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tWe use methods of latti
e �eld theories to investigate a simple 1-dimensional spinsystem with topologi
al properties. We begin with an introdu
tion to the theoreti-
al foundations, in
luding the Feynman path integral, Monte Carlo methods and inparti
ular the Metropolis algorithm. The basi
 task of 
omputing the value of 〈x2〉in a Gaussian probability distribution is undertaken to introdu
e the methods, andto explain the problem of auto
orrelation times. Motivation is then provided for ourtopologi
al studies with a brief explanation of the role of χt, the topologi
al sus
ep-tibility, in explaining the anomalous mass of the η′ meson. We 
al
ulate χt for oursystem and 
ompare it to analyti
al results in the 
ontinuum limit. Auto
orrelatione�e
ts are found to be signi�
ant and freezing of the topologi
al 
harge is observed.Open boundary 
onditions are introdu
ed to ameliorate this problem. The energy gap

∆E = E1 − E0 is obtained and also examined in the 
ontinuum limit. Finally, wesuggest the 
luster algorithm to redu
e auto
orrelation e�e
ts and brie�y des
ribe analternative dis
retisation method to redu
e non-zero latti
e spa
ing issues.
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1 1 INTRODUCTION AND THEORY1 Introdu
tion and TheoryUsing theories on a latti
e - that is, formulating these theories on a (Eu
lidean) spa
e-timegrid - has been established as a most valuable tool in quantum �eld theory and statisti
alme
hani
s to analyse and understand physi
al systems.In parti
ular, latti
e methods have led to great su

ess in the non-perturbative se
torof quantum 
hromodynami
s, where exa
t solutions are not possible. Using massivelyparallel super
omputers, observables for 
omplex quark-gluon systems may be a

uratelydetermined and 
ompared with experimental �ndings.Motivated by these appli
ations, we introdu
e the theoreti
al foundations of the latti
e-based approa
h and apply it �rstly to a simple example, and then to a system with topolog-i
al properties. During our studies we also investigated the quantum harmoni
 os
illator,but the results are not in
luded in this report. We refer the interested reader to theedu
ational paper by Creutz and Freedman[1℄ for further dis
ussion of this system.1.1 The Feynman Path IntegralWe begin with a key theoreti
al 
omponent - the path integral. This quantum me
hani
alformalism uses the 
on
ept of a `sum over histories' to 
apture the dynami
al properties ofthe system. In 
ontrast to the 
anoni
al formalism, it does not require the use of operatorson the Hilbert spa
e. As we shall see, it has a natural relationship to dis
retised spa
e-time,so one should not be surprised to see its extensive use in latti
e-based theories.Before deriving the path integral, we �rst 
onsider the idea of the `sum over histories' togain some sense of the motivation for the approa
h. We begin with the 
lassi
al 
on
ept ofa single traje
tory between endpoints and extend it (in the quantum fashion), to in
ludeall possible paths. This is simply the 
ase for quantum me
hani
al pro
esses, where theamplitude is given by a sum over alternative histories. The key point is that while ea
hpath 
ontributes to the total amplitude, it 
ontributes at a di�erent phase. We see this inFeynman's original version of the `integral',
K(b, a) =

∑

paths

const e
i
~
S[q(t)] (1)where K(b, a)1 is the quantum me
hani
al amplitude to rea
h a state (b) from a state (a).If we a

ept this expression, and see that the phase is given by i/~S[q(t)], the 
lassi
allimit is retrieved as S ≫ ~. To see this more 
learly, we note that small variations arounda path giving an extremum in the a
tion (ie, a 
lassi
al path) will produ
e little 
hange inthe a
tion, and thus the phase will be approximately 
onstant. For `quantum paths', thesesmall variations produ
e huge �u
tuations in phase, 
ausing rapid os
illations between -1and 1 whi
h tend to 
an
el out the non-
lassi
al paths.1This quantity is also 
alled the `propagator', as we shall see.



1 INTRODUCTION AND THEORY 2We are interested in the propagator between two points, (ti, qi) and (tf , qf ) - the proba-bility amplitude for the system being in state (tf , qf ) having been in state (ti, qi). This isdenoted by 〈tfqf |tiqi〉, and is equivalent to K(tf , qf ; ti, qi) in equation 1.To 
al
ulate this quantity we split the time interval into N dis
rete sub-intervals, ea
hof width ǫ. We then have
ti = t0, tN = tf , ǫN = tf − ti (2)

Figure 1: The time axis is divided into dis
rete inter-vals, and the qj values, 
orresponding to q(tj), takevalues between −∞ and ∞. Image from [2℄.

Thus the 
onne
tion with lat-ti
e 
al
ulations is apparent. Thisformalism suits our methods verywell. We 
onsider that the systemhas to pass through ea
h time-point in the interval, su
h thatthe propagator be
omes a produ
tof in
remental propagators, wherethe spa
e-
oordinates in ea
h stepare variable.To en
orporate all paths in our
onsideration, we integrate spa
eat ea
h time point between −∞and ∞, while �xing the endpointsat qi and qf (see �gure 1.1). Math-emati
ally, this looks like
〈tfqf |tiqi〉 =

∫

. . .

∫ dq1dq2 . . . dqN−1〈tfqf |tN−1qN−1〉 . . . 〈tjqj|tj−1qj−1〉 . . . 〈t1q1|tiqi〉(3)We 
an write the element 〈tjqj|tj−1qj−1〉 using the time evolution operator,
|tjqj〉 = e

i
~
Ĥtj |q〉su
h that

〈tjqj|tj−1qj−1〉 = 〈qj |e−
i
~
Ĥ(tj−tj−1)|qj−1〉 = 〈qj|e−

i
~
ǫĤ |qj−1〉 (4)For a typi
al Hamiltonian, after inserting a 
omplete set of momentum states, we obtain

〈qj|e−
i
~
Ĥ(p̂,q̂)|qj−1〉 ≃

∫ dp
2π~

〈qj|p〉〈p|qj−1〉e−
i
~
H(p,qk) (5)We may use the fa
t that 〈qj |p〉 = eipqj to further simplify this expression. The Hamil-tonian fun
tion H(p, qj)

2 appears due to a 
hoi
e in where to insert the momentum basisstates. We 
ould equally have made a di�erent 
hoi
e and obtained H(p, qj−1). Sin
e these
hoi
es are in our 
ase arbitrary, a `middle ground' is 
hosen for the resulting expression.Ultimately in the 
ontinuum limit, these 
onsiderations are unimportant. Combining all2Note that the Hamiltonian is no longer an operator, but instead at this point a fun
tion of (p, qj),yielding a number.



3 1 INTRODUCTION AND THEORYof our bra
ket terms and 
olle
ting exponents in equation 5, we obtain that 〈tfqf |tiqi〉 isequal to
lim
ǫ→0

N→∞

∫

. . .

