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1 Introduction

The study of top quarks produced at the Large Hadron Collider (LHC) provides validation
of the Standard Model (SM) and could play an important role in the discovery of new
physics. Within the SM, the production of top anti-top pairs (tt̄) is an important back-
ground in searches for the Higgs boson since this is likely to couple to the very massive
top quark. In addition, the study of tt̄ events may provide evidence for new physics that
modifies the production and/or decay of top quarks. High energy events, like the ones at
LHC, may produce tt̄ pairs with an invariant mass that is much higher than the combined
mass of the quarks. This will lead to events where the decay products of a top quark are
boosted in the direction of flight of this quark, being detected in areas of the experiment
that are close together. To find tt̄ events, an electron or a muon is needed as a signature.
It is necessary to find methods to separate electrons from close-by jets created by boosted
tops, even if they are overlapping. The identification cuts used for these electrons have to
be studied and improved.

In this report we present the analysis we did to calculate the efficiency and scale factor
of the tight identification cut for ∆R < 0.4 using the Z → e+e− decay. The efficiency of
an identification cut refers to the ability of a certain set of selections to accurately identify
an object, in our case, an electron. This is done via the tag and probe method which
consists of selecting a well identified electron and pairing it first with a candidate electron
at container level and then with a candidate electron that passes the identification cut and
finally, the outcome of this two processes is compared. The scale factor is the comparison
of the efficiency of the identification cut when calculated with data and when calculated
with a Monte Carlo simulation. The purpose of calculating the scale factor is making the
Monte Carlo simulations look more like real data.

In the next section we will introduce the physics of the top quark as a motivation
for our analysis. Then we briefly present the LHC and some information concerning the
ATLAS experiment and the ATLAS detector. In section 4 we discuss the way in which
electrons are reconstructed in the detector. After that we introduce the event on which our
analysis is based and explain with more detail the tag and probe method mentioned above.
In section 6 we present two different variables used to calculate efficiencies; the invariant
mass of the pair of electrons and the isolation variable. We compare the results for the
number of events obtained with these two variables and after observing their agreement
proceed to our analysis using the isolation variable. Using it, we calculate the efficiencies
and scale factor for ∆R < 0.4 and estimate the statistical and systematic uncertainties.

Natural units will be used for this report, setting ~ = c = 1.

2 Motivation and Goals

2.1 Top Physics

The top quark has a mass of around mt ≈ 173 GeV and a life time of the order of
τ ≈ 10−25 s [1]. This time is too short for the top to hadronize, but it will decay into
a bottom quark and a W boson. This boson will decay in a pair of light quarks, qq̄ or a
charged lepton and neutrino pair l±νl. Quarks hadronize under the strong force. Their
energy and momentum will be distributed among arising hadrons and form a large shower
in the calorimeter, a jet.

Physics beyond the Standard Model is expected to be observed at higher energy scales
than the mass of now known particles. For example, there may be a new gauge boson
with a mass in the order of TeV that has otherwise similar properties to the Z boson and
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is therefore called Z ′. This boson could decay into the heaviest quarks, a tt̄ pair. Such an
event will be seen as a peak in the invariant mass plot of the top pair and because there
is no particle in the Standard Model that is heavy enough to decay into top quarks, it is
a sign for a Z ′ or another tt̄ resonance. Using the decay of the W bosons, one classifies
such an event as dileptonic, when both W bosons decay into a l±νl pair, as semileptonic
when one decays in such a pair and one into quarks, and as hadronic when there are only
quarks in the final state. In our case, to select a tt̄ event we want a semileptonic event like
in Figure 1. There we have a charged lepton, a neutrino and four jets, two from b quarks
and two from a W boson, in the final state. The charged lepton is used to tag the event.
The four jets, one of those b-tagged1, are needed to calculate the invariant mass of the
event. Also, one can calculate the missing energy transverse to the beam pipe that the
neutrino carries away, because there must be energy conservation in this transverse plane.
The variable of missing transverse energy Emiss

T describes the amount of energy missing to
reach energy conservation. Events with only jets are harder to reconstruct because they
have a high QCD background. Events with two charged leptons can be reconstructed best
but the branching ratio of a top in such events is not high enough for sufficient statistics
and two neutrinos carrying away energy also poses a problem.

