Future e+e- Linear
Collider Projects

Why?
Status of the SM
Very short overview on physics at future LC

How?

The ILC Project
The CLIC Project
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Status of the Standard Model

We learned over the last ~50 years:

The matter is composed of
Quarks and Leptons
+ anti-particles

interacting via
force carriers
(Gauge Bosons)

missing: Higgs boson

top-quark 1995
tau-neutrino 2000

Is the Standard Model valid up to the Planck Scale~

3
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You heard about....

+ LHC Experiments
LHC Theory

« Astroparticle Physics
* Accelerator Physics
» Electroweak Physics

= You have an overview on the unanswered questions

= You may know why the LHC and astroparticle physics
experiments are not the end of the story

=> This lecture on future Linear e+e- colliders tries to
summarize these points and to show the planning procedure
for the next steps in high energy particle physics
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Hadron Collider or Lepton Collider ??

o o
p er e-
= proton = composite particle: s e = pointlike particle:
unknown Vs of partons, known and tunable Vs of particles,
no polarization of partons, polarization of particles possible,
parasitic collisions kinematic contraints can be used
a proton - strongly interacting: a e = electroweak interactions
huge SM backgrounds, low SM backgrounds,
highly selective trigger needed, no trigger needed,
radiation hard detectors needed detector design driven by precision
high energy & high precision

Both approaches are needed for a better understanding!

a
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Forces:
« Electromagnetic, weak,
strong
« gravitation ek
« different strengths depending wl
on energy

Mdfigheit
g

Forces at high energy:
,democratic’ ¢ unification

=

Elektro-
. o magnetische

. Kt i
Schwache } §

Kraft

i

Efokiromagnetisehi Kralt

- situation immediately
after creation of the
Universe
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Abstand [m]

Standard Model of electroweak interaction

see lectures given by Wolfgang Lohmann

Matter particles

T Ty Y Q
Vel, Var, Vo /2 +1f2| —1/2 0 .
. ;:a. o 12 —1z| -1 -1 } L-handed doublets
ep i T 0 0 -1 -1 R-handed singlets
uy, cp 173 1/2 +1/2 /3 2/3
d'y, sy Wy, /2 -1/2 /3 -1/3 L-handed doublets
ug R ig 0 0 4/3 2/3
dy Sq b 0 0| -2/3 -1/3 R-handed singlets
Weak hypercharge Y T,+ Y2 =Q
Weak isospin T 6
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Unification of electromagnetic
and weak interaction

SU(2), xU (1),

LFermiun = iW'Y“Dp‘V
D, =0, +ig,W,;T, +ig,B Y

G _ 9
V2 8m
2
sin?g, =1- __ G -
" m:  gZ+g? + Higgs
gl =T, mechanism

gv' =T3' —-2Q, sin’ O

e’ =4za =g} sin’ @, = g7 cos’ 4,

n'\W:

1
592"

m, =0

my =viVA
1

g —ﬁgv"
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+ Radiative corrections

Born relations are only approxmatlon m
Loop corrections:

w = w W W ZW W
8y xm? O p :>c]nmi
mw
Vertex corrections
z T > mtop

Precise measurements =
sensitive to top-quark and Higgs boson
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Radiative corrections...

Electroweak corrections are summarized in
form factors - effective Born approximation

. 2 m, ="z (1+ 1A

m; o B -
=Mz, o 2 2G.m
M 2[+\ ﬁGFmg] V2G,m;
]
_My COS Gy~ —
cosd, = Y

gl =T/ 9, =T3
o) =014, [sin? 4, ) o " = ga" [L-4Q[sin? 6(,,@

=> All parameters depend on top quark and Higgs
boson mass
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Precision test of the Standard Model

=> precise measurements of SM parameters
at previous e+e- Colliders: LEP and SLC

=> Constraints from Tevatron, LHC (myy, m,)

=> consistency checks

=> Higgs boson

=> are there signatures beyond the SM ?

10
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The status of the SM based on
precision electroweak measurements

Details see: http://lepewwg.web.cern.ch/LEPEWWG/

11
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« e+e- collisions,

LEP: Large Electron Positron Collider (1989 — 2000)

* 4 experiments Centre-of-mass energy
ALEPH, DELPHI,

L3, OPAL

89 GeV ... 207 Gev

unpolarized beams

12
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Stanford Linear Accelerator (SLC, 1989-1998)

» e+e- collisions
* 1 experiment (SLD)
« Polarized electrons
* Eons ~ 91 GeV

SLD detector

13
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The nineties — precision physics at LEP and SLC

LEP1 (1989 - 95, /s ~ 89—01—93 GeV)

e = 17 x 10% Z bosons = SM param-
eter

E o heavy quark physics (b, ¢), 7 physics

o QCD, measurement of a,
SLC (1989 — 1998, \/s == mz)

o polarized electron beam

e'e —+Z—qqly)

ole’e’) [pb]

e = 5.5 x 10" Z bosons = SM par.
LEP2 (1995 — 2000, 1/ = 130-209 GeV)

o 5M tests — W physics
* Searches: Higgs, SUSY

50 90 130 170 210 250
Js [GeV]
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Fermion Pair Production