∫ dq1 . . . dqN−1
dp1
2π~

. . .
dpN
2π~

exp




i

~

N∑

j=1

[

pj(qj − qj−1)− ǫH

(

pj,
qj + qj−1

2

)]


(6)Examining the expression in the exponential, we note that by extra
ting a fa
tor of ǫ, andtaking the limit, we get
lim
ǫ→0

N→∞

i

~
ǫ

N∑

j=1

[

pj

(
qj − qj−1

ǫ

)

−H

(

pj,
qj + qj−1

2

)]

=
i

~

∫ tf

ti

dt (pq̇ −H(p, q))

=
i

~

∫ tf

ti

dtL =
i

~
S[q] (7)For Hamiltonians quadrati
 in the momentum, the integration over momenta is simple,and we arrive �nally at

〈tfqf |tiqi〉 ∝
∫

Dqe
i
~
S[q] (8)where ∫

Dq = lim
ǫ→0

N→∞

∫ dq1 . . . dqN−11.2 Relationship with Statisti
al Me
hani
sThe result we have obtained for the path integral is valid for Minkowski spa
e. While weknow that rapidly 
hanging phase fa
tors will tend to 
an
el out physi
ally improbablepaths, this e�e
t is only apparent after performing the 
al
ulation. Using a te
hnique
alled a `Wi
k rotation' we may immediately distinguish those paths whi
h do not 
on-tribute greatly to the propagator, while establishing an important relationship to statisti
alme
hani
s.A Wi
k rotation transforms a problem in Minkowski spa
e to one in Eu
lidean spa
eby moving to imaginary time via the substitution τ = it. After su
h a transformation, ourpath integral be
omes
I =

∫

Dqe−
1
~
SE (9)Clearly, unimportant paths are now exponentially suppressed. More interestingly, we seethe formal similarity with a Boltzmann fa
tor where ~ a
ts as a temperature. The ~ → 0(
lassi
al) 
ase, where quantum �u
tuations are insigni�
ant, is analogous to a T → 0
ase where statisti
al �u
tuations in a physi
al system are `frozen out'. Thus, quantumme
hani
s in imaginary time be
omes statisti
al physi
s in real time. This is the power ofthe Wi
k rotation.The 
onne
tion established here motivates the use of the a
tion for generating stateswith an appropriate distribution - this is the idea of `importan
e sampling', whi
h we useto perform Monte Carlo integrations.



1 INTRODUCTION AND THEORY 41.3 Monte-Carlo MethodsThe main problem in using the path integral formulation is that we have to evaluate theintegral over the phase spa
e PS . However, these integrals might not be analyti
allysolvable and therefore it is ne
essary to obtain numeri
al approximations. One suitablete
hnique is 
alled the Monte-Carlo Method or Monte-Carlo Integration. The purpose ofthis method is to approximate a de�nite integral using a �nite number of randomly sampledpoints. More spe
i�
ally, one wishes to make the approximation
∫

PS

f(x)Dx ≃
∑

f(xi) ·∆xi (10)where xi ∈ PS. The question is now how to 
hoose these points xi? Two possible waysare the following:
• Random Sampling: means that we 
hoose the points xi randomly a

ording to auniform distribution over the whole phase spa
e. This is problemati
 if, for example

PS is very large. In this 
ase a large number of points is needed to the 
over the wholespa
e. If it happens that not all regions of PS 
ontribute equally - for example, inthe 
ase of a highly peaked probability distribution - then a lot of integration pointswill be wasted on unimportant areas.
• Importan
e Sampling: is designed to over
ome this disadavntage. The idea is to gen-erate phase spa
e points xi whi
h are not totally random, but instead more denselydistributed in dominant regions of the phase spa
e.Let us now study the realisation of importan
e sampling in the 
ontent of path integrals. Asseen previously in the 
onne
tion to statisti
al physi
s, the a
tion S 
an be regarded, likea Boltzmann fa
tor, as the generator of a probability distribution P (x) ∼ e−S . Therefore,the expe
tation value of some observable A is, within the notation of statisti
al physi
s,

〈A〉 =
∫
A(x)e−S(x)Dx
∫
e−S(x)Dx

(11)In this 
ase, the normalised probability distribution3 is P (x) = e−S(x)
∫
e−S(x)Dx

, with ∫
P (x)Dx =

1. The idea is now to somehow generate points xj ∈ PS a

ording to this distribution
P (x), i.e.:

P (xj)Dx =
e−S(xj)Dx
∫
e−S(x)Dx

(12)Hen
e, the Monte Carlo estimate Ā, with points distributed in the above manner, of theexpe
tation value 〈A〉 is given by:
Ā =

1

N

N∑

i=1

A(xi) {xi ∈ PS : i ∈ {1, 2, ..., N}} (13)where N is the total number of points generated a

ording to the distribution above.3Re
alling that S(x) is the a
tion of our system, we see that this distribution will tend to sele
t morepoints whi
h minimise the a
tion - a physi
ally desirable result.



5 1 INTRODUCTION AND THEORY1.4 Metropolis AlgorithmWe have seen that importan
e sampling is the desired method to 
hoose points with anappropriate distribution for approximating physi
al quantities. However, the spe
i�
 im-plementation has to be dis
ussed in further detail. We need to know how to generate thesepoints. One realisation is the so-
alled Metropolis Algorithm whi
h will be the subje
t ofthis se
tion and is also the basis for all subsequent programming steps.The best way to explain the algorithm is pseudo 
ode:1. Let S(x) denote the a
tion of the system under 
onsideration, d a variable simulationparameter, and xi old point or starting point.2. Choose randomly (with uniform probability) the new point (proposal) x′i su
h that
x′i ∈ [xi − d, xi + d].3. Compute the di�eren
e in a
tion between the new and old `
on�guration'4,

∆S(x′i, xi) := S(x′i)− S(xi)4. The de
ision step is realised by the following:IF ∆S(x′i, xi) < 0 IF ∆S(x′i, xi) ≥ 0THEN a

ept x′i THEN randomly r ∈ [0, 1]IF ∆S(x′i, xi) > r IF ∆S(x′i, xi) ≤ rTHEN a

ept x′i THEN reje
t x′iThe term `a

epted' means that the proposal will be the starting point for the nextiteration step: xi+1 = x′i. `Reje
ted' means that in the next step we still have thesame old point, i.e. xi+1 = xi.An important point to realise is that we have to use the Metropolis algorithm several timesto �nd the appropriate sample of points {xj}. Another way of des
ribing this is to saythat ea
h time we apply the Metropolis algorithm to an old `
on�guration' xj we get anproposal x′j . This point is eventually a

epted (if it leads to a de
rease in a
tion or witha 
ertain probability if ∆S(x′j, xj) ≥ 0)5.After repeating this step several times we get a 
on�guration {xeq} whi
h is 
loser tothe desired equilibrium distribution P (x) in the sense that the distribution of the points
{xeq} resembles P (x) . This sample {xeq} 
an then be used to 
ompute the Monte Carloestimate for the expe
tation value.This 
an also be understood in physi
al terms. The relaxation of the 
on�gurationsinto equilibrium 
orresponds to thermalisation, be
ause the system starts at some 
hosenstarting 
on�guration and evolves over (iteration-) time into the equilibrium 
on�guration.This is analogous to the situation des
ribed above.4Here our 
on�guration 
onsists of a single point. Later, we 
onsider the 
omplete path of a parti
lewith spe
i�ed boundary 
onditions as a single 
on�guration.5This 
ondition enables the system to es
ape from lo
al minima in the a
tion. In statisti
al me
hani
s,it 
an be thought of as resulting from the �nite temperature of the system.