Figure 1: Sketch of a high energy collision creating a top pair that decays semi-leptonically.
This leads to a charged lepton, four jets and missing transverse energy in the detector

When a Z ′ boson decays into a tt̄ pair, the top quarks will gain a boost in momentum
because of the excess in center-of-mass energy, if the mass of the Z ′ is large enough;
mZ′ > 1− 1.5 TeV. This boost will be also given to the decay products of the quarks and
may result in an overlap of the created electron and the jet from the bottom quark in the
detector. New algorithms are needed to discriminate those electrons because events with
such overlap are not used for normal Standard Model analyzes.

1Using special properties and algorithms to test if a jet originates from a b quark.
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3 LHC and ATLAS

3.1 LHC

The LHC (Large Hadron Collider) is a storage ring collider with the world’s highest
center-of-mass energy colliding protons at

√
s = 7 TeV. It is located at CERN and has the

goal to find or exclude the Higgs boson and to look for physics beyond Standard Model.
There are four main experiments at the LHC: ALICE, ATLAS, CMS and LHC-b. In
Figure 2 a schematic drawing of the LHC and the experiments is shown.

Figure 2: The layout of the LHC ring and the experiments (source: CERN)

The collider is located around 100 m underground to have some protection from cosmic
radiation and it has a circumference of 26.7 km. The tunnel holds two adjacent parallel
beam pipes, each containing a proton beam that travel in opposite directions and are
brought to collision at the sites of the four major experiments. Superconducting magnets
are used to control the beams. Dipole magnets are used to keep the beams on their path
and quadrupole magnets to focus them. The protons do not travel continuously distributed
in the beam pipes but in bunches. That means there is a spacing between proton packages
so that the collisions happen at discrete intervals that are longer than 25 ns, providing a
highest event frequency of 40 Mhz.

The instantaneous luminosity L is defined as

L =
frevnbunchN2

p

4πσxσy

. (1)

where frev denotes the revolving frequency of a bunch, nbunch the number of bunches and
Np the number of protons in a bunch. The term 4πσxσy is a description for the effective
collision area of the beams, where σi is the spread in the dimension i. The instantaneous
luminosity is used to describe the intensity of the beam. The design luminosity of the
LHC is 1034 cm−2s−1. When the instantaneous luminosity is integrated over time, the
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expected number of events N for a certain process can be calculated as

N = Aǫσ

∫

Ld t. (2)

Here σ denotes the cross section of the process, A the acceptance of the detector and
ǫ the efficiency to select the event out of the data. The integrated luminosity is used
to describe the amount of data that is collected at LHC. Currently there are more than
2 fb−1 collected.

3.2 The ATLAS detector

Figure 3: The ATLAS experiment (source: CERN)

ATLAS[2] (A Toroidal LHC ApparatuS) is used as a general-purpose detector. Its
general structure can be seen in Figure 3. Closest to the beam pipe and the interaction
point of the two proton beams is the inner detector surrounded by a magnetic field. With
this part it is possible to measure the momenta of the created charged particles using
Lorentz force and find information to identify them. The tracking detector system has
pixel, SCT(Semiconductor Tracker) and TRT (Transition Radiation Tracker) sub systems.
The pixel and SCT detectors consist of semiconducting pixel and micro-stripe sensors; the
TRT consists of straws filled with a Xe-based gas mixture. The pixel detector is closest to
the interaction point and therefore needs a high accuracy and radiation hardness. The SCT
sensors use the classic principle of semiconducting detectors for accuracy and reliability.
The resolution of the TRT is not as good as with semiconducting technology but it provides
additional electron/pion separation.

