DESY summer student lectures – 26 July 2011

LHC experiment – part 2.

Summer student lectures, DESY Zeuthen 2011 Elin Bergeaas Kuutmann

Today

- Simulation
- Identifying particles
 Particle identification;
 "stable" and decaying
- Doing analysis Higgs-hunting!
- Statistics
 How do we know that
 we saw something?
- Beyond the Standard Model Some general comments

Figure from physicaplus.org.il

First: why? (ver 2.0)

Why do high-energy physics experiments, from the point-of-view of mankind?

- Expanding the frontiers of knowledge. Discover the electron of the 22nd century – whatever that might be
- International collaboration Peace!
- Spin-off effects This web thingy...

scientificamerican.com

Simulations

Overview of simulation Why do simulations?

Simulation overview

- Events (pp collisions) are generated
 - What is the distribution
 of partons (quarks and gluons) in the protons?
 How do they interact?
- Hadronisation of quarks/gluons, decay of e.g. top, W.
- The particles' reactions in the detector is simulated.
- Reconstruct and analyse (almost) like data.

Why simulations?

- Need to compare experiment with theory.
- Theory: complex calculations, involving parton density functions (pp collision), how the hadrons form, how the particles react in the detector.
- If the observed cross section is lower or higher than the predicted, we might have discovered something!
- Constant feedback: the simulation should agree with known physics processes, experiments are compared with simulation.
- We can also prepare analyses and optimise algorithms.

Creating particles

How do we get elementary particles from proton-proton collisions?

Proton-proton collisions

Actually we collide gluons or quarks.

Example how we can create $t\bar{t}$ pairs via the strong force.

and via the weak force (single top production)

A sneaky thing: $H \rightarrow \gamma \gamma$

- Higgs couples heavily to massive particles.
- Photons are massless...

Loops...

Before the next section: Activation and recollection break

Identifying particles

Particle identification electrons, muons, quark/gluons (jets) Decaying particles τ , W, Z, b quarks, top quarks, Higgs.

First: a conceptual difference

- When a theorist say "electron" he/she means a stable lepton with negative charge and a mass of approximately 0.5 MeV.
- When an experimentalist say "electron" he/she means an object that the electronfinding algorithm has identified as an electron.

DESY summer student lectures – 26 July 2011

Particle identification

Electrons and photons

- EM showers, that are (reasonably) isolated in the calorimeter (no other energy deposits nearby).
- Tracks present: electron/positron
- No track: photon

Muons

- A detected particle in the muon system.
- Not much energy in the calorimeters (isolation).
- Possibly a matching to tracks in the inner detector (combined muon).

Quarks and gluons (jets)

- Quarks and gluons are never free (colour confinement).
- They hadronise, and a spray of hadrons, a jet, hit the detector.

Figures from particleadventure.org

13

Reconstruct the jet: Jet algorithms – overview

- **Cone**: Put a cone of a certain opening angle, $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$, around a seed.
- Sequential recombination jet algorithms: Combine signals based on the transverse momentum and/or closeness.
 Can have asymmetric shapes.
 Examples: k_T, anti-k_T, Cambridge/Aachen...

Other jet algorithm types occur, but these are the most important in *pp* collisions.

 $\mathbf{R}_{_{\mathrm{Cone}}}$

To see the unseen: missing transverse energy

- Energy and momentum is conserved in the collisions.
- Sum all energy deposits (multiplied with direction) in the transverse plane, ΣE_{T}
- $\Sigma E_{T} = 0$ (energy conservation)
- If $\Sigma E_{T} \neq 0$, th remainder must belong to a particle that didn't interact. The missing energy is called E_{T}^{miss} .
- The particle could be a neutrino or maybe dark matter?

2 jets and $E_{\rm T}^{\rm miss}$ in the D0 detector (Tevatron). <u>www.fnal.gov/pub/today</u>

Particle identification: decaying particles

• Particles are identified through their decay products. Compute invariant mass: $M^{2} = \left|\sum_{particles} E\right|^{2} - \left\|\sum_{particles} p\right\|^{2} \quad (c=1)$

Particle decays:

- $Z \rightarrow l^+l^-$ ($l : e, \mu, \tau, \nu$) or quarks
- $W^+ \rightarrow l^+ \nu$ or qq'
- $\tau^- \rightarrow e^- \overline{\nu_e} \nu_{\tau}, \ \mu^- \overline{\nu_{\mu}} \nu_{\tau}, \ hadrons$
- $t \rightarrow bW$
- b quark: decay of the B mesons (more follows soon)
- Higgs: the decay is mass dependent (as discussed yesterday)

Example: a Z -> e⁺e⁻ candidate event

Image from https://twiki.cern.ch/twiki/bin/view/Atlas/EventDisplayPublicResults

B-tagging

- b quarks form B mesons, that decay in the beam pipe.
- The tracks from the resulting hadrons point to a secondary vertex.
- Presence of a secondary vertex in a jet: "btagged" Typically this is 50-70% efficient, but still a powerful way to reduce backgrounds from light jets.