1 INTRODUCTION AND THEORY 61.5 CorrelationFor the later appli
ations, mostly in analysing and evaluating the reliability of our simula-tion data, we need to 
onsider some systemati
 e�e
ts due to the nature of the MetropolisAlgorithm. We speak of the 
orrelation (more spe
i�
ally auto
orrelation) between dif-ferent 
on�gurations. We 
an think of this as giving some measure of how related thedi�erent 
on�gurations are to ea
h other.We are aiming for a sample of 
on�gurations of the system su
h that these 
on�gura-tions are distributed a

ording to the desired probability distribution and also are inde-pendent of ea
h other. This independen
e 
ondition is important and ne
essary to obtaingood statisti
al results and to lose independen
e of the initial 
onditions.The design of the above algorithm suggests that we are dealing with an ideal Markovpro
ess. Markov pro
esses (or 
hains) are often used to model the 
on�gurations of a systemwithin the assumption of limited dependen
e. This means that su

essive 
on�gurations
an only depend on a �nite number of previous steps - ideally only the previous one.However, in the 
ase of the Metropolis algorithm, we �nd that the 
on�gurations alwayshave some residual dependen
e on previous states. A fa
tor in this is the 
hosen parameter
d, whi
h determines how qui
kly we 
an obtain an entirely new 
on�guration. As we shallsee, the 
hoi
e of d is not a trivial matter.Thus, we need to investigate the `auto
orrelation' of our 
on�gurations {x}j to have anidea of the extent of these residual e�e
ts, and to take them into a

ount while performingerror analysis.In general, the 
orrelation between two 
ontinuous fun
tions g, h : R → R is given bythe integral[3℄ Corr(g, h)(τ) := ∫ ∞

−∞

g(t+ τ) · h(t)dtWhi
h resembles the de�nition of the 
onvolution of g and h. Nevertheless, for dis
retesequen
es gk and hk (whi
h have to be periodi
 in N), the 
orrelation is given as:Corr(g, h)(j) := N−1∑

k=0

gk+j · hkHowever, the 
orrelation des
ribes how similar those two fun
tions or sequen
es are. Whi
hmeans that the 
orrelator is ideally zero if there is no 
onne
tion between the data. Onthe 
ontrary, we need to investigate the dependen
e of the data of itself. Therefore, we
ompute the 
orrelation of the �nite sequen
e {xj} with itself. Let us 
onsider for simpli
itya 1-dim. 
on�guration x with a given number of iterations N , i.e. j ∈ {1, 2, ..., N}. Sin
ewe do not have periodi
ity, we normalise the 
orrelation:
C(j) :=

1

N∗
j

·
k+j≤N
∑

k=1

xk+j · xkwhere N∗
j is the number of summations obeying k + j ≤ N for a given j ∈ N.As shown by Buendía[4℄6, we expe
t the auto
orrelation fun
tion for the Metropolis algo-6While this paper dis
usses the auto
orreation fun
tion for the Langevin algorithm, the prin
iple is thesame for the Metropolis algorithm.



7 2 AN INTRODUCTORY EXAMPLE...rithm to have an exponential de
ay of the form
C(t) ∼ e−

t
τac (14)Where τac is the so-
alled auto
orrelation time.1.6 General RemarksFor the implementation of the algorithm and all of the following systems we wrote twoindependent programs using either C or FORTRAN as the programming language. Theadvantage of this strategy is that it is possible to 
ross-
he
k results, avoid bugs andimprove the 
ode.2 An introdu
tory example...In order to get a
quainted with Monte Carlo methods, Metropolis Algorithm and Impor-tan
e Sampling, we 
onsider the following task:Compute the expe
tation value of x2 within the normalised probability distribution:

P (x) =
e−x2

∫∞

−∞
e−x2dx (15)and 
ompare the results with the analyti
al solution.2.1 Analyti
al SolutionThe expe
tation value of x2 is given as:

〈x2〉 :=
∫ ∞

−∞

x2 · P (x)dxLooking at the �rst part of the integral, and splitting the limits, we get
I =

∫ ∞

−∞

x2e−x2dx =

∫ ∞

0
x2e−x2dx

︸ ︷︷ ︸

t:=x2,x≥0

+

∫ 0

−∞

x2e−x2dx
︸ ︷︷ ︸

s:=x2,x<0

=
1

2

∫ ∞

0

√
te−tdt− 1

2

∫ o

∞

√
se−sds = ∫ ∞

0
t
3
2
−1e−tdt = Γ

(
3

2

)We now prove the following property of Gamma fun
tion Γ(z + 1) = z · Γ(z):
Γ(z + 1) =

∫ ∞

0
tz+1−1e−tdt = −tze−t|t=∞

t=0 + z

∫ ∞

0
tz−1e−tdtwhere lim

t→0
−tze−t = 0 and lim

t→∞
−tze−t = 0as tze−t = ez ln t−t → 0 as t → ∞Hen
e we get I = Γ

(
3
2

)
= 1

2Γ
(
1
2

). Furthermore, we know the value of the Gaussianintegral and 
an apply the same steps as above to obtain:
∫ ∞

−∞

e−x2dx = Γ

(
1

2

)

=

√
π

2Thus, the analyti
al solution is: 〈x2〉 = 1
2 .



2 AN INTRODUCTORY EXAMPLE... 82.2 Simulation ResultsThe simulation of this system requires only three parameters:
• d, determining the range of the proposal
• Niter, the number of iterations
• x0, the starting point
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Figure 2: Value x2 going into equilibrium for di�erentvalues of the in
rement d.