The next part outside the magnetic field consists of the calorimeters. These are used to
measure the energy of the particles through the absorption of them. The inner calorimeter
is the electromagnetic calorimeter; it is layed out to be effective for electromagnetic inter-
actions like bremsstrahlung and pair production and can so absorb electrons and photons.
Both barrel and endcap are lead liquid argon systems. In the outer hadronic calorimeter
mesons and baryons that passed mainly through the electromagnetic calorimeter will be
absorbed by means of strong interaction and ionization. The barrel is made of steel and
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scintillation tiles and the endcap, of copper and liquid argon. The outermost layer consists
of the muon chambers. They are needed to identify and precisely measure the momenta
of outgoing muons that are not absorbed in the calorimeters. For the selection of events of
interest a three-level trigger system is used. The first level uses information from a local
subset of detectors. It looks for muons, electrons, photons, jets, and tau-leptons decaying
into hadrons with a high transverse momentum, as well as large missing and total trans-
verse energy. With this information, regions of interest are built that specify certain areas
in the spatial space which hold interesting features. These regions are forwarded to the
second level trigger. This uses all available data in the regions to select if a certain event
is interesting enough to be processed at the last trigger level. At the third trigger level,
the event filter, data from the entire event is analyzed and, at the end, the event rate is
reduced to 200 − 400 Hz. These events are recorded for analysis.

The needed spatial coordinates are the angles of the spherical coordinates; the polar
angle φ and the azimuthal angle θ. θ is measured with respect to the beam pipe and the
origin at the collision point. The transverse plane lies perpendicular to the beam pipe.

θ defines the pseudorapidity η as

η = − ln

(

tan

(

θ

2

))

. (3)

A more detailed description of the ATLAS experiment can be found at [2].

4 Object Reconstruction

Using the tracking chambers and calorimeters one measures the direction of a outgoing
particle and the total energy E.

For this report information from the tracking detectors and the electromagnetic calorime-
ter where taken into account. The electron candidates are required to have |η| < 2.47 for
the cluster in the calorimeter but excluding the region 1.37 < |η| < 1.52 with the transi-
tion region between barrel and endcap calorimeter. The wanted electrons originate from
a Z boson and a cut to the transverse momentum is applied: pT > 20 GeV. For jet
reconstruction the anti-kt jet finding algorithm [3] was used.

4.1 Data and Monte Carlo

The integrated luminosity of the used data sample amounts to 1.0 fb−1 and was collected
in 2011. A single electron trigger with an ET threshold of 20 GeV called EF e20 medium
was used.

To have reliable comparison between data and theory one uses Monte Carlo (MC)
simulation to generate events by computer randomly following a distribution predicted by
theory. This generated events will be compared to the data from experiment using a wide
range of statistical methods and analyzing tools. Doing so allows us to verify or reject
theories when observing a lack or excess production of events in the data for certain areas.

There are areas where simulation can not reproduce data exactly because there is no
theory reproducing reality perfectly. Because of this, in these areas. one needs to bring
Monte Carlo to the level of data by hand. This is done with the help of scale factors (SF )
which are extracted from variables that are easy to analyze, like later explained efficiencies,
and than can be applied to more difficult analyzes to correct the MC modeling.

For this report a data set created with the PYTHIA [4] event generator and the
GEANT4 [5] detector simulation was used.
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5 Methodology

5.1 Z → e
+
e
−

The Z boson, along with the W boson, is the intermediator of the weak interactions. The
Z boson is electrically neutral and it is its own antiparticle. It has a mass of (91.1876 ±
0.0021) GeV and baryon and lepton number zero. [1] Both the W and Z bosons are
produced at high rates at

√
s = 7 TeV proton-proton collisions at the LHC and they

provide the most common source of isolated, high pT leptons. They are also important
backgrounds for beyond the Standard Model searches. To calculate efficiencies in our
analysis we use the decay of the Z boson into an electron and a positron. The reasons
for using this event are: high statistics, since this process is produce at quite high rates
at the LHC, and the fact that the Z bosons guarantee clean samples with backgrounds
relatively easy to calculate.

