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Abstract

We use methods of lattice field theories to investigate a simple 1-dimensional spin
system with topological properties. We begin with an introduction to the theoreti-
cal foundations, including the Feynman path integral, Monte Carlo methods and in
particular the Metropolis algorithm. The basic task of computing the value of (z?)
in a Gaussian probability distribution is undertaken to introduce the methods, and
to explain the problem of autocorrelation times. Motivation is then provided for our
topological studies with a brief explanation of the role of y¢, the topological suscep-
tibility, in explaining the anomalous mass of the ' meson. We calculate y; for our
system and compare it to analytical results in the continuum limit. Autocorrelation
effects are found to be significant and freezing of the topological charge is observed.
Open boundary conditions are introduced to ameliorate this problem. The energy gap
AFE = E| — Ej is obtained and also examined in the continuum limit. Finally, we
suggest the cluster algorithm to reduce autocorrelation effects and briefly describe an
alternative discretisation method to reduce non-zero lattice spacing issues.
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1 1 INTRODUCTION AND THEORY

1 Introduction and Theory

Using theories on a lattice - that is, formulating these theories on a (Euclidean) space-time
grid - has been established as a most valuable tool in quantum field theory and statistical
mechanics to analyse and understand physical systems.

In particular, lattice methods have led to great success in the non-perturbative sector
of quantum chromodynamics, where exact solutions are not possible. Using massively
parallel supercomputers, observables for complex quark-gluon systems may be accurately
determined and compared with experimental findings.

Motivated by these applications, we introduce the theoretical foundations of the lattice-
based approach and apply it firstly to a simple example, and then to a system with topolog-
ical properties. During our studies we also investigated the quantum harmonic oscillator,
but the results are not included in this report. We refer the interested reader to the
educational paper by Creutz and Freedman[I] for further discussion of this system.

1.1 The Feynman Path Integral

We begin with a key theoretical component - the path integral. This quantum mechanical
formalism uses the concept of a ‘sum over histories’ to capture the dynamical properties of
the system. In contrast to the canonical formalism, it does not require the use of operators
on the Hilbert space. As we shall see, it has a natural relationship to discretised space-time,
so one should not be surprised to see its extensive use in lattice-based theories.

Before deriving the path integral, we first consider the idea of the ‘sum over histories’ to
gain some sense of the motivation for the approach. We begin with the classical concept of
a single trajectory between endpoints and extend it (in the quantum fashion), to include
all possible paths. This is simply the case for quantum mechanical processes, where the
amplitude is given by a sum over alternative histories. The key point is that while each
path contributes to the total amplitude, it contributes at a different phase. We see this in
Feynman’s original version of the ‘integral’,

K(bya) = Z const e#5a(®)] (1)

paths

where K (b, a is the quantum mechanical amplitude to reach a state (b) from a state (a).

If we accept this expression, and see that the phase is given by i/hS[q(t)], the classical
limit is retrieved as S > h. To see this more clearly, we note that small variations around
a path giving an extremum in the action (ie, a classical path) will produce little change in
the action, and thus the phase will be approximately constant. For ‘quantum paths’, these
small variations produce huge fluctuations in phase, causing rapid oscillations between -1
and 1 which tend to cancel out the non-classical paths.

!This quantity is also called the ‘propagator’, as we shall see.
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We are interested in the propagator between two points, (¢;,¢;) and (tf,qs) - the proba-
bility amplitude for the system being in state (¢¢, g¢) having been in state (¢;,¢;). This is
denoted by (trqy|tiq;), and is equivalent to K (tf,qy;t;,¢;) in equation [I

To calculate this quantity we split the time interval into N discrete sub-intervals, each
of width e. We then have

ti=to, tn=ty, eN =t; —t; (2)

Thus the connection with lat-
tice calculations is apparent. This

formalism suits our methods very t

well. We consider that the system F=ty ? d
has to pass through each time- : _//-‘/-
point in the interval, such that £ e q;

the propagator becomes a product E -/l

of incremental propagators, where :12 __——

the space-coordinates in each step  t; = to -
are variable. qi q
To encorporate all paths in our
consideration, we integrate space
at each time point between —oo
and oo, while fixing the endpoints
at ¢; and gy (see figure[LT)). Math-
ematically, this looks like

Figure 1: The time axis is divided into discrete inter-
vals, and the g; values, corresponding to ¢(t;), take
values between —oo and oco. Image from [2].

(trarltiai) = /---/dlthQ---qu—1(thf\tN—1qN—1>---<tjq]'!tj—1q]'—1>---(tlch!tiqz‘)
(3)

We can write the element (t;q;|t;—1¢g;—1) using the time evolution operator,

i fr

|t]Q]> en tj|‘]>

such that

1

(tigjltj—1qj—1) = (gjle w TG |g; 1) = (g;le”#H|q;_1) (4)

For a typical Hamiltonian, after inserting a complete set of momentum states, we obtain

i AA dp .
{ajle™™ e |gj-1) = /ﬁ@j‘m@’%—ﬁe i (p.ax) (5)

We may use the fact that (gj|p) = €% to further simplify this expression. The Hamil-
tonian function H(p, g;)d appears due to a choice in where to insert the momentum basis
states. We could equally have made a different choice and obtained H (p, ¢;j—1). Since these
choices are in our case arbitrary, a ‘middle ground’ is chosen for the resulting expression.
Ultimately in the continuum limit, these considerations are unimportant. Combining all

*Note that the Hamiltonian is no longer an operator, but instead at this point a function of (p,¢;),
yielding a number.
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of our bracket terms and collecting exponents in equation [3], we obtain that (t;q|tiq;) is
equal to

N

. dp: dPN { qj +4qj—1
11_{% / /d(h ~dgn— 1975 &P | [py —qj—1) —€H <m,T
N—oo Jj=1

(6)

Examining the expression in the exponential, we note that by extracting a factor of €, and
taking the limit, we get

= ‘/ttfdt(pd—H(p,q))

i
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S|

_i /tif dtL = %S[q] (7)

For Hamiltonians quadratic in the momentum, the integration over momenta is simple,
and we arrive finally at

(trasltiai) o« /bw%} (8)

where

/Dq = hm dqy...dgn_1

N~>oo

1.2 Relationship with Statistical Mechanics

The result we have obtained for the path integral is valid for Minkowski space. While we
know that rapidly changing phase factors will tend to cancel out physically improbable
paths, this effect is only apparent after performing the calculation. Using a technique
called a ‘Wick rotation’ we may immediately distinguish those paths which do not con-
tribute greatly to the propagator, while establishing an important relationship to statistical
mechanics.