First, we look at the behaviourof x2 as fun
tion of the iterationtime with respe
t to di�erent val-ues of the in
rement d (see �g.2). As we 
an see, the valueof the parameter d 
learly in�u-en
es how fast the system ther-malises (settles into equilibrium)if we have a badly 
hosen startingpoint. This means that if we haveno idea about the equilibrium 
on-�guration (e.g. no analyti
al solu-tion) then we might want to takea large value of d to rea
h equilib-rium faster. On the other hand, ifwe look at the �u
tuations aroundthe analyti
al solution then we re-alise that overly large values of d lead to averages with large errors.Before the analysis of further results, it is ne
essary to de�ne the a

eptan
e rate R ofthe Metropolis Algorithm by:
R :=

number of a

epted proposalstotal number of proposals (16)The 
hoi
e of d is 
ru
ial, as seen above. In order the determine the appropriate value itis ne
essary to look at the auto
orrelation time τac and the a

eptan
e rate R as fun
tionsof d (see �gure 3).First, we fo
us on �gure 3a where the auto
orrelation fun
tion for di�erent d is shown.The most immediately apparent behaviour is the exponential de
ay, as predi
ted by equa-tion 14. To obtain τac from the simulation data we use the open sour
e program R withlibrary hadron and the uwerr fun
tion. Extra
ting the values of τac from the auto
orrela-tion fun
tions, we 
an 
ompare them and R as fun
tions of d in one graph (see �g. 3b).We observe three di�erent regions:
• d ≤ 1: The a

eptan
e rate rapidly approa
hes one, while the auto
orrelation timestrongly in
reases as d → 0. This suggests that one should avoid this region for thefollowing reason: due to the small range of proposals, the probability of randomlysele
ting a point whi
h is a

epted is high. In detail, the probability of 
hoosing a
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Figure 3: Left: 
orrelation for di�erent d ; Right: a

eptan
e rate and auto
orrelation timefor di�erent dpoint with de
reasing a
tion or similar a
tion is high. Hen
e, if we have a slightin
rease in a
tion: ∆S ≪ 1 ⇒ e−∆S ≈ 1 − ∆S, whi
h implies that the point isa

epted for most of the random variables r of the Metropolis Algorithm. However,sin
e d is so small, the 
on�gurations are highly 
orrelated whi
h leads to a large τac.
• d ≥ 5: R de
reases and τac in
reases as d in
reases. This behaviour is due to the largerange of new proposals. It follows that probability of 
hoosing a point with in
reasinga
tion is high. The 
onsequen
e is the reje
tion of most of the proposals, and a lowa

eptan
e rate. Sin
e a 
on�guration is repeated when the proposal is reje
ted,this results in an in
reasing auto
orrelation time, as subsequent 
on�gurations areidenti
al.
• 1 < d < 5: This region seems to be the appropriate range of d values for our sim-ulations, as the auto
orrelation length is small (
on�gurations be
ome independentqui
kly) and the a

eptan
e is between 20% − 50% (whi
h ensures fast thermalisa-tion).Sin
e we wish to 
hoose d su
h that1. The a

eptan
e rate R is not too small and2. The auto
orrelation time τac is as small as possiblewe 
on
lude from this analysis that d ≈ 2 is appropriate, as τac ≈ 2 and R is still over

50%. We �x d at 2 for all subsequent simulations.For the 
omputation of 〈x2〉 by equation 13, we average our fun
tion f(x) = x2 over thepoints xi whi
h are distributed a

ording to the probability distribution 15. We know thatthe points xi have taken on this equilibrium distribution when the system is thermalised.Thus we must only start averaging after this point has been rea
hed. Determination ofthis point is not exa
t, and is based on examining a graph su
h as �gure 2. Having doneso, we �nd our simulation to produ
e approximated values of 〈x2〉 whi
h agree well withthe analyti
al solution.
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al A
tions3.1 MotivationBefore going into the details of the model we have 
onsidered, it is useful to spend sometime on the motivation for topologi
al theories.Consider the following mesons η, η′ and K and their quark 
ontent7:meson 
omposition approx. mass
K0 ds̄ , sd̄ 498MeV
K+ us̄ 494MeV
K− sū 494MeV
η uū , dd̄ , ss̄ 548MeV
η′ uū , dd̄ , ss̄ 958MeVThe approximation of the mass of the η and η′ by using the quark-
ontent of the K'sand the mass of the u quark (mu ≈ 1.7 − 3.3MeV) yields:

mη ≈ mη′ ≈ 〈mK〉+ 2 ·mu ≤ 500MeV + 2 · 3.3MeV < 510MeVWith this estimation it is already di�
ult to justify the η mass, but by no means is itpossible to explain the huge mass of η′. The quark model seemingly 
annot explain thispuzzle. However, there is an amazing me
hanism arising from topologi
al e�e
ts of gluon�eld 
on�gurations whi
h is believed to provide the very large mass of the η′ meson. Wemay better understand the notion of topologi
al e�e
ts by 
onsidering obje
ts 
alled in-stantons. Mathemati
ally, these are 
lassi
al solutions to Yang-Mills equations minimisingthe energy of the system with topologi
ally nontrivial properties[5℄. These properties aredes
ribed by a quantity 
alled the topologi
al 
harge, a quantum number related to non-trivial homotopi
 properties of the system, whi
h 
an intuitively be understood as a kindof `winding number' for the solution.The result is that it is possible to explain the anomalous mass of the η′ using thesetopologi
al 
onsiderations[6℄.In addition, there exists the remarkable Witten-Veneziano formula8
f2
π

2Nf

(
m2

η +m2
η′ − 2m2

K

)
= χtopwhi
h 
onne
ts physi
al quantities (the masses of the mesons, mK , mη, mη′) with a purelytopologi
al quantity, 
alled the topologi
al sus
eptibility χtop, whi
h measures the �u
tua-tion of the topologi
al 
harge.However, instead of looking at the very demanding model of QCD itself, this report will
ontinue with a simpler, but illustrative model. We will �nd that problems en
ountered inmu
h more sophisti
ated systems also appear in this one dimensional model. Therefore,the analysis of these phenomena will be the main part of this se
tion.7The mesons are a
tually a superposition of these quarks.8Here Nf is the number of quark �avours, and fπ is a pion de
ay fa
tor.



11 3 TOPOLOGICAL ACTIONS3.2 The 1-d O(2) modelWe start with an overview of the system in question. This is a 1-d O(2) spin system,equivalent to the quantum me
hani
al rotor[7℄ and analyti
ally solvable in the 
ontinuum(see [7℄,p.5). 1-d refers to the fa
t that the system is �xed in spa
e and O(2), the orthogonalgroup of 2 × 2 matri
es, to its rotational freedom. The basi
 prin
iple of the rotor is aparti
le with mass M 
onstrained to move on a 
ir
le with radius R, having a moment ofinertia I = MR2. The 
oordinate degree of freedom we 
onsider is ϕ, the angle des
ribingthe postion of the parti
le on the 
ir
le (or equivalently, the orientation of the spin). Wede�ne β = 1
T
(where T is the `temperature' of the system), whi
h be
omes the volume ofour time-latti
e in its dis
retised form.The Eu
lidean 
ontinuum a
tion is

S [ϕ] =

∫ β

0
dtI

2
ϕ̇2 (17)We introdu
e the topologi
al 
harge for this system as:

Q [ϕ] =
1

2π

∫ β

0
dtϕ̇ ∈ Z (18)Using periodi
 boundary 
onditions, this 
harge is simply the number of 
omplete revolu-tions the rotor/spin makes in the spe
i�ed time period, with an asso
iated dire
tion.In addition, we list some ne
essary relations and quantities without further justi�
a-tion9:1. De�ne the topologi
al sus
eptibility by χt :=