5.2 Electron Identification

To find electrons out of the possible candidates in an event one starts at the so called
container level. Here every electron candidate is contained that has tracks from the inner
detector connecting to shower areas in the electromagnetic calorimeter. At this level,
normally all electrons are included but there is also a substantial background from jets with
the same signature. To reduce the background a series of identification cuts is introduced
with rising exclusion potential. Using weak cuts it is possible to reduce some of the jet
background, while keeping most electrons. At the tight level one has excluded almost all
background, but also lost signals from real electrons that did not appear clearly in the
detectors. Examples for cuts are that the shower has a certain maximum width or that
the matching in η and φ between the track in the inner detector and the shower in the
calorimeter has a certain upper limit. For an exact definition of the different identification
parameters see Appendix C and [6]. In this report we will use container level and tight

electrons.

5.3 Tag and Probe

To calculate the efficiency of a certain selection we use a method called “tag and probe”
using Z → e+e− events. This method starts by searching for a good electron, “tag”,
which satisfies certain types of criteria. Then the efficiency of interest is measured testing
the cuts on a second electron candidate called “probe” electron. For the tag, we selected
a tight electron and pair this with every other electron candidate in the event that has
opposite charge. After forming these pairs, we calculate their Lorentz vectors and we fill a
histogram with the invariant mass of the sum of this vectors. What we get is a very clear
peak around the mass of the Z boson. Therefore we are confident that the electrons we
have chosen are in fact products of a Z boson decay. Such a histogram is shown in Figure
4. Table 1 contains information about the parameters used for this report.

The efficiency is defined as

ǫtight =
Ntight

Ncontainer-level
, (4)

where N denotes the number of electrons at each level. It gives information about the
number of electrons that appear at container level and pass the identification cuts. Dif-
ferent methods to approximate those efficiencies will be discussed later.

Using efficiencies one can define scale factors (see chapter 4.1) for Monte Carlo as
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Figure 4: The invariant mass of an electron pair; consistent with a Z peak of about
91 GeV, indicating that the electrons indeed are the decay products of a Z boson, Monte
Carlo created by PYTHIA [4] and GEANT4 [5]; normal and logarithmic scale.

SF =
ǫdata

ǫMC

. (5)

The scale factor can be parametrized with regard to certain variables; e.g. η, φ or ∆R
and later be used to correct the Monte Carlo modeling.

Tag Probe

Identification: Tight Identification: Tight, container level
Systematic variation:
Econe

T (0.2) < 4 GeV

|η| < 2.47, excluding 1.37 < |η| < 1.52
pT > 20 GeV

Event selection: trigger: EF e20 medium
invariant mass window: (80, 100) GeV
Systematic variations:
wide mass window (75, 105) GeV
narrow mass window (85, 95) GeV

Table 1: The identification cuts used in this report for tag and probe including the event
selection parameters and variations for systematic uncertainties.

5.4 Analysis Basics

In a collision event a number of particles are produced and many variables are needed to
describe it appropriately. The variables that are necessary for this report will be explained
here. The variable ∆R describes the distance between electron and jet in a detector and
is defined as

∆R =
√

(∆η)2 + (∆φ)2, (6)

where ∆η and ∆φ denote the difference in angular coordinates of the electron and jet.

Another used variable is ECone
T , which describes the isolation of an electron with respect

to its surroundings. It is the sum over all the transverse energy ET in the electromagnetic
calorimeter in a cone with a certain R0 around an electron candidate and minus the the
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energy deposit of the electron candidate.

ECone
T (R0) =

∑

∆R<R0

ET − ET (electron candidate) (7)

In our case, R0 = 0.2 is used and therefore ECone
T (0.2). The shape of ECone

T is significantly
different for electrons and for jets. Therefore, it can be used to discriminate between those
two.

With E, pT , η and φ one can calculate the four-momentum p of a particle. Adding the
four-momenta of two electrons it is possible to calculate the invariant mass of a possible
origin particle, like a Z boson, as

Mee =

√

(pe1
+ pe2

)2 =

√

(Ee1
+ Ee2

)2 − (~pe1
+ ~pe2

)2. (8)

6 Measurement of Efficiencies

As next step we will discuss two methods for calculating efficiencies using the invariant
mass Mee or the isolation variable Econe

T (0.2).