A Wick rotation transforms a problem in Minkowski space to one in Euclidean space
by moving to imaginary time via the substitution 7 = it. After such a transformation, our
path integral becomes

I= / Dge 755 (9)

Clearly, unimportant paths are now exponentially suppressed. More interestingly, we see
the formal similarity with a Boltzmann factor where A acts as a temperature. The A — 0
(classical) case, where quantum fluctuations are insignificant, is analogous to a T" — 0
case where statistical fluctuations in a physical system are ‘frozen out’. Thus, quantum
mechanics in imaginary time becomes statistical physics in real time. This is the power of
the Wick rotation.

The connection established here motivates the use of the action for generating states
with an appropriate distribution - this is the idea of ‘importance sampling’, which we use
to perform Monte Carlo integrations.



1 INTRODUCTION AND THEORY 4

1.3 Monte-Carlo Methods

The main problem in using the path integral formulation is that we have to evaluate the
integral over the phase space PS. However, these integrals might not be analytically
solvable and therefore it is necessary to obtain numerical approximations. One suitable
technique is called the Monte-Carlo Method or Monte-Carlo Integration. The purpose of
this method is to approximate a definite integral using a finite number of randomly sampled
points. More specifically, one wishes to make the approximation

f@)Dz =Y f(z:) - A (10)
PS
where x; € PS. The question is now how to choose these points z;7 Two possible ways
are the following:

e Random Sampling: means that we choose the points z; randomly according to a
uniform distribution over the whole phase space. This is problematic if, for example
PS is very large. In this case a large number of points is needed to the cover the whole
space. If it happens that not all regions of PS contribute equally - for example, in
the case of a highly peaked probability distribution - then a lot of integration points
will be wasted on unimportant areas.

e Importance Sampling: is designed to overcome this disadavntage. The idea is to gen-
erate phase space points x; which are not totally random, but instead more densely
distributed in dominant regions of the phase space.

Let us now study the realisation of importance sampling in the content of path integrals. As
seen previously in the connection to statistical physics, the action S can be regarded, like
a Boltzmann factor, as the generator of a probability distribution P(x) ~ e™. Therefore,
the expectation value of some observable A is, within the notation of statistical physics,

z)e 5@ Dy
)= ff}(e)smpf (1

In this case, the normalised probability distribution is P(z) = f:%((;))px, with [ P(z)Dz =
1. The idea is now to somehow generate points x; € PS according to this distribution
P(z), i.e.

e 5@) Dy

P(.%'])’D(L' = 7‘[ e_S(x)Dx

(12)

Hence, the Monte Carlo estimate A, with points distributed in the above manner, of the
expectation value (A) is given by:

N
A= %;A(%) (2, € PS i€ {1,2,....N}} (13)

where N is the total number of points generated according to the distribution above.

3Recalling that S(x) is the action of our system, we see that this distribution will tend to select more
points which minimise the action - a physically desirable result.
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1.4 Metropolis Algorithm

We have seen that importance sampling is the desired method to choose points with an
appropriate distribution for approximating physical quantities. However, the specific im-
plementation has to be discussed in further detail. We need to know how to generate these
points. One realisation is the so-called Metropolis Algorithm which will be the subject of
this section and is also the basis for all subsequent programming steps.

The best way to explain the algorithm is pseudo code:

1. Let S(z) denote the action of the system under consideration, d a variable simulation
parameter, and x; old point or starting point.

2. Choose randomly (with uniform probability) the new point (proposal) z; such that
x} € [x; — d,x; + dJ.

3. Compute the difference in action between the new and old ‘conﬁguration,

AS(2f, ;) == S(x}) — S(x;)

4. The decision step is realised by the following:

IF AS(zf,x;) <0 IF AS(x},x;) >0

THEN accept THEN randomly r € [0, 1]

IF AS(af,x;) >r | IF AS(z),x;) <r
THEN accept 2, | THEN reject 2

The term ‘accepted’ means that the proposal will be the starting point for the next
iteration step: z;11 = ;. ‘Rejected’ means that in the next step we still have the
same old point, i.e. z;11 = z;.

An important point to realise is that we have to use the Metropolis algorithm several times
to find the appropriate sample of points {z;}. Another way of describing this is to say
that each time we apply the Metropolis algorithm to an old ‘configuration’ x; we get an
proposal z’;. This point is eventually accepted (if it leads to a decrease in action or with
a certain probability if AS(z';,z;) > O)E

After repeating this step several times we get a configuration {z.,} which is closer to
the desired equilibrium distribution P(z) in the sense that the distribution of the points
{xeq} resembles P(z) . This sample {x¢,} can then be used to compute the Monte Carlo
estimate for the expectation value.

This can also be understood in physical terms. The relaxation of the configurations
into equilibrium corresponds to thermalisation, because the system starts at some chosen
starting configuration and evolves over (iteration-) time into the equilibrium configuration.
This is analogous to the situation described above.

“Here our configuration consists of a single point. Later, we consider the complete path of a particle
with specified boundary conditions as a single configuration.

