤ (24)And so, taking the trae over energy eigenstates, our expetation value an be written as

〈q(t)q(0)〉 =
∑∞

n=0〈n|e−ĤβetĤ q̂e−tĤ q̂|n〉
∑∞

n=0 e
−Enβ

(25)Where we have used the fat that
tr
(

e−βĤ
)

=

∞∑

n=0

〈n|e−βĤ |n〉 =
∞∑

n=0

e−βEn (26)



19 3 TOPOLOGICAL ACTIONSWe insert another omplete set of eigenstates between q̂ and e−tĤ to get
〈q(t)q(0)〉 =

∑

n,m〈n|e−(β−t)Ĥ q̂|m〉〈m|e−tĤ q̂|n〉
∑

n e
−Enβ

=

∑

n,m e−(β−t)Eme−tEn〈n|q̂|m〉〈m|q̂|n〉
∑

n e
−Enβ (27)Extrating a fator of e−βE0 from top and bottom lines, then rearranging the exponentson the top yields

〈q(t)q(0)〉 =
∑

n,m e−(β−t)(Em−E0)e−t(En−E0)|〈n|q̂|m〉|2

1 + e−βE1 + e−βE2 + . . .
(28)

β is the formal parameter giving the volume of our time rystal (reall β = Npatha), andin taking the limit β → ∞ we extrat the vauum states. Only states for whih Em = 0remain, these being |m〉 = |0〉. We then get
〈q(t)q(0)〉 =

∑

n

e−t(En−E0)|〈n|q̂|0〉|2 (29)For t su�iently large, the higher energy states deay away, and this simply beomes
〈q(t)q(0)〉 = Γ(t) = e−t(E1−E0)|〈1|q̂|0〉|2 ∝ e−t∆E (30)Thus we an ompute Γ(t) over a on�guration path and alulate the energy gap through

∆E = lim
β→∞

−1

a
log

(
Γ(t+ a)

Γ(t)

) (31)where a is of ourse our lattie spaing (the smallest time inrement we an take).3.6.2 Results
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() Dereasing the lattie spaingshows a loser resemblane to theexponential-like deay.Figure 9: Correlation funtions Γ(t) = 〈q(t)q(0)〉 for di�er-ent values of the lattie spaing.

Figure 9 shows the resultsfor the funtions Γ(t) =
〈q(t)q(0)〉 (where q(t) is
ϕ(t)), for di�erent values ofthe lattie spaing. The xaxis is saled by the lat-tie spaings suh that eah`length' t (number of lattiepoints) orresponds to thesame physial length. Be-yond systemati or statisti-al deviations, the funtionis found as we expet not todepend on the lattie spa-ing. Figure 9a best demon-strates this.However, we must stillonsider the lattie spaingwhile seeking the energy gap.



3 TOPOLOGICAL ACTIONS 20Figures 9b and 9 demonstrate the issue. For an overly large lattie spaing, not evenonsidering disretisation e�ets, we lak the preision required to properly observe theexponential deay of the orrelation funtion. For a lattie spaing of 5.00 for example,we entirely miss it. We see in �gure 9a how reduing the lattie spaing `�lls in' the gaps,giving a better �t for the exponential. Thus, we annot get reliable data for the energy gapfrom overly large lattie spaings. We do not inlude the data for a > 0.5 when alulatingthe energy gap.We now use equation 31 on our data to obtain the energy gap as a funtion of thelength, t. We notie several features in �gure 10.
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(b) For a = 0.02, errors are signi�ant.Figure 10: The energy gap as a funtion of the length t, demonstrating plateau behaviourand errors growing with t. Di�erent lattie spaings are used, with open boundary ondi-tions, and I �xed at 0.25.
• In the region t ∈ (0, 0.4), the energy gap deays. This is due to the presene of higherenergy levels as predited by equation 29 whih have not yet been suppressed. Weannot use these data points to alulate ∆E.
• The energy gap then reahes a plateau. The value of this plateau is our desired valuefor ∆E. By equation 22, sine we use I = 0.25 here, the ontinuum limit value ofthis plateau is 2.
• Statistial �utuations beome inreasingly dominant as t inreases, due to our or-relation funtions approahing 0. This is re�eted in the inreasing errors for larger

t. While large lattie spaings are unsuitable for obtaining the energy gap, thesestatistial limitations also prevent us from gaining useful information from overlysmall spaings. The errors here for a = 0.2 are too large to determine the energy gapreliably.Least squares �tting[9℄ is used on the plateau region to obtain the value of the energygap. The results for periodi and open boundary onditions are shown in �gure 11. Thesystemati error from the determination of the beginning and end of the plateau, whih ishighly subjetive, is not taken into aount. We see no signi�ant di�erene between openand periodi boundary onditions. One again, large lattie spaings give deviations fromthe ontinuum limit, and small spaings require better statistis to redue errors.
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(b) Comparison of autoorrelation times usingthe Metropolis algorithm and the luster algo-rithm. While τac diverges for Metropolis atsmall lattie spaings, it dereases in the lus-ter algorithm. Figure from [10℄.Figure 12: Comparing the e�etive autoorrelation time τac between boundary onditions(open, periodi) and algorithms (Metropolis, luster).As mentioned in an earlier setion, eah path generated by our simulation is not entirelyindependent of the previous steps. In a perfet Markov proess, eah point of the simulationdepends only on the previous point and is entirely independent of all others. That is, thee�etive autoorrelation length τint ≃ 1. Sadly this is not true in our ase. We �nda growth in the e�etive autoorrelation length with smaller lattie spaings onsistentwith an exponential behaviour (�gure 12a). To maintain e�etive statistis of 10,000



