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Today
● Simulation
● Identifying particles 

Particle identification;
“stable” and decaying

● Doing analysis
Higgs-hunting!

● Statistics
How do we know that 
we saw something?

● Beyond the Standard Model
Some general comments

Figure from physicaplus.org.il
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First: why? (ver 2.0)

Why do high-energy physics experiments, 
from the point-of-view of mankind?
● Expanding the frontiers of knowledge.

Discover the electron of 
the 22nd century – whatever that 
might be

● International collaboration
Peace!

● Spin-off effects
This web thingy...

scientificamerican.com
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Simulations

Overview of simulation

Why do simulations?
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Simulation overview
● Events (pp collisions) 

are generated
– What is the distribution 
of partons (quarks and 
gluons) in the protons?
– How do they interact?

● Hadronisation of 
quarks/gluons, decay 
of e.g. top, W.

● The particles' reactions 
in the detector is 
simulated.

● Reconstruct and 
analyse (almost) like 
data.

(T. Sjöstrand)
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Why simulations?
● Need to compare experiment with theory.

Figure from ATLAS-CONF-2010-084

● Theory: complex calculations, 
involving parton density 
functions (pp collision), 
how the hadrons form, 
how the particles react in the 
detector.

● If the observed cross section is 
lower or higher than the 
predicted, we might have 
discovered something!

● Constant feedback: the 
simulation should agree with 
known physics processes, 
experiments are compared with 
simulation.

● We can also prepare analyses 
and optimise algorithms.
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Creating particles

How do we get elementary particles from 
proton-proton collisions?
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Proton-proton collisions
Actually we collide 
gluons or quarks.

Example how we can 
create tt pairs via 
the strong force.

and via the weak 
force (single top 
production)
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A sneaky thing: H → γγ
● Higgs couples heavily to massive particles.
● Photons are massless...

● H → γγ ???

Loops...

 U. Egede, PhD thesis 
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Before the next section:
Activation and recollection break
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Identifying particles 

Particle identification
electrons, muons, quark/gluons (jets)

Decaying  particles
τ, W, Z, b quarks, top quarks, Higgs.
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First: a conceptual difference
● When a theorist say “electron”

he/she means a stable lepton with negative 
charge and a mass of approximately 0.5 
MeV.

● When an experimentalist say “electron”
he/she means an object that the electron-
finding algorithm has identified as an 
electron.
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Particle identification

● EM showers, that are (reasonably) isolated in the 
calorimeter (no other energy deposits nearby).

● Tracks present: electron/positron
● No track: photon

Muons
● A detected particle in the muon 

system.
● Not much energy in the calorimeters 

(isolation).
● Possibly a matching to tracks in the 

inner detector (combined muon).

Electrons and photons

● Quarks and gluons are never free (colour confinement).
● They hadronise, and a spray of hadrons, a jet, hit the 

detector.

Quarks and gluons (jets)

 Figures from particleadventure.org 

          e+e– 

          µ+µ–  

          jets 
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Reconstruct the jet:

Jet algorithms – overview
● Cone: Put a cone of a certain opening 

angle, ∆R = (∆√ η 2 + ∆φ 2), around a seed. 

● Sequential recombination jet 
algorithms: Combine signals based on 
the transverse momentum and/or 
closeness.
Can have asymmetric shapes.
Examples: 
kT, anti-kT, Cambridge/Aachen...

Other jet algorithm types occur, but these 
are the most important in pp collisions.
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To see the unseen: 
missing transverse energy

● Energy and momentum is 
conserved in the collisions.

● Sum all energy deposits 
(multiplied with direction) in 
the transverse plane, ΣET

● ΣET = 0 (energy conservation)

● If ΣET ≠ 0, th remainder must 
belong to a particle that 
didn't interact. The missing 
energy is called ET

miss.
● The particle could be a 

neutrino or maybe dark 
matter? 2 jets and ET

miss in the D0 detector 
(Tevatron). www.fnal.gov/pub/today
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Particle identification: 
decaying particles

● Particles are identified through their decay products. 
Compute invariant mass:
 

Particle decays:
● Z →  l+l– (l : e, µ, τ, ν)  or  quarks
● W+ →  l+ν  or  qq' 
●

● t → bW
● b quark: decay of the B mesons (more follows soon)
● Higgs: the decay is mass dependent (as discussed 

yesterday)

M 2=  ∑particles
E 

2
−∥ ∑

particles
p∥

2
c=1

− e−e , − , hadrons



Elin Bergeaas Kuutmann – DESY, Zeuthen 17

DESY summer student lectures – 26 July 2011

Example: a Z –> e+e- candidate event

Image from https://twiki.cern.ch/twiki/bin/view/Atlas/EventDisplayPublicResults
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B-tagging
● b quarks form B mesons, 

that decay in the beam 
pipe.