5This condition enables the system to escape from local minima in the action. In statistical mechanics,
it can be thought of as resulting from the finite temperature of the system.
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1.5 Correlation

For the later applications, mostly in analysing and evaluating the reliability of our simula-
tion data, we need to consider some systematic effects due to the nature of the Metropolis
Algorithm. We speak of the correlation (more specifically autocorrelation) between dif-
ferent configurations. We can think of this as giving some measure of how related the
different configurations are to each other.

We are aiming for a sample of configurations of the system such that these configura-
tions are distributed according to the desired probability distribution and also are inde-
pendent of each other. This independence condition is important and necessary to obtain
good statistical results and to lose independence of the initial conditions.

The design of the above algorithm suggests that we are dealing with an ideal Markov
process. Markov processes (or chains) are often used to model the configurations of a system
within the assumption of limited dependence. This means that successive configurations
can only depend on a finite number of previous steps - ideally only the previous one.

However, in the case of the Metropolis algorithm, we find that the configurations always
have some residual dependence on previous states. A factor in this is the chosen parameter
d, which determines how quickly we can obtain an entirely new configuration. As we shall
see, the choice of d is not a trivial matter.

Thus, we need to investigate the ‘autocorrelation’ of our configurations {z} ; to have an
idea of the extent of these residual effects, and to take them into account while performing
error analysis.

In general, the correlation between two continuous functions g,h : R — R is given by
the integral[3]

o0

Corr(g, h)(7) := / g(t+ 1) - h(t)dt

—0o0
Which resembles the definition of the convolution of g and h. Nevertheless, for discrete
sequences gx and hy (which have to be periodic in N), the correlation is given as:

Corr(g, h Z Gt - T

However, the correlation describes how similar those two functions or sequences are. Which
means that the correlator is ideally zero if there is no connection between the data. On
the contrary, we need to investigate the dependence of the data of itself. Therefore, we
compute the correlation of the finite sequence {z;} with itself. Let us consider for simplicity
a 1-dim. configuration = with a given number of iterations N, i.e. j € {1,2,...,N}. Since
we do not have periodicity, we normalise the correlation:

k+j<N

Z Th+j " LTk

where N7 is the number of summations obeying k +j < N for a given j € N.

C(j

]

As shown by Buendlaﬂmﬁ we expect the autocorrelation function for the Metropolis algo-

SWhile this paper discusses the autocorreation function for the Langevin algorithm, the principle is the
same for the Metropolis algorithm.
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rithm to have an exponential decay of the form
O(t) ~ e 7ac (14)

Where 7, is the so-called autocorrelation time.

1.6 General Remarks

For the implementation of the algorithm and all of the following systems we wrote two
independent programs using either C' or FORTRAN as the programming language. The
advantage of this strategy is that it is possible to cross-check results, avoid bugs and
improve the code.

2 An introductory example...

In order to get acquainted with Monte Carlo methods, Metropolis Algorithm and Impor-
tance Sampling, we consider the following task:
Compute the expectation value of 22 within the normalised probability distribution:

—x2

€
Pz)= ——5— 15
)= gy (15)
and compare the results with the analytical solution.
2.1 Analytical Solution
The expectation value of 22 is given as:
o
(z?) = / 22 P(z)dx
—0o
Looking at the first part of the integral, and splitting the limits, we get
00 ) 5 oo ) ) 0 ) 5
I = / xe_xdx:/ xe_xdx—{—/ e dx
—00 0 —o0
t::zgr,zzo s:=x2,2<0
1 oo 1 o oo 3
= —/ Vite tdt — —/ Vse fds = / toletdt =T (2
2 Jo 2 Jo 0 2
We now prove the following property of Gamma function I'(z + 1) = z - I'(2):
o o
I'(z+1) :/ et = P tiER —i—z/ t*letdt
0 0
where lim —t?¢* = 0 and lim —tfe ' =0
t—0 t—00
as el = M50 as t— o0
Hence we get I = T (%) = %F (%) Furthermore, we know the value of the Gaussian

integral and can apply the same steps as above to obtain:

/ e dr =T <1> = ﬁ
- 2 2

Thus, the analytical solution is: (z%) = 1.
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2.2 Simulation Results

The simulation of this system requires only three parameters:
e d, determining the range of the proposal
® Njier, the number of iterations
e 1z, the starting point

First, we look at the behaviour
100000 iteratons, start a 5 of 22 as function of the iteration
s f ‘ ‘ ‘ P time with respect to different val-
” ues of the increment d (see fig.
2). As we can see, the value
of the parameter d clearly influ-
ences how fast the system ther-
malises (settles into equilibrium)
if we have a badly chosen starting
point. This means that if we have
no idea about the equilibrium con-
figuration (e.g. no analytical solu-
tion) then we might want to take
0 5;0 160 1L50 200 25 300 350 400 450 500  a large value of d to reach equilib—
terstentme rium faster. On the other hand, if
Figure 2: Value 2 going into equilibrium for different we look at the fluctuations around
values of the increment d. the analytical solution then we re-
alise that overly large values of d lead to averages with large errors.

x"2

OCRPNWAUODON®®
T T T T T T T T T

Before the analysis of further results, it is necessary to define the acceptance rate R of
the Metropolis Algorithm by:

R number of accepted proposals (16)
" total number of proposals

The choice of d is crucial, as seen above. In order the determine the appropriate value it
is necessary to look at the autocorrelation time 7,. and the acceptance rate R as functions
of d (see figure [3]).