6.1 Using Invariant Mass (Method 1)

Using the tag and probe method we select pairs of electrons with the characteristics
described in Table 1 and we create two histograms with the invariant mass of these pairs,
one for the pair of electrons in which the probe passes the tight cut and one for the pair of
electrons in which the probe does not necessarily passes the cut. In both histograms we get
a peak around the mass of the Z boson indicating that the pairs of electrons in this region
most likely came from the Z boson decay. Also, in the histograms we get background from
events that behave like electrons but are actually jets that look like electrons. We then
proceed to calculate the efficiency of the cut. For this, we count the number of signals (or
pairs) that we get in a mass window of 80 to 100 GeV after subtracting the background.

We do this by using predefined functions to fit the signal and the background, then
we substract the background and integrate over the number of signal events in the mass
window. For fitting this variable we use the Breit-Wigner function convoluted with the
Crystal Ball function for the signal. For the background we use either an exponential
function or the RooDecay function. This last one is a function included in the ROOT [7]
library Roofit and consists of a Gaussian peak convoluted with an exponential decay. The
Crystal Ball function is described by a Gaussian peak, which on one side is cut off and
replaced with a power-law function. This is needed to describe the effects of the usage of a
detector to the resonance peak of the Z boson. Examples of these fits are shown in figure
5 and their respective formulas can be found in Appendix D. Once we have the numbers
for the container level electron and the tight electron, we apply the definition of efficiency.

6.2 Using Isolation (Method 2)

The variable which is commonly used to calculate efficiencies is the invariant mass but in
our analysis we introduced another variable, the isolation variable Econe

T (0.2) (see equation
7). The shape of this variable is different for electrons and jets. For electrons it gives a
relatively narrow peak around 0 GeV while for jets it is a broad peak with the center at
some higher energy. The reason for this lies in the wide opening angle a jet shower in the
calorimeter normally shows compared to an electron shower. Because some standardized
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Figure 5: Fitting the invariant mass Mee distribution with a Breit-Wigner function con-
voluted with a Crystal Ball function and both exponential (left) and RooDecay (right)
background (Data with integrated luminosity of 1 fb−1).

electron shower size is used to measure the ET (electron-candidate) for the Econe
T (0.2), a

jet will have a higher energy deposition outside this space.

To calculate the efficiency of the tight cut we again used the tag and probe method to
create histograms of the isolation variable. The histograms for container level and tight
cut electrons were created with pairs of electrons whose invariant mass was in the window
(80, 100) GeV. In the case of the tight cut we obtained practically no background and
counting the entries was enough to obtain the number of signal events. For the electrons
at container level we used the RooDecay function for the signal and the Landau function
for the background and we proceed as in the case of the invariant mass. Such a fit is shown
in Figure 6. For the functions see Appendix D.

Figure 6: Fitting the isolation distribution with a RooDecay function as signal and a
Landau function as background (Data with integrated luminosity of 1 fb−1).

Using the isolation variable is preferable to the invariant mass for the case of electrons
and jets with small separation. When observing the invariant mass of the electrons one
finds a leakage of energy from the jet into the electron cluster when ∆R gets smaller. This
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Figure 7: Distribution of the invariant mass for small ∆R. Comparing this to Figure 5,
one sees the distortion of the whole range (Data with integrated luminosity of 1 fb−1).

leads to a deformed peak in the mass spectrum as seen in Figure 7 which cannot give the
best information about the number of signal events. Another upside of using this variable
is that the method would be independent of the electron’s origin and therefore could be
extended to the boosted top case. In order to probe if there is any possible bias, the
number of signals of the cut is plotted as a function of bins in the variables η and φ. In
the Figures 8 and 9 we compared the number of signal events we get in the mass window
(80, 100) GeV using the invariant mass distribution and the isolation variable distribution
and we found that these numbers differ by less than 3 percent. Because the difference in
the η − φ space is small enough, it is reasonable to switch from the invariant mass to the
isolation variable for our analysis.

6.3 Efficiency Calculation of Monte Carlo

Calculating the efficiencies of the simulation datasets is easier to accomplish and has a
higher precision. There exist variables for each electron candidate in a MC dataset that
tells if an electron comes from a Z boson.

These variables allow that simple counting of the wanted electrons in the container-

level and after the tight cut is sufficient to get Ncontainer-level and Ntight. The efficiencies
are then calculated the same way as the for the data.