<Q2>
β2. In the limit β → ∞ we get the 
onne
tion: χt =

1
4π2I3. De�ne the 
orrelation length10 ξ and obtain, again in the β → ∞ limit, the energygap between ground state and �rst ex
ited state: ξ = 1

E1−E0
= 2I (see se
tion 3.7.1for derivation)3.3 Computational TasksAs already mentioned, the system under 
onsideration 
an be equivalently regarded as aspin variable ϕ ∈ (−π, π]. We let the spin evolve in time (i.e. ϕ = ϕ(t)) and want to
ompute the a
tion S [ϕ] (see eqn. 17) between �xed time endpoints. A dis
rete timelatti
e with latti
e spa
ing a and number of timepoints Npath is introdu
ed11, su
h that

β = a · Npath. Hen
e the 
ontinuous ϕ(t) turns into a �nite set of spin orientations
{ϕ(a · j) : j ∈ {0, 1, ..., Npath − 1}}. Furthermore, it is ne
essary to dis
retise the timederivative of ϕ. For simpli
ity, let ϕj := ϕ(a · j):

S [ϕ] =

∫ β

0
dtI

2
ϕ̇2 → I

2

Npath−1
∑

j=0

ϕ̇2
j · a9We dire
t the interested reader to Bietenholz et al.[7℄, where this model is dis
ussd in detail.10Note: this is not related to the 
orrelation fun
tions over Monte Carlo iterations we dis
ussed earlier.This arises from 
orrelation fun
tions over physi
al, and not Monte Carlo time, and has physi
al meaningfor the system.11We have already seen this pro
edure in se
tion 1.1



3 TOPOLOGICAL ACTIONS 12where one 
an 
hoose a simple way of dis
retising the derivative by:
ϕ(t+ a) = ϕ(a) + ϕ̇(t) · a+

1

2
ϕ̈(t) · a2 +O(a3) by Taylor Theorem

⇒ ϕ̇j =
ϕj+1 − ϕj

a
+O(a) (19)Consequently, the dis
rete a
tion has the following form:

S [ϕ] =
I

2a

Npath−1
∑

j=0

((ϕj+1 − ϕj) mod 2π)2 (20)In the same way one gets for the topologi
al 
harge (see eqn. 18):
Q =

1

2π

Npath−1
∑

j=0

((ϕj+1 − ϕj) mod 2π) ∈ Z (21)Figure 4 provides examples demonstrating paths with di�erent topologi
al 
harges. Alonger time path had to be taken to demostrate the Q = 3 
ase, as this 
harge is veryunlikely for short paths.
example path, Q = 0

example path, Q = 1

example path, Q = -1

example path, Q = 3

Figure 4: Examples of paths with various topologi
al 
harges. Time goes from left to right,with periodi
 boundary 
onditions. These are purely illustrative examples, as paths usedin simulations 
ontain orders of magnitude more points.Before 
ontinuing to the next se
tion, some remarks about the implementation of themodel are appropriate: The main di�eren
e 
ompared to the simple �rst system is the



13 3 TOPOLOGICAL ACTIONSextension of the algorithm from a 
on�guration 
onsisting of a single point, to one givenby a path of points separated on a time latti
e. This is realised as seen in �gure 5.12The algorithm now goes as follows:

Figure 5: realisation of Metropolis Algorithm for a path1. Create a starting 
on�guration: i.e. {x(0, j) : j ∈ {0, 1, ..., N}}2. At the updating step for x(i, j) to x(i + 1, j)13, the following 
on�gurations are
ompared to ea
h other:
x := {x(i, 0), x(i, 1), ..., x(i, j − 1), x(i, j), x(i, j + 1), ..., x(i,N)}
x
′ := {x(i+ 1, 0), x(i + 1, 1), ..., x(i + 1, j − 1), x̃, x(i, j + 1), ..., x(i,N)}Where x 
orresponds to the old 
on�guration and x

′ to the partially updated 
on-�guration with the new proposal x̃ for the point x(i, j).3. Perform the normal de
ision step ∆S(x′,x), like in the zero dimensional 
ase.It is important to realise that we need not 
ompute the full a
tion for the 
on�gurationat ea
h step. Sin
e the `intera
tion' between neighbouring timepoints is of �rst order(that is, only nearest neighbours 
ontribute) ∆S(x′,x) depends only on three points -
x(i, j), x(i, j + 1), x(i + 1, j − 1) and the proposal. This lo
al 
hara
ter in the a
tionenables us to perform the Metropolis algorithm orders of magnitude faster than having to
al
ulate the full a
tion at ea
h step.3.4 Remarks: Statisti
s, Skipping and Boundary ConditionsAs shown in previous se
tions, the auto
orrelation time presents a problem for generatingtruly independent 
on�gurations and hen
e for averaged quantities. Sin
e we 
an only
onsider independent 
on�gurations in our Monte Carlo averages, an auto
orrelation timegreater than one redu
es our e�e
tive statisti
s. An idea to over
ome this problem would beto in
rease the number of iterations Niter by the order of τac to regain the desired number ofindependent measurements. We de�ne a �xed number of measurements for good statisti
al12The notation x(i, j) refers to the spin variable ϕ(t) at iteration step i, at time position j on the latti
e.13At this point, all spins x(i+ 1, k) for k ∈ {0, j − 1} have already been updated.
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Figure 6: 
ontinuum limit: left graph: β = 200, I = 1, 00 and d = 2; right graph: β = 100,
I = 0, 25 and d = 2results, and vary the number of iterations depending on the auto
orrelation length (we tryto 
hoose lcorr ≥ τac),

Niter = Nmeasure · lcorrIn our simulation, we only take into a

ount every lcorrth 
on�guration for 
al
ulating theobservables, thus ensuring independent measurements.However, this presents immediate 
omputational problems, greatly in
reasing the timeit takes for simulations to run. For a simple system su
h as ours, this is not an unsur-mountable problem, but for highly 
omplex QCD 
al
ulations, this `brute for
e' method isnot a viable solution. We must �nd a better way to redu
e the aut
orrelation time. Onemethod is with a spe
ial 
hoi
e of boundary 
onditions, whi
h we introdu
e now.Formulae 20 and 21 indi
ate that it is ne
essary to deal with boundary 
onditions, sin
ewe have a �nite system. The boundary 
onditions a�e
t espe
ially terms like ϕ−1 and
ϕNpath

. A dis
ussion of two di�erent types of boundary 
onditions (b.
.'s) is appropriate:
• Periodi
: the prin
iple requirement is ϕ0 = ϕNpath