First, we focus on figure [Bal where the autocorrelation function for different d is shown.
The most immediately apparent behaviour is the exponential decay, as predicted by equa-
tion M4 To obtain 7,4 from the simulation data we use the open source program R with
library hadron and the wwerr function. Extracting the values of 7, from the autocorrela-
tion functions, we can compare them and R as functions of d in one graph (see fig. Bh).
We observe three different regions:

e d < 1: The acceptance rate rapidly approaches one, while the autocorrelation time
strongly increases as d — 0. This suggests that one should avoid this region for the
following reason: due to the small range of proposals, the probability of randomly
selecting a point which is accepted is high. In detail, the probability of choosing a
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autocorrelation function: 100000 iterations, start at 0, discard first 10%

coocoooa

i fly’

0.9

0.8 |

0.7

acceptance rate & correlation time: 100000 iterations, start at 0

wwwwwwwwwwwwwwwwwwwwwwwww
acceptance —— |
corr.time -+t |

06 | - 4 30
\

05 {

autocorrelation
acceptance rate
o
N
autocorrelation time

04k | 4 20

Eo\
03 ff | -
02 e 4 10

s
; . ]
01} e T—

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
parameter delta

0 :5 1‘0 1‘5 2‘0 2‘5 3‘0 1;5 40 45 5‘0 ;5 6‘0 é5 7‘0 7‘5 5‘0 8‘5 S;O 5;5 100
seperation integer

Figure 3: Left: correlation for different d ; Right: acceptance rate and autocorrelation time

for different d

point with decreasing action or similar action is high. Hence, if we have a slight
increase in action: AS < 1 = ¢ 25 ~ 1 — AS, which implies that the point is
accepted for most of the random variables r of the Metropolis Algorithm. However,
since d is so small, the configurations are highly correlated which leads to a large 74..

e d > 5: R decreases and 7, increases as d increases. This behaviour is due to the large
range of new proposals. It follows that probability of choosing a point with increasing
action is high. The consequence is the rejection of most of the proposals, and a low
acceptance rate. Since a configuration is repeated when the proposal is rejected,
this results in an increasing autocorrelation time, as subsequent configurations are
identical.

e 1 < d < 5: This region seems to be the appropriate range of d values for our sim-
ulations, as the autocorrelation length is small (configurations become independent
quickly) and the acceptance is between 20% — 50% (which ensures fast thermalisa-
tion).

Since we wish to choose d such that
1. The acceptance rate R is not too small and
2. The autocorrelation time 7,. is as small as possible

we conclude from this analysis that d ~ 2 is appropriate, as 7, &~ 2 and R is still over
50%. We fix d at 2 for all subsequent simulations.

For the computation of (22) by equation [[3, we average our function f(z) = 22 over the

points z; which are distributed according to the probability distribution 5l We know that
the points x; have taken on this equilibrium distribution when the system is thermalised.
Thus we must only start averaging after this point has been reached. Determination of
this point is not exact, and is based on examining a graph such as figure Pl Having done
so, we find our simulation to produce approximated values of (22) which agree well with
the analytical solution.
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3 Topological Actions

3.1 Motivation

Before going into the details of the model we have considered, it is useful to spend some
time on the motivation for topological theories.
Consider the following mesons 1, 7’ and K and their quark contentﬁ:

meson | composition | approx. mass

KY ds, sd 498MeV
K+ us 494MeV
K~ 51 494MeV

n u, dd, s 548MeV

/

n uti, dd , s5 958MeV

The approximation of the mass of the n and 7’ by using the quark-content of the K’s
and the mass of the u quark (m, ~ 1.7 — 3.3MeV) yields:

my = my = (mg) +2-my < 500MeV + 2 - 3.3MeV < 510MeV

With this estimation it is already difficult to justify the n mass, but by no means is it
possible to explain the huge mass of 1/. The quark model seemingly cannot explain this
puzzle. However, there is an amazing mechanism arising from topological effects of gluon
field configurations which is believed to provide the very large mass of the 1’ meson. We
may better understand the notion of topological effects by considering objects called in-
stantons. Mathematically, these are classical solutions to Yang-Mills equations minimising
the energy of the system with topologically nontrivial properties[5]. These properties are
described by a quantity called the topological charge, a quantum number related to non-
trivial homotopic properties of the system, which can intuitively be understood as a kind
of ‘winding number’ for the solution.

The result is that it is possible to explain the anomalous mass of the 1’ using these
topological considerations[6].
In addition, there exists the remarkable Witten-Veneziano formulaﬁ

f2
2N

(m% + mfﬂ — Qm%() = Xtop

which connects physical quantities (the masses of the mesons, mg, m,, m,y) with a purely
topological quantity, called the topological susceptibility Xiop, which measures the fluctua-
tion of the topological charge.

However, instead of looking at the very demanding model of QCD itself, this report will
continue with a simpler, but illustrative model. We will find that problems encountered in
much more sophisticated systems also appear in this one dimensional model. Therefore,
the analysis of these phenomena will be the main part of this section.

"The mesons are actually a superposition of these quarks.
8Here Ny is the number of quark flavours, and fr is a pion decay factor.
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3.2 The 1-d O(2) model

We start with an overview of the system in question. This is a 1-d O(2) spin system,
equivalent to the quantum mechanical rotor[7] and analytically solvable in the continuum
(see [7],p.5). 1-d refers to the fact that the system is fixed in space and O(2), the orthogonal
group of 2 x 2 matrices, to its rotational freedom. The basic principle of the rotor is a
particle with mass M constrained to move on a circle with radius R, having a moment of
inertia I = M R?. The coordinate degree of freedom we consider is ¢, the angle describing
the postion of the particle on the circle (or equivalently, the orientation of the spin). We
define g = % (where T is the ‘temperature’ of the system), which becomes the volume of
our time-lattice in its discretised form.

The Euclidean continuum action is

B
Skl = [ atge? (17)

We introduce the topological charge for this system as:

8
Q[@]=%/O dty € Z (18)

Using periodic boundary conditions, this charge is simply the number of complete revolu-
tions the rotor/spin makes in the specified time period, with an associated direction.