● The tracks from the 
resulting hadrons point 
to a secondary vertex.

● Presence of a secondary 
vertex in a jet: “b-
tagged” 
Typically this is 50-70% 
efficient, but still a 
powerful way to reduce 
backgrounds from light 
jets. Figure from Phys. Rev. Lett. 103, 092001 (2009)
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Analysis

Higgs hunting:

How to interpret the plots from the EPS 
conference

Decay modes and reconstruction of a light 
Higgs
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Looking for the Higgs boson
Reminder from yesterday

● For a low-mass Higgs 
(favoured), H → bb              
  dominant.
Hard to detect (lots of b's 
and light jets in the 
background).
● H → γγ is the “golden 
channel” (clean) but has 
low branching ratio.
● H → WW also likely.
● One other possible 
analysis: 
Consider 
pp → HV ,  V → leptons,
                 H → bb

  Figure from CERN-OPEN-2008-020 
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Before the Higgs hunting:
Activation break



Elin Bergeaas Kuutmann – DESY, Zeuthen 22

DESY summer student lectures – 26 July 2011

The recent Higgs hunting results...
● What do the plots tell?

● Which regions are excluded?

● Do we see something at 140 GeV?

 Presented at EPS 22 July 2011 
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What does the plot show?
● Combination of all channels;

at low mass mainly γγ, WW 
and bb.

● Cross section limit divided by 
SM cross section.

● Regions where the observed 
limit is below 1 are excluded.

● Regions where the observed 
limit is well above the 
expected is where we have an 
excess of events compared to 
SM predictions.

155<MH<190 and 295 <MH< 450 GeV
excluded at @ 95% CL

 Presented at EPS 22 July 2011 
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How to reconstruct a Higgs event?
● We compare the expected background (often from 

simulation) with observed data.

 ATLAS­CONF­2011­085 

● Here H → γγ
We have a lot of 
background 
from other γγ 
processes and 
jets being mis-
identified as γ.

● The production 
cross section of 
H is small and 
the branching 
ratio to γγ is tiny 
(~10–3)
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H → WW
● Easiest to reconstruct if 

WW → lνlν.

● But then we get 2 
neutrinos!

● ET
miss comes from both ν. 

No way to tell how the 
energy was shared.
Mass resolution will be 
bad.

 Presented at EPS 22 July 2011 
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HW → bb + lν (boosted)
● The b quarks can merge into 

one jet => split the jet, study 
the sub-jets.

● Require 2 b-tagged sub-jets. 
(Not done here)

● Reconstruct the W.
● The jet mass distribution of 

subjets with pT > 180 GeV in 
events consistent with a 
WH →  l ν b b  decay with 
pT > 200 GeV. 
Uncorrected MC simulation 
prediction for tt, W+jets and 
WW processes. 

 ATLAS­CONF­2011­103 
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Statistics

We have reconstructed data and background.
How do we know if we saw a real effect?
What do we do if we didn't see anything?
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Statistical method 1: CLs
● Frequentistic method

Answers the question: Given a certain signal, what is the 
probability to observe the data we have? 

● We define:

psb=P qqobs∣sb =∫
qobs

∞

f q∣sbdq pb=P qqobs∣b=∫
−∞

qobs

f q∣b dq

CLs=
psb

1−pb



● p(s+)b is the probability for (signal +) 
background, given the test statistic q.

● α = 0.05 by convention 

 A. Read, ATLAS 
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Statistical method 2: Bayesian 

● Bayes' theorem states that

P s∣d =P d∣s⋅
P s

N

                                                                Probability for s: 
Bayesian prior

Normalisation

Probability that we observe 
data d  when we have signal s

                                                                              

Probability that we have signal s given data d  (posterior probability)

We don't 
know P (s), so 
it is normally 
taken to be 
uniform for 
s>0 (flat prior) 
and 0 if s<0

P (s |d ) is what we want, but P (d |s ) is 
what we easily can compute; Bayes 
theorem offers the “translation”. The only 
ambiguity is the prior.
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Set and interpret a limit
● Compare expected (background) and observed (data) limits. 
● In the absence of a signal, we can set an upper limit on the 

phenomenon: given what we observe, what is the maximum 
amount of the signal that can hide in data?

● If the upper cross section limit is lower than the theoretical 
cross section, we can exclude that region.

● If the observed limit is higher 
than the expected, we have a 
data excess.