. This yields two statements:
ϕ−1 := ϕNpath−1 ∧ ϕNpath

:= ϕ0

• Open: A

ording to Lüs
her et al.[8℄, open boundary 
onditions may be used to redu
ethe problem of auto
orrelation times. The idea is that ϕ0 has no left neighbour, i.e.there are no terms like (ϕ0 − ϕ−1) and, similarly, ϕNpath−1 has no right neighbour.3.5 Topologi
al Sus
eptibilityAs we have mentioned earlier, one interesting observable of the spin-system is the topo-logi
al sus
eptibility. In parti
ular, we want to 
onsider the 
ontinuum limit, whi
h meansthe following:
(a → 0) ∧ (Npath → +∞) with the 
onstraint: β = a ·Npath = constWe ran the simulation for two di�erent set of parameters ((I = 1, β = 200), (I = 0.25, β =
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100)) as 
an be seen in �gure 6. The left graph shows the results for open and periodi
boundary 
onditions with a �xed number of measurements of 100, 000 and the right graphwith 10, 000 measurements. Although both graphs in �gure 6 seem to show di�erentbehaviour, it is possible to res
ale the a-axis as follows: going ba
k to equation 20 to pi
kup the 
oe�
ient of I

2a . For two sets of paramaters (I1, a1) and (I2, a2), it it possible totransform one into the other, in the sense that we 
an res
ale one to have the same a axis.
I1
a1

=
I2
a2

⇒ a1 =
I1
I2

· a2The 
ombined plot 
an be seen in �g. 7. One observes a resemblan
e in the behaviour for
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Figure 7: 
ontinuum limit for (β = 100, I = 0, 25) and (β = 200, I = 1, 00) with s
aled aaxis for I = 0, 25both parameter sets and roughly three di�erent regions may be determined:1. a ∈ (1, 2]: the 
ontinuum limit is not rea
hed within the errors2. a ∈ (0.35, 1]: the data is in agreement with the 
ontinuum limit3. a ∈ (0, 0.35]: the errors are in
reasing rapidly and no de�nite 
on
lusion for the
ontinuum limit 
an be rea
hed.The explanation for these behaviours is the following:
• The �rst region (1) is due to �nite latti
e spa
ing e�e
ts, that is, the manner in whi
hthe derivative ϕ̇ has been dis
retised (see equation 19) produ
es latti
e artifa
ts,



3 TOPOLOGICAL ACTIONS 16deviations of order a. This explains the observed deviations from the 
ontinuumvalue of χt.
• In the se
ond region (2) the data agrees well with the theoreti
al expe
tation.
• Last, we fo
us on the region for the smallest latti
e spa
ings (3). To understand thebehaviour there, it is ne
essary to look at the topologi
al 
harge Q as a fun
tion ofiteration time at di�erent latti
e spa
ings (see �gure 8).Examining �gure 8 yields the following analysis:
• For relatively large latti
e spa
ings (a ≥ 0.5) the topologi
al 
harge os
illates around

0 over iteration time. This is be
ause one may expe
t that the topologi
al 
harge isGaussian distributed. Indeed, this is re�e
ted by the histogram in �gure 8g.
• For smaller latti
e spa
ings (a ≈ 0.05) one re
ognises a 
hange in the graph. It is nolonger 
learly distributed around zero. We begin to see the e�e
ts of auto
orrelationas the topologi
al sus
eptibility `wanders' for hundreds of thousands of iterations inapproximately the same dire
tion.
• Finally, for very small spa
ings (a ≈ 0.01) the topologi
al 
harge is frozen. Thismeans that it is 
onstant over several 100, 000 or even 1, 000, 000 iteration steps.This is seen most dramati
ally in �gure 8e, where the topologi
al 
harge is �xed at3 for over 15 million iterations. The reason for this lies in the a
tion (equation 20),where we observe a dependen
e of ∼ 1

a
. The 
onsequen
e is that the 
hange in a
tionbe
omes very large unless the 
hange in the angle is very small. We then have thatnew points are simultaneously unlikely to be a

epted (whi
h in
reases the e�e
tiveauto
orrelation time as we have seen, thus e�e
tively redu
ing our statisti
s), andthose whi
h are a

epted 
annot signi�
antly alter the spin 
on�guration. Sin
ethe 〈Q2〉 is a measure for the �u
tuation of Q, and Q is 
onstant over millions ofiterations, we 
annot get a reliable value of χt.In addition, a more detailed dis
ussion about open and periodi
 boundary 
onditionsis appropriate. As seen in �gure 8, the freezing of the topologi
al 
harge at small latti
espa
ings is a serious problem for periodi
 b.
's whi
h is di�
ult to over
ome. One ideasuggested by Lüs
her et al.[8℄, is to use the open boundary 
onditions we introdu
ed above.In the 
ase of periodi
 boundary 
onditions one requires x0 = xNpath

. This makes it di�
ultto 
hange to a 
on�guration with a di�erent Q and leads to the freezing of the topologi
al
harge. An intuitive explanation for this is to imagine trying to remove the twist in a
losed belt - impossible without �rst separating the ends. As Lüs
her et al. des
ribe it,open bounary 
onditions enable the topologi
al 
harge to smoothly `�ow' in and out ofthe system. The expe
tation for open b.
.'s is to obtain better results for smaller latti
espa
ings and to extend the limit until whi
h we 
an 
ompute reliable values.Indeed, if we 
ompare the results for a = 0.01 between open and periodi
 boundary
onditions, the di�eren
e is remarkable. While the open b.
.'s display signi�
ant auto-
orrelation e�e
ts, the topologi
al sus
eptibility is not entirely frozen, as in the 
ase forperiodi
 boundary 
onditions. We see the problem is, if not solved (we �nd open b.
.'s tobreak down eventually in the 
ontinuum limit), then ameliorated by the 
hoi
e of boundary
onditions.
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harge as a fun
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.'s (left) andopen b.
.'s (right) for three di�erent latti
e spa
ings. Below: histograms showing frequen
yof topologi
al 
harges for open boundary 
onditions.



3 TOPOLOGICAL ACTIONS 18This development 
an also be seen in the histograms in �gures 8g, 8h, 8i where thefrequen
y of the integer values of Q for open b.
.'s with di�erent latti
e spa
ings is diplayed.On the left is the plot for the largest a and it shows a Gaussian-like distribution. This isreasonable, as there is no external for
e a
ting on the system. However, going to smaller
a's it seems that the normal distribution is broken. This 
learly indi
ates that for thislatti
e spa
ing there are not enough measurements to re
over the underlying Gaussiandistribution. This is evidently due to the extremely long auto-
orrelation times.3.6 Energy Gap3.6.1 DerivationWe are interested in the energy gap between the ground state and the �rst ex
ited state,
∆E = E1 − E0. We 
an relate this quantity to the moment of inertia, I, of the system,re
alling the earlier relation

ξ =
1

E1 − E0
= 2I (22)First, we obtain an analyti
al expression for the quantity ∆E.Consider the 2-point 
orrelation fun
tion (or propagator), 〈q(t)q(0)〉 = Γ(t). It is im-portant to emphasise that this is not the same 
orrelation fun
tion as we have previouslybeen dis
ussing with respe
t to the auto
orrelation time, though they have formal similar-ities. This 
orrelator is 
al
ulated over a single path in physi
al time, while our previous
orrelators are between 
on�gurations in Monte Carlo time. As we know from statisti
alme
hani
s, the expe
tation value in the 
anoni
al ensemble is given by