6.4 Uncertainties

6.4.1 Statistical Uncertainties

The statistical uncertainty of the efficiencies ǫtight coming from data is given by

∆ǫtight =

√

(1 − 2ǫ) (∆Ntight)
2 + (ǫtight · ∆Ncontainer-level)

2

N
. (9)

This is the commonly accepted way to calculate this uncertainty following [8].
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Using error propagation, one can derive the uncertainty of the scale factor SF (eq. 5)
and obtain

∆SF =

√

(

∆ǫData

ǫMC

)2

+

(

ǫData∆ǫMC

ǫ2
MC

)2

= SF

√

(

∆ǫMC

ǫMC

)2

+

(

∆ǫData

ǫData

)2

. (10)

6.4.2 Systematic Uncertainties

In our analysis we made some considerations that could be thought as partially arbitrary,
for example the choice of the mass window we worked with. However, one can estimate
how much this considerations actually affect our results. In order to do so, we altered
some of these considerations. We calculated the efficiency of the tight cut broadening the
mass window to (75, 105) GeV and then narrowing it to (85, 95) GeV. Also, we imposed
the condition ECone

t (0.2) < 4 GeV on the tag electron. Finally, we change the fitting
function for the signal from RooDecay to Crystal Ball. The first conservative estimate of
the systematic uncertainties uses the spread of the central value and can be calculated as

∆SFsys =
√

∑

(SFstd − SFvar)
2, (11)

where SFstd denotes the scale factor with the mass window (80, 100) GeV and SFvar the
scale factor with variations in different parameters. The sum goes over all the different
variations taken.
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Figure 8: Comparing the number of electrons in the data at container level using method
one (exponential background) and two as function of η and φ. (Data with integrated
luminosity of 1 fb−1)
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Figure 9: Comparing the number of electrons in the data at container level using method
1 (RooDecay background) and 2 as function of η and φ. (Data with integrated luminosity
of 1 fb−1)
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7 Results

ǫtight;Data ǫtight;MC SFtight

mass window (80 − 100) GeV
and RooDecay function for
signal fit in data

0.52 ± 0.03 0.70 ± 0.01 0.745 ± 0.045

with ECone
T < 4 GeV cut on

tag
0.52 ± 0.03 0.69 ± 0.01 0.75 ± 0.05

mass window (75 − 105) GeV 0.45 ± 0.03 0.69 ± 0.01 0.65 ± 0.04

mass window (85 − 95) GeV 0.53 ± 0.04 0.69 ± 0.01 0.76 ± 0.05

Crystal Ball function for sig-
nal fit in data

0.33 ± 0.04 0.70 ± 0.01 0.47 ± 0.05

Table 2: Efficiencies and scale factors for ∆R < 0.4 using different settings. All uncer-
tainties are statistical.

In Figure 10 one can see the efficiencies and scale factor as functions of ∆R. For all
bins with ∆R > 0.4 the efficiency is higher for the data than for Monte Carlo which leads
to the scale factor being larger than one. The distribution in these bins is relative uniform
with an scale factor of SF ≈ 1.4. In the bin for ∆R < 0.4 the efficiencies drop from
around 0.76− 0.78 to 0.70± 0.01 for Monte Carlo and to 0.52± 0.03 for data. This can be
understood since at close distances the jet obscures the electron signal and makes it look
less like an electron normally looks in the detector. Because the drop in Monte Carlo is
far smaller than in data, the scale factor becomes smaller than one: SF = 0.745 ± 0.045.
The uncertainty is statistical. To find the systematic uncertainties we use Table 2 and
equation 11 but only using values for the wider mass window, the ECone

T < 4 GeV cut
and the change in fit function for the signal from RooDecay to Crystal Ball. We found
∆SF = 0.29.