Figure from Phys. Rev. Lett. 103, 092001 (2009)

Analysis

Higgs hunting:

How to interpret the plots from the EPS conference

Decay modes and reconstruction of a light Higgs

Looking for the Higgs boson Reminder from yesterday

- For a low-mass Higgs (favoured), H → bb dominant.
 Hard to detect (lots of b's and light jets in the background).
- $H \rightarrow \gamma \gamma$ is the "golden channel" (clean) but has low branching ratio.
- $H \rightarrow WW$ also likely.
- One other possible analysis:
- Consider

$$pp \rightarrow HV$$
, $V \rightarrow leptons$,
 $H \rightarrow b\overline{b}$

Before the Higgs hunting: Activation break

The recent Higgs hunting results...

- What do the plots tell?
- Which regions are excluded?
- Do we see something at 140 GeV?

What does the plot show?

- Combination of all channels; at low mass mainly $\gamma\gamma$, WW and bb.
- Cross section limit divided by SM cross section.
- Regions where the observed limit is below 1 are excluded.
- Regions where the observed limit is well above the expected is where we have an excess of events compared to SM predictions.

 $155{<}M_{\rm H}{<}190$ and 295 ${<}M_{\rm H}{<}$ 450 GeV excluded at @ 95% CL

How to reconstruct a Higgs event?

- We compare the expected background (often from simulation) with observed data.
- Here $H \rightarrow \gamma \gamma$ We have a lot of background from other $\gamma \gamma$ processes and jets being misidentified as γ .
- The production cross section of *H* is small and the branching ratio to $\gamma\gamma$ is tiny (~10⁻³)

$H \rightarrow WW$

- Easiest to reconstruct if $WW \rightarrow lvlv$.
- But then we get 2 neutrinos!
- E_{T}^{miss} comes from both v. No way to tell how the energy was shared. Mass resolution will be bad.

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - (\mathbf{P}_{\rm T}^{\ell\ell} + \mathbf{P}_{\rm T}^{\rm miss})^2},$$

$HW \rightarrow b\overline{b} + Iv$ (boosted)

- The b quarks can merge into one jet => split the jet, study the sub-jets.
- Require 2 *b*-tagged sub-jets. (Not done here)
- Reconstruct the *W*.
- The jet mass distribution of subjets with $p_{\tau} > 180$ GeV in events consistent with a $WH \rightarrow I v b \overline{b}$ decay with $p_{\tau} > 200$ GeV.

Uncorrected MC simulation prediction for tt
, W+jets and WW processes.

Jet Mass [GeV]

Statistics

We have reconstructed data and background. How do we know if we saw a real effect? What do we do if we didn't see anything?

Statistical method 1: CLs

- Frequentistic method Answers the question: Given a certain signal, what is the probability to observe the data we have?
- We define:

$$p_{s+b} = P(q \ge q_{obs}|s+b) = \int_{q_{obs}}^{\infty} f(q|s+b) dq \qquad p_b = P(q \le q_{obs}|b) = \int_{-\infty}^{q_{obs}} f(q|b) dq$$

$$CL_s = \frac{p_{s+b}}{1-p_b} < \alpha$$

- *p*_{(s+)b} is the probability for (signal +) background, given the test statistic *q*.
- $\alpha = 0.05$ by convention

Statistical method 2: Bayesian

Bayes' theorem states that

Probability that we have signal *s* given data *d* (*posterior* probability)

We don't know P (s), so it is normally taken to be uniform for s>0 (flat prior) and 0 if s<0

P(s | d) is what we want, but P(d | s) is what we easily can compute; Bayes theorem offers the "translation". The only ambiguity is the prior.

Set and interpret a limit

- Compare expected (background) and observed (data) limits.
- In the absence of a signal, we can set an upper limit on the phenomenon: given what we observe, what is the maximum amount of the signal that can hide in data?
- If the upper cross section limit is lower than the theoretical cross section, we can *exclude* that region.
- If the observed limit is higher than the expected, we have a data excess.
- BUT we must take into account that we look for an excess in many places: *trial factors* (the look-elsewhere effect)
- Limit setting is quite CPUintense: can take a week on a good computing cluster.