〈q(t)q(0)〉 = tr




e−βĤ q̂(t)q̂(0)

tr
(

e−βĤ
)



 (23)This is equivalent to equation 13 due to the duality we have established between the pathintegral and the partition fun
tion.The operator q̂(t) 
an be written in the S
hrödinger pi
ture (re
alling we are usingEu
lidean spa
e, so t → iτ) using the time evolution operator, as
q̂(t) = etĤ q̂e−tĤ (24)And so, taking the tra
e over energy eigenstates, our expe
tation value 
an be written as

〈q(t)q(0)〉 =
∑∞

n=0〈n|e−ĤβetĤ q̂e−tĤ q̂|n〉
∑∞

n=0 e
−Enβ

(25)Where we have used the fa
t that
tr
(

e−βĤ
)

=

∞∑

n=0

〈n|e−βĤ |n〉 =
∞∑

n=0

e−βEn (26)



19 3 TOPOLOGICAL ACTIONSWe insert another 
omplete set of eigenstates between q̂ and e−tĤ to get
〈q(t)q(0)〉 =

∑

n,m〈n|e−(β−t)Ĥ q̂|m〉〈m|e−tĤ q̂|n〉
∑

n e
−Enβ

=

∑

n,m e−(β−t)Eme−tEn〈n|q̂|m〉〈m|q̂|n〉
∑

n e
−Enβ (27)Extra
ting a fa
tor of e−βE0 from top and bottom lines, then rearranging the exponentson the top yields

〈q(t)q(0)〉 =
∑

n,m e−(β−t)(Em−E0)e−t(En−E0)|〈n|q̂|m〉|2

1 + e−βE1 + e−βE2 + . . .
(28)

β is the formal parameter giving the volume of our time 
rystal (re
all β = Npatha), andin taking the limit β → ∞ we extra
t the va
uum states. Only states for whi
h Em = 0remain, these being |m〉 = |0〉. We then get
〈q(t)q(0)〉 =

∑

n

e−t(En−E0)|〈n|q̂|0〉|2 (29)For t su�
iently large, the higher energy states de
ay away, and this simply be
omes
〈q(t)q(0)〉 = Γ(t) = e−t(E1−E0)|〈1|q̂|0〉|2 ∝ e−t∆E (30)Thus we 
an 
ompute Γ(t) over a 
on�guration path and 
al
ulate the energy gap through

∆E = lim
β→∞

−1

a
log

(
Γ(t+ a)

Γ(t)

) (31)where a is of 
ourse our latti
e spa
ing (the smallest time in
rement we 
an take).3.6.2 Results
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reasing the latti
e spa
ingshows a 
loser resemblan
e to theexponential-like de
ay.Figure 9: Correlation fun
tions Γ(t) = 〈q(t)q(0)〉 for di�er-ent values of the latti
e spa
ing.

Figure 9 shows the resultsfor the fun
tions Γ(t) =
〈q(t)q(0)〉 (where q(t) is
ϕ(t)), for di�erent values ofthe latti
e spa
ing. The xaxis is s
aled by the lat-ti
e spa
ings su
h that ea
h`length' t (number of latti
epoints) 
orresponds to thesame physi
al length. Be-yond systemati
 or statisti-
al deviations, the fun
tionis found as we expe
t not todepend on the latti
e spa
-ing. Figure 9a best demon-strates this.However, we must still
onsider the latti
e spa
ingwhile seeking the energy gap.



3 TOPOLOGICAL ACTIONS 20Figures 9b and 9
 demonstrate the issue. For an overly large latti
e spa
ing, not even
onsidering dis
retisation e�e
ts, we la
k the pre
ision required to properly observe theexponential de
ay of the 
orrelation fun
tion. For a latti
e spa
ing of 5.00 for example,we entirely miss it. We see in �gure 9a how redu
ing the latti
e spa
ing `�lls in' the gaps,giving a better �t for the exponential. Thus, we 
annot get reliable data for the energy gapfrom overly large latti
e spa
ings. We do not in
lude the data for a > 0.5 when 
al
ulatingthe energy gap.We now use equation 31 on our data to obtain the energy gap as a fun
tion of thelength, t. We noti
e several features in �gure 10.
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(b) For a = 0.02, errors are signi�
ant.Figure 10: The energy gap as a fun
tion of the length t, demonstrating plateau behaviourand errors growing with t. Di�erent latti
e spa
ings are used, with open boundary 
ondi-tions, and I �xed at 0.25.
• In the region t ∈ (0, 0.4), the energy gap de
ays. This is due to the presen
e of higherenergy levels as predi
ted by equation 29 whi
h have not yet been suppressed. We
annot use these data points to 
al
ulate ∆E.
• The energy gap then rea
hes a plateau. The value of this plateau is our desired valuefor ∆E. By equation 22, sin
e we use I = 0.25 here, the 
ontinuum limit value ofthis plateau is 2.
• Statisti
al �u
tuations be
ome in
reasingly dominant as t in
reases, due to our 
or-relation fun
tions approa
hing 0. This is re�e
ted in the in
reasing errors for larger

t. While large latti
e spa
ings are unsuitable for obtaining the energy gap, thesestatisti
al limitations also prevent us from gaining useful information from overlysmall spa
ings. The errors here for a = 0.2 are too large to determine the energy gapreliably.Least squares �tting[9℄ is used on the plateau region to obtain the value of the energygap. The results for periodi
 and open boundary 
onditions are shown in �gure 11. Thesystemati
 error from the determination of the beginning and end of the plateau, whi
h ishighly subje
tive, is not taken into a

ount. We see no signi�
ant di�eren
e between openand periodi
 boundary 
onditions. On
e again, large latti
e spa
ings give deviations fromthe 
ontinuum limit, and small spa
ings require better statisti
s to redu
e errors.
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Figure 11: Results from�tting the energy gapplateau to a straight line,for various latti
e spa
-ings. I is �xed at 0.25.Systemati
 errors fromplateau determininationare negle
ted.4 Improvements4.1 Redu
ing the auto
orrelation time - the 
luster algorithm
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tive auto
orrelation time as a fun
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e spa
ing. In
reased skipping is used at lower latti
e spa
-ings, so the true auto
orrelation times are orders of magnitudehigher. We see divergen
e of τac for a → 0. At small spa
ings,open boundary 
onditions show slightly redu
ed τac.
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(b) Comparison of auto
orrelation times usingthe Metropolis algorithm and the 
luster algo-rithm. While τac diverges for Metropolis atsmall latti
e spa
ings, it de
reases in the 
lus-ter algorithm. Figure from [10℄.Figure 12: Comparing the e�e
tive auto
orrelation time τac between boundary 
onditions(open, periodi
) and algorithms (Metropolis, 
luster).As mentioned in an earlier se
tion, ea
h path generated by our simulation is not entirelyindependent of the previous steps. In a perfe
t Markov pro
ess, ea
h point of the simulationdepends only on the previous point and is entirely independent of all others. That is, thee�e
tive auto
orrelation length τint ≃ 1. Sadly this is not true in our 
ase. We �nda growth in the e�e
tive auto
orrelation length with smaller latti
e spa
ings 
onsistentwith an exponential behaviour (�gure 12a). To maintain e�e
tive statisti
s of 10,000