This high systematic uncertainty results from the conservative guess one does using
equation 11. But a deeper understanding of the influence of different parameters is neces-
sary to estimate the systematics in a better way. It is already assessable that it is necessary
to find the right function for fitting ECone

T signal of the electron because the estimations
between fitting the signal using the RooDecay or Crystal Ball function have differences of
almost 40 % and carry the biggest contribution to the systematic uncertainty. The differ-
ence in the fitting functions can be seen in Figure 16. One way to find the needed function
could be finding a ECone

T distribution that is purely formed by jet events and use it to fit
the background. This should make it easier to evaluate the form of the electron signal.
The statistical uncertainty is probably underestimated because the number of events in
the ∆R < 0.4 bin is not high enough to have stable fitting and error approximation. This
can be clearly seen in Figure 16 and the resulting χ2/ndf. Therefore, higher statistics are
necessary and they should be obtained with a longer run time of the LHC.

The efficiencies and scale factor as functions of φ are shown in Figure 11 and 14. And
ich can be seen that they have a nearly uniform distribution. This is how it would have
been expected because the ATLAS detector should be isotropic with regards to the angle
φ. Small differences can be explained by the realistic structure of the detector so that
there is more non detecting material in some directions than in others. The identification
cut is more efficient for data and so the scale factor is larger than one, varying between
SF = 1.02 and SF = 1.04.

The efficiencies and scale factor as function of η are shown in Figure 12 and 15. It
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should be mirror-symmetric to η = 0 because the ATLAS detector setup is theoretical that
way but in reality, for example, one side of the tracker is not as responsive as the other.
The variations over the whole range of the variable comes from the different amount of
detecting and non-detecting material a particle passes for different η due to the architecture
of the detector.
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Figure 10: The efficiencies and the scale factor as functions of ∆R between electron and
closest jet. The first bin shows data belonging to zero-jet-events or with ∆R > 3
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Figure 11: The efficiencies and the scale factor as functions of φ.
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Figure 12: The efficiencies and the scale factor as functions of η.
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Figure 13: Varying different cuts to derive efficiencies and scale factors as functions of
∆R. The first bin shows data belonging to zero-jet-events or with ∆R > 3
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Figure 14: Varying different cuts to derive efficiencies and scale factors as functions of φ.
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Figure 15: Varying different cuts to derive efficiencies and scale factors as functions of η.
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Figure 16: Fitting of ECone
t (0.2) for bin ∆R < 0.4 using the different functions described

in the report (Data with integrated luminosity of 1 fb−1).
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8 Conclusion

In this report we analyzed the efficiencies and scale factors of the tight identification cut
for ∆R < 0.4 using the Z → e+e− decay. The result was obtained via the tag and probe
method that we studied in this report for the case of a small ∆R. The usual approach of
fitting the invariant mass distribution of the electron pair and a new method studying the
distribution of the isolation variable ECone

T (0.2) were used. We found that the first method
is not successful for the case of small ∆R but with the method that uses ECone

T (0.2) we
were able to obtain efficiencies and a scale factor for ∆R < 0.4.
The result SF (∆R < 0.4) = 0.745±0.045 (stat.)±0.290 (sys.) is dominated by systematic
uncertainties and the next step should be finding better parametrization for the ECone

T

distribution of electron signal and jet background. It is not clear if there is one single
function good enough to describe the signal shape for all ∆R because the closer a jet is
to an electron the more energy could leak into the cone distorting the distribution shape.

The statistical uncertainties will be reduced with more accumulated data. After low-
ering the uncertainties for the Z → e+e− decay it should be studied if this method can be
applied to events with boosted tops.
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A ROOT

ROOT [7] is a framework for data processing developed at CERN aimed to support high
energy physics research. ROOT provides an extremely powerful data structure that allows
fast access of huge amounts of data – orders of magnitude faster than any database. Also,
ROOT trees spread over several files can be chained and accessed as a unique object,
allowing for loops over large amounts of data. Another very useful feature of ROOT is
that it provides powerful mathematical and statistical tools to analyze data and also,
the data can be generated following any statistical distribution, making it possible to
simulate complex systems. In addition, one can use ROOT to present results in the form
of histograms, scatter plots, fitting functions, etc. Finally, ROOT allows you to use the
CINT C++ interpreter or Python to write macros or compile your program. As part
of our analysis, we used some of ROOT’s predefined functions to fit the histograms of
the invariant mass of the pair of electrons. Afterward, we were introduced to a new
library of ROOT called Refit. This library is very helpful when wanting to model an
expected distribution of events in a certain physical event. One can model the distribution
of observables, which are the measured quantities, in terms of physical parameters of
interest and other parameters that describe detector effects (resolution, efficiency, etc.),
the parameters being the degrees of freedom of the model. The model will be a probability
density function (pdf) normalized over the allowed range of the observables.