In addition, we list some necessary relations and quantities without further justifica-
tionﬁ

1. Define the topological susceptibility by x; := %

2. In the limit 8 — oo we get the connection: y; = ﬁ
3. Define the correlation lengt@ ¢ and obtain, again in the B — oo limit, the energy
gap between ground state and first excited state: £ = yoTEom Eo = 21 (see section 3.7.1

for derivation)

3.3 Computational Tasks

As already mentioned, the system under consideration can be equivalently regarded as a
spin variable ¢ € (—m,7]. We let the spin evolve in time (i.e. ¢ = ¢(t)) and want to
compute the action S[p| (see eqn. [T) between fixed time endpoints. A discrete time
lattice with lattice spacing a and number of timepoints Npqy, is 1ntroduce. such that
f = a - Npgp. Hence the continuous ¢(t) turns into a finite set of spin orientations
{ela-j) : 7 € {0,1,..., Npasr, — 1}}. Furthermore, it is necessary to discretise the time
derivative of . For simplicity, let ; := p(a - j):

path 1

S[@]:/O ‘P_>_ Z <p]

“We direct the interested reader to Bietenholz et al.[7], where this model is discussd in detail.

10Note: this is not related to the correlation functions over Monte Carlo iterations we discussed earlier.
This arises from correlation functions over physical, and not Monte Carlo time, and has physical meaning
for the system.

\We have already seen this procedure in section 1.1
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where one can choose a simple way of discretising the derivative by:

1
et+a) = pla)+ @) -a+ 5@(1&) -a®> + 0(a®) by Taylor Theorem
P SLLY (19)

Consequently, the discrete action has the following form:

Npath_l
I
Slel=5- 3 ((¢js1—¢;) mod 2n)? (20)
j=0

In the same way one gets for the topological charge (see eqn. [I8):

1 Npathfl
Q=5 > ((pjr1— p;) mod 27) € Z (21)
=0

Figure M provides examples demonstrating paths with different topological charges. A
longer time path had to be taken to demostrate the () = 3 case, as this charge is very
unlikely for short paths.

example path, Q =0

T o

example path, Q = 1

S A T

example path, Q =-1
I N

example path, Q =3

s - AN
N TSN - SN Y/ S

Figure 4: Examples of paths with various topological charges. Time goes from left to right,
with periodic boundary conditions. These are purely illustrative examples, as paths used
in simulations contain orders of magnitude more points.

Before continuing to the next section, some remarks about the implementation of the
model are appropriate: The main difference compared to the simple first system is the



13 3 TOPOLOGICAL ACTIONS

extension of the algorithm from a configuration consisting of a single point, to one given
by a path of points separated on a time lattice. This is realised as seen in figure
The algorithm now goes as follows:

1,0 X(i+1,-1) X(#1) x(+1,+1) il
| } — ' iteration i+1
new pOII‘IT
Metropolis proposal ,_;S_{i to i+1
algorithm —
: : a X ! | iteration i
x(i.0) X)X xGi) N
change in action depends on:
dS (i to i+1)=dS( x(i) , x(+1.) , X(i+1,}-1) , x(ij+1) )

Figure 5: realisation of Metropolis Algorithm for a path

1. Create a starting configuration: i.e. {x(0,5):j € {0,1,..., N}}

2. At the updating step for z(i,j) to (i + 1,j, the following configurations are
compared to each other:

= {x(i,0),2(4,1), ..., z(i,j — 1), 2(i,5),2(i,5 + 1), ...,x(i, N)}
x' = {x(i+1,0),z(+1,1),..,z(@+1,j—1),% z(i,j +1),...,2(i, N)}

Where x corresponds to the old configuration and x’ to the partially updated con-
figuration with the new proposal Z for the point x (i, 7).

3. Perform the normal decision step AS(x’,x), like in the zero dimensional case.

It is important to realise that we need not compute the full action for the configuration
at each step. Since the ‘interaction’ between neighbouring timepoints is of first order
(that is, only nearest neighbours contribute) AS(x’,x) depends only on three points -
x(i,7),x(i,7 + 1),z(i + 1,7 — 1) and the proposal. This local character in the action
enables us to perform the Metropolis algorithm orders of magnitude faster than having to
calculate the full action at each step.

3.4 Remarks: Statistics, Skipping and Boundary Conditions

As shown in previous sections, the autocorrelation time presents a problem for generating
truly independent configurations and hence for averaged quantities. Since we can only
consider independent configurations in our Monte Carlo averages, an autocorrelation time
greater than one reduces our effective statistics. An idea to overcome this problem would be
to increase the number of iterations Ny, by the order of 7,. to regain the desired number of
independent measurements. We define a fixed number of measurements for good statistical

"2 The notation z(i, j) refers to the spin variable o(t) at iteration step i, at time position j on the lattice.
13 At this point, all spins x(i + 1, k) for k € {0, — 1} have already been updated.



3 TOPOLOGICAL ACTIONS 14

continuum limit: beta 200, inertia 1.00 continuum limit: beta 100, inertia 0.25
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Figure 6: continuum limit: left graph: § = 200, I = 1,00 and d = 2; right graph: g = 100,
1=0,25and d=2

results, and vary the number of iterations depending on the autocorrelation length (we try
to choose leorr > Tac),

Niter = Nmeasure : lcorr

In our simulation, we only take into account every l..-th configuration for calculating the
observables, thus ensuring independent measurements.

However, this presents immediate computational problems, greatly increasing the time
it takes for simulations to run. For a simple system such as ours, this is not an unsur-
mountable problem, but for highly complex QCD calculations, this ‘brute force’ method is
not a viable solution. We must find a better way to reduce the autcorrelation time. One
method is with a special choice of boundary conditions, which we introduce now.