4 IMPROVEMENTS 22independent measurements with a latti
e spa
ing of 0.04, we would require over 6 × 109iterations! This is too 
omputationally expensive. The implementation of open boundary
onditions only marginally lifts the weight of this massive auto
orrelation time.We may use the Cluster Algorithm[11℄ to attempt to deal with this problem. Thisalgorithm repla
es the Metropolis algorithm in our Monte Carlo pro
ess as a method ofupdating our path 
on�gurations. It is of parti
ular use in spin systems su
h as ours, butso far 
annot be used in gauge theories.The basi
 idea is to form a `
luster' within the 
on�guration of similar spins, and toupdate ea
h spin in the 
luster simultaneously. For our 
ase, the algorithm may pro
eedapproximately as follows1. A random 
omplex number is 
hosen, r ∈ C, and a random starting point in thelatti
e, i.2. The link probability pl between point i and point i + 1 is then 
al
ulated. This isformed by looking at the proje
tions of ϕi and ϕi+1 on r. A random number between0 and 1 is generated, and the point is added to the 
luster if this number is lowerthan pl.3. The 
luster expands until a point is reje
ted, and then the linking stops. One 
anthen go ba
k to the starting point and pro
eed in an identi
al fashion, but insteadlooking at ϕi−1, that is extending the 
luster in the opposite dire
tion.4. On
e the 
luster is 
omplete, a re�e
tion algorithm is used on all points in the 
luster.This re�e
ts ea
h spin in r (one may imagine r as a ve
tor in R
2).5. A new r is then 
hosen and the algorithm begins again.It is important to in
lude the random number in step 2, to enable the possibility of 
lustersbreaking up. For example, in the 
ase of an Ising model where the spins 
an only takeon two values, without this random step the algorithm would simply serve to eventuallyprodu
e the trivial 
ase of all spins aligned. Sin
e we are interested in topologi
al features,this is less than ideal!The advantage of the 
luster algorithm is that it has greatly redu
ed e�e
tive auto
or-relation time. Figure 12b demonstrates this remarkable property. We �nd that for smalllatti
e spa
ings, the auto
orrelation time a
tually de
reases.4.2 Redu
ing latti
e artifa
ts - di�erent dis
retisationFrom se
tion 3.2 we see that the dis
retisation we use for the derivative ϕ̇ is of order a.A better approximation to the 
ontinuum limit 
an be obtained by using a higher orderapproximation to the derivative (See DeGrand[6℄, 
hapter 10). For example, we 
an use the
entral di�eren
e approximation for the derivative of an arbitrary smooth fun
tion f(x),

f ′
1(x) =

f(x+ a)− f(x− a)

2a
= f ′(x) +

a2

6
f ′′′(x) + . . .



23 5 CONCLUSIONSThis is of order a2 now. However, we 
an do better, if we take another dis
retisation
f ′
2(x) =

f(x+ 2a)− f(x− 2a)

4a
= f ′(x) +

2a2

3
f ′′′(x) + . . .We 
an then 
an
el the terms of order a2 by forming f ′

3(x) = (1/3)(4f ′
1(x)− f ′

2(x)), whi
his now of order a4. Repeated appli
ation of this 
an further redu
e �nite latti
e spa
inge�e
ts, at the 
ost of requiring additional points to 
al
ulate the derivative.5 Con
lusionsDuring the summer student proje
t at DESY Zeuthen, we used latti
e �eld theoreti
almethods to investigate the behaviour of simple systems as well as the properties of theMetropolis Algorithm. Therefore, a signi�
ant part of the time was spent with 
odingsimulations and data analysis aspe
ts.At �rst, we spent time on the theoreti
al foundations of the path integral and the 
on-ne
tion to statisti
al physi
s, introdu
ed by the imaginary time formalism. Furthermore,an introdu
tion into Monte-Carlo integration was provided as well as the explanation ofthe Metropolis Algorithm.The �rst numeri
al experien
e was gained through the example of 〈x2〉 in the Gaussian-like probability distribution. This gave insights into topi
s like thermalisation, 
hoosingappropriate parameters and auto
orrelation e�e
ts. The advantage of the system lies in theanalyti
al solvability, whi
h makes it easier to study e�e
ts of di�erent parameter values.On the other hand, it was 
learly demonstrated that even for this system auto
orrelation isa serious issue, whi
h needs to be taken into a

ount if one wants to analyse more advan
edsystems.A less trivial system was introdu
ed by the 1-d O(2) model whi
h shows topologi
ale�e
ts and required the extension of the previously developed programs. Two interestingquantities, the topologi
al sus
eptibility χt and the energy gap ∆E, were introdu
ed and
omputed. The 
ontinuum limit of χt displays the freezing of the topologi
al 
harge andthe breakdown of the simulation for too small a latti
e spa
ing. This freezing presents areal issue in latti
e QCD 
al
ulations of topologi
al systems, so observing it in this simplemodel is quite remarkable. Nevertheless, the simulation results agreed with the theoreti
alpredi
tions in the range of latti
e spa
ings small enough to approximate the 
ontinuumlimit and large enough to avoid freezing of the topologi
al 
harge.The investigation of ∆E illustrates the theoreti
ally predi
ted exponential de
ay ofthe physi
al 
orrelator for the e�e
tive energy gap. Consequently, the determination ofthe energy gap was possible by �tting the plateau with an appropriate algorithm where,however, the systemati
 e�e
t of identi�
ation of plateaus was negle
ted. Noting this, we�nd the results to be reasonable, in the sense that one sees the plateau at the appropriatelevel but the �nal values of ∆E and their errors en
ourage further investigation.A last 
omment should be made about boundary 
onditions. It was suggested to useopen b.
.'s to over
ome the problem of frozen topologi
al 
harges observed in periodi
b.
.'s. It was possible to verify, to some extent, that this is indeed the 
ase and one is ableto obtain reliable data for smaller latti
e spa
ings. However, even this new approa
h isultimately limited by the same problems as the periodi
 b.
.'s.In summary, we have investigated some of the methods of latti
e QCD by simulatingrelatively simple systems. These 
on
epts are extended to real physi
al systems (as seen



REFERENCES 24in the Witten-Veneziano formula) in real latti
e QCD work. We hope that the �ndingspresented here, in parti
ular the freezing of the topologi
al 
harge and over
oming this andmassive auto
orrelation times by the 
luster algorithm, 
an help to alleviate the topologi
al
harge freezing also observed within QCD. One interesting aspe
t of our work would beto study the 
orrelation between the freezing of the topologi
al 
harge and the physi
alobservables, su
h as the energy gap. Su
h a study goes beyond the s
ope of this summerstudent work however, but 
ould be addressed in the future.A
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