Closing remarks on the Higgs results

- Both CMS and ATLAS see a 2-sigma excess around 140 GeV, mainly in the $H \rightarrow WW \rightarrow lvlv$ channel. Coincidence or a signal? Time will tell...
- ATLAS also sees excesses at 250 and 600 GeV. CMS does not. No signal likely!
- Trial factors (the look-elsewhere effect) have not been taken into account! The 2-sigma excess is not really 2 sigma...

Beyond the Standard Model: a guidline

What to look for?

Anomalies! For example

- A mass peak in an unexpected place. This could indicate a totally new particle.
- An excess of particles.
 A deficiency of particles.
 This indicates that our understanding of the couplings is inadequate a new dynamics, mechanism or particle could be the cause.
- Nothing at all Large amounts of E_{τ}^{miss} indicate a weakly interacting massive particle. Dark matter?

The things you wished for that I didn't have time to explain

- The CMS detector read more at http://cms.web.cern.ch/cms/ and ask the CMS people here.
- Detailed calorimetry one of my favourite subjects that require more time than given. I recommend the Particle Physics BriefBook, http://rkb.home.cern.ch/rkb/PH14pp/node1.html Calorimeter section as a starting point, and the references given there.
- sLHC (the LHC upgrade project). For some numbers about how powerful LHC will be, see http://project-slhc.web.cern.ch/project-slhc
- The Higgs mechanism. This is a theory question ask Gabor on Thursday!
- Recent results (besides Higgs) take a look at pdg.lbl.gov

Summary of lecture 2

- Today, we have produced particles, reconstructed particles and interpreted the Higgs results.
- This is useful, and super cool!
- Use your time here at DESY to talk to people, ask a million questions.
 (We do love to talk about our research)

References

- Overview information about CERN, LHC and ATLAS online: http://cern.ch, http://public.web.cern.ch/public/en/LHC/LHC-en.html, http://atlas.ch
- All experimentally verified particle properties: http://pdg.lbl.gov
- More about Monte Carlo generators: http://indico.cern.ch/conferenceDisplay.py? confld=a042790
- Browse CERN publications: http://cdsweb.cern.ch

Extra material:

more about jet algorithms more about Bayesian limit setting

Hadronic shower - from e.g. a pion

- Contents of a hadronic shower:
 - Visible energy from e^{\pm} ; $\pi^0 \rightarrow \gamma \gamma$; ~50% ionisation from p, π^{\pm} , $\mu^{\pm} \sim 25\%$
 - Hadronic invisible energy ~25% (nuclear excitations, break-ups)
 - Escaped energy $\sim 2\%$ (mainly v, some μ)
 - Electromagnetic energy fraction *increases* with increasing hadron energy due to
 - production of π^0 's in the shower
- Aim of hadronic calibration: Compensate for invisible and escaped energy.

(Grupen, "Particle detectors")

Sequential recombination jet algorithms The $k_{\rm T}$ algorithm

Main parameter: angular resolution D (=0.4 or 0.6)

Start with a list of input components *i* (e.g. clusters)

1) For each component, define $d_i = k_{T,i}^2$ For each pair (i, j) define $d_{ij} = \min(k_{T,i}^2, k_{T,j}^2) \Delta R_{ij}^2 / D^2$

2) Find d_{min} = minimum of all d_i , d_{ij}

3) If d_{min} is a d_{ij} , merge clusters to a new cluste If d_{min} is a d_i , the object is a jet. Remove cluster from list.

Repeat 1-3 until all clusters are in jets.

Sequential recombination jet algorithms summary overview

- k_{T} algorithm $d_{ij} = \min(k_{Ti}^2, k_{Tj}^2)\Delta R_{ij}^2/R^2$ hierarchical in relative p_T
- Cambridge/Aachen $d_{ij} = \Delta R_{ij}^2/R^2$ hierarchical in angle
- Anti- k_{T} $d_{ij} = \min(k_{Ti}^{-2}, k_{Tj}^{-2})\Delta R_{ij}^{2}/R^{2}$ gives perfectly conical jets

(M. Cacciari)

Bayesian limit setting overview

- Set a 95% credibility level upper limit.
- Likelihood function *L* for a particular mass *v* $L_{v}(d|b_{v},s) \equiv \prod_{i} \frac{(b_{vi}+s_{i})^{d_{i}}}{d_{i}!} e^{-(b_{vi}+s_{i})} \qquad (\mathbf{d}\text{ata}) i \text{ run}$

(**d**ata, **b**ackground, **s**ignal, *i* runs over the bins).

- Normalise the likelihood: P(d|s).
- Use Bayes' theorem to compute P(s|d) from P(d|s), using a flat prior.
- Integrate P(s|d) (the posterior probability) to 95%. That's the limit.
- Observed limit: use data.
- Expected limit: use background expectation to generate pseudo-data.

Number of Signal Events