Formulae 20 and 2] indicate that it is necessary to deal with boundary conditions, since
we have a finite system. The boundary conditions affect especially terms like ¢_; and
N+ A discussion of two different types of boundary conditions (b.c.’s) is appropriate:

e Periodic: the principle requirement is po = ¢n,,,,,- This yields two statements:
P—1 = PNparn—1 N PNpas, = 0

e Open: According to Liischer et al.[8], open boundary conditions may be used to reduce
the problem of autocorrelation times. The idea is that g has no left neighbour, i.e.
there are no terms like (¢p — ¢—1) and, similarly, ¢ Npatn—1 has no right neighbour.

3.5 Topological Susceptibility

As we have mentioned earlier, one interesting observable of the spin-system is the topo-
logical susceptibility. In particular, we want to consider the continuum limit, which means
the following:

(@ — 0) A (Npgth, — +00) with the constraint: 3 = a - Npgup, = const

We ran the simulation for two different set of parameters ((I = 1,8 = 200), (I = 0.25,8 =
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100)) as can be seen in figure [l The left graph shows the results for open and periodic

boundary conditions with a fixed number of measurements of 100,000 and the right graph

with 10,000 measurements. Although both graphs in figure [6] seem to show different

behaviour, it is possible to rescale the a-axis as follows: going back to equation 0] to pick

up the coefficient of % For two sets of paramaters (I1,a1) and (Ig,az), it it possible to

transform one into the other, in the sense that we can rescale one to have the same a axis.
L D

1
= = a1 = — -a
ar  a I

The combined plot can be seen in fig. [ One observes a resemblance in the behaviour for

compare data (scaled) for inertia of 0,25 or 1,00

0.14 T T T T T T T T T T T T T T T T T T T
T 1=0,25: open b.c. (scaled) —+—
0.13 | 1=0,25: periodic b.c. (scaled) -+ -
T 1=0,25: continuum limit - -
0.12 1=1,00: open b.c. =+ _
1=1,00: periodic b.c.
0.11 | 1 1=1,00: continuum limit -- -- - - |

0.09 |- { * F : i

0.08 - B

0.07 - B

0.06 b

topological susceptibility

0.05 | ]
0.04 | - ]
0.03 | T ) .
ooz kb o+ TE T T T R e T e T ]

001 | ~ b
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Figure 7: continuum limit for (8 = 100,71 = 0,25) and (5 = 200, = 1,00) with scaled a
axis for I = 0,25

both parameter sets and roughly three different regions may be determined:
1. a € (1,2]: the continuum limit is not reached within the errors
2. a € (0.35,1]: the data is in agreement with the continuum limit

3. a € (0,0.35]: the errors are increasing rapidly and no definite conclusion for the
continuum limit can be reached.

The explanation for these behaviours is the following:

e The first region (1) is due to finite lattice spacing effects, that is, the manner in which
the derivative ¢ has been discretised (see equation [[9) produces lattice artifacts,
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deviations of order a. This explains the observed deviations from the continuum
value of ;.

e In the second region (2) the data agrees well with the theoretical expectation.

e Last, we focus on the region for the smallest lattice spacings (3). To understand the
behaviour there, it is necessary to look at the topological charge @ as a function of
iteration time at different lattice spacings (see figure []).

Examining figure [§ yields the following analysis:

e For relatively large lattice spacings (a > 0.5) the topological charge oscillates around
0 over iteration time. This is because one may expect that the topological charge is
Gaussian distributed. Indeed, this is reflected by the histogram in figure [Sg]

e For smaller lattice spacings (a ~ 0.05) one recognises a change in the graph. It is no
longer clearly distributed around zero. We begin to see the effects of autocorrelation
as the topological susceptibility ‘wanders’ for hundreds of thousands of iterations in
approximately the same direction.

e Finally, for very small spacings (a ~ 0.01) the topological charge is frozen. This
means that it is constant over several 100,000 or even 1,000,000 iteration steps.
This is seen most dramatically in figure Bel where the topological charge is fixed at
3 for over 15 million iterations. The reason for this lies in the action (equation 20,
where we observe a dependence of ~ % The consequence is that the change in action
becomes very large unless the change in the angle is very small. We then have that
new points are simultaneously unlikely to be accepted (which increases the effective
autocorrelation time as we have seen, thus effectively reducing our statistics), and
those which are accepted cannot significantly alter the spin configuration. Since
the (Q?) is a measure for the fluctuation of @, and @ is constant over millions of
iterations, we cannot get a reliable value of ;.

In addition, a more detailed discussion about open and periodic boundary conditions
is appropriate. As seen in figure [§], the freezing of the topological charge at small lattice
spacings is a serious problem for periodic b.c’s which is difficult to overcome. One idea
suggested by Liischer et al.[§], is to use the open boundary conditions we introduced above.
In the case of periodic boundary conditions one requires o = zy,,,,. This makes it difficult
to change to a configuration with a different () and leads to the freezing of the topological
charge. An intuitive explanation for this is to imagine trying to remove the twist in a
closed belt - impossible without first separating the ends. As Liischer et al. describe it,
open bounary conditions enable the topological charge to smoothly ‘flow’ in and out of
the system. The expectation for open b.c.’s is to obtain better results for smaller lattice
spacings and to extend the limit until which we can compute reliable values.

Indeed, if we compare the results for a = 0.01 between open and periodic boundary
conditions, the difference is remarkable. While the open b.c.’s display significant auto-
correlation effects, the topological susceptibility is not entirely frozen, as in the case for
periodic boundary conditions. We see the problem is, if not solved (we find open b.c.’s to
break down eventually in the continuum limit), then ameliorated by the choice of boundary
conditions.
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Figure 8: Topological charge as a function of iteration time for periodic b.c.’s (left) and
open b.c.’s (right) for three different lattice spacings. Below: histograms showing frequency
of topological charges for open boundary conditions.
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This development can also be seen in the histograms in figures [Bg} [Bh] 8l where the
frequency of the integer values of @) for open b.c.’s with different lattice spacings is diplayed.
On the left is the plot for the largest a and it shows a Gaussian-like distribution. This is
reasonable, as there is no external force acting on the system. However, going to smaller
a’s it seems that the normal distribution is broken. This clearly indicates that for this
lattice spacing there are not enough measurements to recover the underlying Gaussian
distribution. This is evidently due to the extremely long auto-correlation times.