4 IMPROVEMENTS 22independent measurements with a lattie spaing of 0.04, we would require over 6 × 109iterations! This is too omputationally expensive. The implementation of open boundaryonditions only marginally lifts the weight of this massive autoorrelation time.We may use the Cluster Algorithm[11℄ to attempt to deal with this problem. Thisalgorithm replaes the Metropolis algorithm in our Monte Carlo proess as a method ofupdating our path on�gurations. It is of partiular use in spin systems suh as ours, butso far annot be used in gauge theories.The basi idea is to form a `luster' within the on�guration of similar spins, and toupdate eah spin in the luster simultaneously. For our ase, the algorithm may proeedapproximately as follows1. A random omplex number is hosen, r ∈ C, and a random starting point in thelattie, i.2. The link probability pl between point i and point i + 1 is then alulated. This isformed by looking at the projetions of ϕi and ϕi+1 on r. A random number between0 and 1 is generated, and the point is added to the luster if this number is lowerthan pl.3. The luster expands until a point is rejeted, and then the linking stops. One anthen go bak to the starting point and proeed in an idential fashion, but insteadlooking at ϕi−1, that is extending the luster in the opposite diretion.4. One the luster is omplete, a re�etion algorithm is used on all points in the luster.This re�ets eah spin in r (one may imagine r as a vetor in R
2).5. A new r is then hosen and the algorithm begins again.It is important to inlude the random number in step 2, to enable the possibility of lustersbreaking up. For example, in the ase of an Ising model where the spins an only takeon two values, without this random step the algorithm would simply serve to eventuallyprodue the trivial ase of all spins aligned. Sine we are interested in topologial features,this is less than ideal!The advantage of the luster algorithm is that it has greatly redued e�etive autoor-relation time. Figure 12b demonstrates this remarkable property. We �nd that for smalllattie spaings, the autoorrelation time atually dereases.4.2 Reduing lattie artifats - di�erent disretisationFrom setion 3.2 we see that the disretisation we use for the derivative ϕ̇ is of order a.A better approximation to the ontinuum limit an be obtained by using a higher orderapproximation to the derivative (See DeGrand[6℄, hapter 10). For example, we an use theentral di�erene approximation for the derivative of an arbitrary smooth funtion f(x),

f ′
1(x) =

f(x+ a)− f(x− a)

2a
= f ′(x) +

a2

6
f ′′′(x) + . . .



23 5 CONCLUSIONSThis is of order a2 now. However, we an do better, if we take another disretisation
f ′
2(x) =

f(x+ 2a)− f(x− 2a)

4a
= f ′(x) +

2a2

3
f ′′′(x) + . . .We an then anel the terms of order a2 by forming f ′

3(x) = (1/3)(4f ′
1(x)− f ′

2(x)), whihis now of order a4. Repeated appliation of this an further redue �nite lattie spainge�ets, at the ost of requiring additional points to alulate the derivative.5 ConlusionsDuring the summer student projet at DESY Zeuthen, we used lattie �eld theoretialmethods to investigate the behaviour of simple systems as well as the properties of theMetropolis Algorithm. Therefore, a signi�ant part of the time was spent with odingsimulations and data analysis aspets.At �rst, we spent time on the theoretial foundations of the path integral and the on-netion to statistial physis, introdued by the imaginary time formalism. Furthermore,an introdution into Monte-Carlo integration was provided as well as the explanation ofthe Metropolis Algorithm.The �rst numerial experiene was gained through the example of 〈x2〉 in the Gaussian-like probability distribution. This gave insights into topis like thermalisation, hoosingappropriate parameters and autoorrelation e�ets. The advantage of the system lies in theanalytial solvability, whih makes it easier to study e�ets of di�erent parameter values.On the other hand, it was learly demonstrated that even for this system autoorrelation isa serious issue, whih needs to be taken into aount if one wants to analyse more advanedsystems.A less trivial system was introdued by the 1-d O(2) model whih shows topologiale�ets and required the extension of the previously developed programs. Two interestingquantities, the topologial suseptibility χt and the energy gap ∆E, were introdued andomputed. The ontinuum limit of χt displays the freezing of the topologial harge andthe breakdown of the simulation for too small a lattie spaing. This freezing presents areal issue in lattie QCD alulations of topologial systems, so observing it in this simplemodel is quite remarkable. Nevertheless, the simulation results agreed with the theoretialpreditions in the range of lattie spaings small enough to approximate the ontinuumlimit and large enough to avoid freezing of the topologial harge.The investigation of ∆E illustrates the theoretially predited exponential deay ofthe physial orrelator for the e�etive energy gap. Consequently, the determination ofthe energy gap was possible by �tting the plateau with an appropriate algorithm where,however, the systemati e�et of identi�ation of plateaus was negleted. Noting this, we�nd the results to be reasonable, in the sense that one sees the plateau at the appropriatelevel but the �nal values of ∆E and their errors enourage further investigation.A last omment should be made about boundary onditions. It was suggested to useopen b..'s to overome the problem of frozen topologial harges observed in periodib..'s. It was possible to verify, to some extent, that this is indeed the ase and one is ableto obtain reliable data for smaller lattie spaings. However, even this new approah isultimately limited by the same problems as the periodi b..'s.In summary, we have investigated some of the methods of lattie QCD by simulatingrelatively simple systems. These onepts are extended to real physial systems (as seen
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