B SFrame

SFrame is a general High Energy Physics analysis package based on ROOT trees. SFrame
follows the cycle-based analysis that is often used in HEP by splitting an analysis into
several cycles. Each cycle takes as input a number of ROOT trees and produces also ROOT
trees but in a different output format and also control histograms. In this framework, users
can implement their specific analysis after they have produced the ROOT trees for the
data sources. The user only has to provide an ExecuteEvent() method for each cycle in
which the calculation steps and the histograms filling are done. All features such as input
and output of trees and histograms, loop over events and weighting are provided by the
framework. Additionally, the user has to provide some description of the cycle such as
the integrated luminosity the background should be weighted to and of course, the input
ROOT trees and the output format. Initially, SFrame was intended to work on the ROOT
trees provided by the ATLAS SusyView package. However, SFrame developed towards a
SUSY independent package that can be used for any HEP analysis based on ROOT trees.
Institutes involved in the development are CERN, University of Hamburg and New York
University. Meanwhile it is used by several groups (DESY, CERN, Manchester, University
of Hamburg, NYU and Bonn University).
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C Electron identification

For container level electrons there must exist a track in the inner detector and a shower in
the electromagnetic calorimeter. This two must be connected. For the tight identification
cut see Table 3 and [6] Ch. 5.

Type Description

Loose cuts

Acceptance of the detector |η| < 2.47

Hadronic leakage Ratio of ET in the first layer of the hadronic
calorimeter to ET of the EM cluster (used over
the range |η| < 0.8 and |η| > 1.37)
Ratio of ET in the hadronic calorimeter to ET

of the EM cluster (used over the range |η| > 0.8
and |η| < 1.37)

Second layer Ratio in η of cell energies in 3 × 7 versus 7 × 7
cells.

of EM calorimeter Lateral width of the shower

Medium cuts (includes Loose)

First layer Total shower width
of EM calorimeter. Ratio of the energy difference associated with

the largest and second largest energy deposit
over the sum of these energies

Track quality Number of hits in the pixel detector ( < 1)
Number of hits in the pixels and SCT (< 7).
Transverse impact parameter (¡5 mm).

Track matching η between the cluster and the track (< 0.01)

Tight cuts (includes Medium)

b-layer Number of hits in the b-layer (≥ 1).

Track matching ∆φ between the cluster and the track (< 0.02).
Ratio of the cluster energy to the track momen-
tum
Tighter ∆η cut (< 0.005)

Track quality Tighter transverse impact parameter cut (< 1
mm).

TRT Total number of hits in the TRT.
Ratio of the number of high-threshold hits to
the total number of hits in the TRT

Conversions Electron candidates matching to reconstructed
photon conversions are rejected

Table 3: Variables used for loose, medium and tight electron identification cuts for the
central region of the detector (|η| < 2.47), see also [6] Ch. 5
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D Function used for fitting

In this report several functions are used for fitting.

• The Breit-Wigner function:

p(E;M,Γ) =
1

2π

Γ

(E − M)2 + Γ2/4
(12)

• The Crystal Ball function:

f(x;α, n, x̄, σ) = N ·
{

exp(− (x−x̄)2

2σ2 ), for x−x̄
σ

> −α

A · (B − x−x̄
σ

)−n, for x−x̄
σ

6 −α
(13)

with

A =

(

n

|α|

)n

· exp

(

−|α|2
2

)

B =
n

|α| − |α|

• The Landau function:

p(x;µ, σ) =
1

π

∫

∞

0
e−t log t−

x−µ

σ
t sin(πt) dt (14)

• The Roodecay function: this is a Gaussian function convoluted with an exponential
function. Both functions will be assumed as known.
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