3.6 Energy Gap
3.6.1 Derivation

We are interested in the energy gap between the ground state and the first excited state,
AFE = E; — Ey. We can relate this quantity to the moment of inertia, I, of the system,

recalling the earlier relation
1

€= PR 21 (22)

First, we obtain an analytical expression for the quantity AFE.

Consider the 2-point correlation function (or propagator), (q(t)g(0)) = I'(¢). It is im-
portant to emphasise that this is not the same correlation function as we have previously
been discussing with respect to the autocorrelation time, though they have formal similar-
ities. This correlator is calculated over a single path in physical time, while our previous
correlators are between configurations in Monte Carlo time. As we know from statistical
mechanics, the expectation value in the canonical ensemble is given by

e PH§(1)4(0)
tr <e‘BH>

This is equivalent to equation [[3] due to the duality we have established between the path
integral and the partition function.

(a(t)q(0)) = tr (23)

The operator ¢(t) can be written in the Schrodinger picture (recalling we are using
Euclidean space, so t — i7) using the time evolution operator, as

() = e ge " (24)
And so, taking the trace over energy eigenstates, our expectation value can be written as
Z;L.O:(] (n’eiHBetH(jeftH(ﬂn>

(a(t)q(0)) = s (25)

n=0

Where we have used the fact that

tr (e_BH) = Z(n\e_ﬁﬁ\m = Z e PEn (26)
n=0

n=0
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We insert another complete set of eigenstates between ¢ and et to get

S (nle” B 0H glmy (mle=H gln) 2, e E=0Eme=tEn (n|glm) (m|g|n)
Zn e_Enﬁ = Zn e_Enﬁ
(27)

Extracting a factor of e %0 from top and bottom lines, then rearranging the exponents
on the top yields

(a(t)q(0)) =

¥ € OO ) e ) gl 2

(a(D)a(0)) = = — (28)

{3 is the formal parameter giving the volume of our time crystal (recall § = Npatna), and
in taking the limit § — oo we extract the vacuum states. Only states for which F,, =0
remain, these being |m) = |0). We then get

(a(t)a(0)) =Y e~ F|(ng|0)? (29)

For t sufficiently large, the higher energy states decay away, and this simply becomes
(a(t)g(0)) = T(t) = e "1 F0)[(1]G|0)[* oc 74 (30)

Thus we can compute I'(¢) over a configuration path and calculate the energy gap through

L _10 I'(t+a)
AE-ﬁlLIr;o a1g<7f(t) > (31)

where a is of course our lattice spacing (the smallest time increment we can take).

correlators for different lattice spacings

3.6.2 Results e ‘ ‘ ‘ ‘ "o
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Figure 9: Correlation functions I'(t) = (q(t)q(0)) for differ-
ent values of the lattice spacing.
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Figures [Qb] and demonstrate the issue. For an overly large lattice spacing, not even
considering discretisation effects, we lack the precision required to properly observe the
exponential decay of the correlation function. For a lattice spacing of 5.00 for example,
we entirely miss it. We see in figure Qal how reducing the lattice spacing ‘fills in’ the gaps,
giving a better fit for the exponential. Thus, we cannot get reliable data for the energy gap
from overly large lattice spacings. We do not include the data for ¢ > 0.5 when calculating
the energy gap.

We now use equation BIl on our data to obtain the energy gap as a function of the
length, t. We notice several features in figure [I0

energy gap for different lattice spacings energy gap for lattice spacing 0.02
35 T T T T T T T T 35
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(a) Lattice spacings of 0.08, 0.10, 0.20, and 0.30. (b) For a = 0.02, errors are significant.

Figure 10: The energy gap as a function of the length ¢, demonstrating plateau behaviour
and errors growing with ¢. Different lattice spacings are used, with open boundary condi-
tions, and I fixed at 0.25.

e In the region t € (0,0.4), the energy gap decays. This is due to the presence of higher
energy levels as predicted by equation 29 which have not yet been suppressed. We
cannot use these data points to calculate AE.

e The energy gap then reaches a plateau. The value of this plateau is our desired value
for AE. By equation 22 since we use I = 0.25 here, the continuum limit value of
this plateau is 2.

e Statistical fluctuations become increasingly dominant as t increases, due to our cor-
relation functions approaching 0. This is reflected in the increasing errors for larger
t. While large lattice spacings are unsuitable for obtaining the energy gap, these
statistical limitations also prevent us from gaining useful information from overly
small spacings. The errors here for a = 0.2 are too large to determine the energy gap
reliably.

Least squares fitting[9)] is used on the plateau region to obtain the value of the energy
gap. The results for periodic and open boundary conditions are shown in figure [[1l1 The
systematic error from the determination of the beginning and end of the plateau, which is
highly subjective, is not taken into account. We see no significant difference between open
and periodic boundary conditions. Once again, large lattice spacings give deviations from
the continuum limit, and small spacings require better statistics to reduce errors.
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4 Improvements

4.1 Reducing the autocorrelation time

auto-correlation times: beta 200, inertia 1,00
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Figure 12: Comparing the effective autocorrelation time 7,. between boundary conditions

(open, periodic) and algorithms (Metropolis, cluster).