● BUT we must take into account 
that we look for an excess in 
many places: trial factors (the 
look-elsewhere effect)

● Limit setting is quite CPU-
intense: can take a week on a 
good computing cluster.
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Closing remarks on the Higgs results
● Both CMS and ATLAS see a 2-sigma excess around 140 GeV, mainly in 

the H → WW → lνlν channel. Coincidence or a signal? Time will tell...
● ATLAS also sees excesses at 250 and 600 GeV. CMS does not. No 

signal likely!
● Trial factors (the look-elsewhere effect) have not been taken into 

account! The 2-sigma excess is not really 2 sigma...

 Presented at EPS 22 July 2011 
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Beyond the Standard Model: a guidline
● What to look for?

Anomalies! For example
● A mass peak in an unexpected place.

This could indicate a totally new particle.

● An excess of particles.
A deficiency of particles.
This indicates that our understanding of the couplings is 
inadequate – a new dynamics, mechanism or particle could 
be the cause.

● Nothing at all
Large amounts of ET

miss indicate a weakly interacting 
massive particle. Dark matter?
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The things you wished for that I 
didn't have time to explain

● The CMS detector – read more at http://cms.web.cern.ch/cms/
and ask the CMS people here.

● Detailed calorimetry – one of my favourite subjects that require 
more time than given. I recommend the Particle Physics 
BriefBook,  http://rkb.home.cern.ch/rkb/PH14pp/node1.html 
Calorimeter section as a starting point, and the references given 
there.

● sLHC (the LHC upgrade project). For some numbers about how 
powerful LHC will be, see 
http://project-slhc.web.cern.ch/project-slhc

● The Higgs mechanism. This is a theory question – ask Gabor on 
Thursday!

● Recent results (besides Higgs) – take a look at pdg.lbl.gov
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Summary of lecture 2
● Today, we have produced particles, 

reconstructed particles and interpreted the 
Higgs results.

● This is useful, and super cool!
● Use your time here at DESY to talk to 

people, ask a million questions. 
(We do love to talk about our research)
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References
● Overview information about CERN, LHC and ATLAS 

online: http://cern.ch, 
http://public.web.cern.ch/public/en/LHC/LHC-en.html, 
http://atlas.ch

● All experimentally verified particle properties: 
http://pdg.lbl.gov

● More about Monte Carlo generators: 
http://indico.cern.ch/conferenceDisplay.py?
confId=a042790

● Browse CERN publications: http://cdsweb.cern.ch
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Extra material: 
- more about jet algorithms

- more about Bayesian limit setting
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Hadronic shower – from e.g. a pion
● Contents of a hadronic shower:

- Visible energy 
  from e±;  π0  γγ→ ; ~50% 
  ionisation from p, π±, µ± ~25% 
- Hadronic
 invisible energy ~25% 
(nuclear excitations, 
break-ups)
- Escaped energy ~2% 
(mainly ν, some µ)

● Electromagnetic energy fraction increases 
with increasing hadron energy due to 
production of π0's in the shower

● Aim of hadronic calibration: Compensate for invisible and 
escaped energy.

(Grupen, “Particle detectors”)
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Sequential recombination jet algorithms

The kT algorithm
Main parameter: angular resolution D (=0.4 or 0.6)

Start with a list of input components i (e.g. clusters)

1) For each component, define d
i
 = k

T, i
2

For each pair (i, j) define 
 d

ij
 = min(k

T, i
2,  k

T, j
2) ∆R

ij
2 / D2

2) Find d
min

 = minimum of all d
i 
, d

ij

3) If d
min

 is a d
ij 
, merge clusters to a new cluster d

n

 If d
min

 is a d
i 
, the object is a jet. Remove cluster from list.

Repeat 1-3 until all clusters are in jets.
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Sequential recombination jet algorithms
summary overview

● kT algorithm  dij = min(kTi
2, kTj

2)ΔRij
2/R 2 

hierarchical in relative pT 

● Cambridge/Aachen dij = ΔRij 
2/R 2

hierarchical in angle 

● Anti-kT  dij = min(kTi
-2, kTj

-2)ΔRij 
2/R 2 

gives perfectly conical jets

(M. Cacciari)
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Bayesian limit setting overview
● Set a 95% credibility level upper limit. 
● Likelihood function L for a particular mass ν  

(data, background, signal,
                                                               i runs over the bins).

● Normalise the likelihood: P(d|s).
● Use Bayes' theorem to compute P(s|d) 

from P(d|s), using a flat prior.
● Integrate P(s|d) (the posterior 

probability) to 95%. That's the limit.
● Observed limit: use data.
● Expected limit: use background 

expectation to generate pseudo-data.

  Simulation example 
  √s =10 TeV MC 
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