As mentioned in an earlier section, each path generated by our simulation is not entirely
independent of the previous steps. In a perfect Markov process, each point of the simulation
depends only on the previous point and is entirely independent of all others. That is, the

effective autocorrelation length 7, ~ 1.

Sadly this is not true in our case.

We find

a growth in the effective autocorrelation length with smaller lattice spacings consistent
with an exponential behaviour (figure [2a)). To maintain effective statistics of 10,000
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independent measurements with a lattice spacing of 0.04, we would require over 6 x 10°
iterations! This is too computationally expensive. The implementation of open boundary
conditions only marginally lifts the weight of this massive autocorrelation time.

We may use the Cluster Algorithm[11] to attempt to deal with this problem. This
algorithm replaces the Metropolis algorithm in our Monte Carlo process as a method of
updating our path configurations. It is of particular use in spin systems such as ours, but
so far cannot be used in gauge theories.

The basic idea is to form a ‘cluster’ within the configuration of similar spins, and to
update each spin in the cluster simultaneously. For our case, the algorithm may proceed
approximately as follows

1. A random complex number is chosen, r € C, and a random starting point in the
lattice, 1.

2. The link probability p; between point ¢ and point ¢ 4+ 1 is then calculated. This is
formed by looking at the projections of ¢; and ;11 on r. A random number between
0 and 1 is generated, and the point is added to the cluster if this number is lower
than p;.

3. The cluster expands until a point is rejected, and then the linking stops. One can
then go back to the starting point and proceed in an identical fashion, but instead
looking at ¢;_1, that is extending the cluster in the opposite direction.

4. Once the cluster is complete, a reflection algorithm is used on all points in the cluster.
This reflects each spin in r (one may imagine r as a vector in R?).

5. A new r is then chosen and the algorithm begins again.

It is important to include the random number in step 2, to enable the possibility of clusters
breaking up. For example, in the case of an Ising model where the spins can only take
on two values, without this random step the algorithm would simply serve to eventually
produce the trivial case of all spins aligned. Since we are interested in topological features,
this is less than ideal!

The advantage of the cluster algorithm is that it has greatly reduced effective autocor-
relation time. Figure [[2bl demonstrates this remarkable property. We find that for small
lattice spacings, the autocorrelation time actually decreases.

4.2 Reducing lattice artifacts - different discretisation

From section 3.2 we see that the discretisation we use for the derivative ¢ is of order a.
A better approximation to the continuum limit can be obtained by using a higher order
approximation to the derivative (See DeGrand[6], chapter 10). For example, we can use the
central difference approximation for the derivative of an arbitrary smooth function f(z),

X a) — r—a (Zz
flay = LEFDZTEZO iy @iy
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This is of order a? now. However, we can do better, if we take another discretisation

X a) — r — 4Q CL2
foa) = LH 2@ 20 gy 20

(@) + ...

We can then cancel the terms of order a? by forming f4(z) = (1/3)(4f] (x) — f5(z)), which
is now of order a*. Repeated application of this can further reduce finite lattice spacing
effects, at the cost of requiring additional points to calculate the derivative.

5 Conclusions

During the summer student project at DESY Zeuthen, we used lattice field theoretical
methods to investigate the behaviour of simple systems as well as the properties of the
Metropolis Algorithm. Therefore, a significant part of the time was spent with coding
simulations and data analysis aspects.

At first, we spent time on the theoretical foundations of the path integral and the con-
nection to statistical physics, introduced by the imaginary time formalism. Furthermore,
an introduction into Monte-Carlo integration was provided as well as the explanation of
the Metropolis Algorithm.

The first numerical experience was gained through the example of (z2) in the Gaussian-
like probability distribution. This gave insights into topics like thermalisation, choosing
appropriate parameters and autocorrelation effects. The advantage of the system lies in the
analytical solvability, which makes it easier to study effects of different parameter values.
On the other hand, it was clearly demonstrated that even for this system autocorrelation is
a serious issue, which needs to be taken into account if one wants to analyse more advanced
systems.

A less trivial system was introduced by the 1-d O(2) model which shows topological
effects and required the extension of the previously developed programs. Two interesting
quantities, the topological susceptibility x; and the energy gap AFE, were introduced and
computed. The continuum limit of x; displays the freezing of the topological charge and
the breakdown of the simulation for too small a lattice spacing. This freezing presents a
real issue in lattice QCD calculations of topological systems, so observing it in this simple
model is quite remarkable. Nevertheless, the simulation results agreed with the theoretical
predictions in the range of lattice spacings small enough to approximate the continuum
limit and large enough to avoid freezing of the topological charge.

The investigation of AF illustrates the theoretically predicted exponential decay of
the physical correlator for the effective energy gap. Consequently, the determination of
the energy gap was possible by fitting the plateau with an appropriate algorithm where,
however, the systematic effect of identification of plateaus was neglected. Noting this, we
find the results to be reasonable, in the sense that one sees the plateau at the appropriate
level but the final values of AFE and their errors encourage further investigation.

A last comment should be made about boundary conditions. It was suggested to use
open b.c.’s to overcome the problem of frozen topological charges observed in periodic
b.c.’s. It was possible to verify, to some extent, that this is indeed the case and one is able
to obtain reliable data for smaller lattice spacings. However, even this new approach is
ultimately limited by the same problems as the periodic b.c.’s.

In summary, we have investigated some of the methods of lattice QCD by simulating
relatively simple systems. These concepts are extended to real physical systems (as seen
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in the Witten-Veneziano formula) in real lattice QCD work. We hope that the findings
presented here, in particular the freezing of the topological charge and overcoming this and
massive autocorrelation times by the cluster algorithm, can help to alleviate the topological
charge freezing also observed within QCD. One interesting aspect of our work would be
to study the correlation between the freezing of the topological charge and the physical
observables, such as the energy gap. Such a study goes beyond the scope of this summer
student work however, but could be addressed in the future.
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