Precision physics:

ete™ 4,2 = fF

e I'.q e r.q

e’ I,q )

M =M, +M,
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Cross section at the Z resonance
127 s’

Uf s)= et f

O T by

o |nh]

High statistics
® measure m,
= determine "
= determine couplings

- indirect information
about m; and my
from electroweak
corrections

8BS §1.5 0 975 95
s [GeV]
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Top mass predicted at LEP BEFORE top discovery

SM Higgs Mass and precision measurements at LEP/SLO

H

g™ Precision measurements @ LEP/SLC
§ ]
H : 5
Saes I z Fw
z <z s 3 .
t B
%
5
Year E :
EH
¥
I
Discovery @ Tevatron, 1994 T
(pp collisions)
T T T TR
Sabine Riemann DESY Summe _ Hesoastmuzicd Mass (GeVre')
The SM Higgs Mass history
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R .
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4 icodiit o 1 Precision measurements at LEP1/SLD
4y g | + my from Tevatron and LEP2
< + m, from Tevatron
oA | (see LEPEWWG)
1_ -
. Excluded . Tevatron exclusion for Higgs Tass
30 100 200 156 GeV <my <177 GeV (95% C.L.)
m,, [GeV]
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my < 161 GeV (95% C.L.)
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SM consistency check
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Up to now all measurements are in good agreement with SM

2u
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e+e- physics at highest energies

Precision measurements
* top quark physics
t decays before hadronization i i Za ]
o ZZ WW N i
» Higgs pysics
(mass, couplings)
« SUSY

Searches

« Extra dimensions
* Dark matter

+Indirect searches -
precision measurements ] iy 2006 _.
<> deviations from SM w? L . . i
predictions, interpretation L
in terms of new physics models Vs (GeV)
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The Higgs Profile

» Mass (in SM mass determines the profile completely)
» Higgs coupling
*toZand W:M,~gv,M;~gv
(9: gauge coupling, v: vacuum expectation value)
* to fermions: m; ~ g; v
* Higgs self-coupling, Higgs potential

An important aim of future e+e- colliders:

Establish the Higgs Mechanism as responsible for mass
creation and electroweak symmetry breaking

22
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Production of the Higgs Boson

74
Higgs-Strahlung WW-Fusion

y ' y 1 Nygges=0OL
o olete - Higgs) ] FZ— Higgs
e Huvp

v

Expect ~17 Higgs events
per hour

—“>Higgs factory !!

. : . . M | - Higgs mass
100 0 i 300 -IED 500 (] ! 0

MH > o ~ (Higgs coupling)?

23
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Higgs Self-Coupling

Do we see the SM Higgs? The ‘expected’ ew symmetry breaking?
Reconstruction of potential <> Measurement of Triple-Higgs coup

Positron Z’-Boson

V(@)=2|®]2 +1 9]¢ 2<0, 4>0
Vacuum expectation value v2 = - p2/a
V(H) =AvZH2 +Av HS + Y4 H4 my2 =22Av2

24
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Higgs Self-Coupling

et oz ) oz ) 2
> z o > z ~> oz

> i e pa e N |
o H . " e .

e " " "

Sensitive to L >  |Ac/o=13 % > AMA=23 %
- TESLA TDR

SM Double Higgs-sirahiing: ¢ ¢ — ZHH
o[

tiny x-section: 0.15 fb
- need high luminosity "

ceven, N5 = 800 GV

Complex final state: 01 e Rt
ZH->ZHH->qq bb bb
~——_
—
“IOU 120 140 “0 - lc"\!]&}
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Summary 1 - Physics at ete- colliders

fascinating physics potential of FLC cannot be shown
completely in this lecture

Key word: Precision physics - Standard Model and
beyond

- high luminosity, high energy
- excellent detectors
-> precise theoretical predictions

Top physics - mass and couplings (E,, 2 340 GeV)

Based on LHC results to be tested at a high energy e+e- coll.:
- Higgs boson: mass, couplings, gauge structure

- new physics: extra dimensions, SUSY, strong ew
symmetry breaking, ...

27
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10,000
) LHC
7 1,000~  Hadron Colliders — n
€] Tevatron | ’ Future Linear Collider]
; ® LEPII ___FLC >
; 100 |- SLC, LEP | Energy:
=] Tristan ¥ Calbilay =500 GeV
| PETRA, PEP i ..3-4TeV
o CESR
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YEAR OF COMPLETION 26
The e+e- collider key issues
Energy
« Determined by technology
= Gradient
- Length of accelerator
Luminosity

« High statistic for precision measurements
=>Luminosity as high as possible

Beam polarization
« produce polarized e-, e+
« bring polarization to interaction point (IP)

+ precision measurements of these parameters (E, L, P)

28
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,,’,‘_," ILC Baseline Machine (2007)

Physics between 200 GeV and 500 GeV
Electrons: Polarization P > 80%
Energy stability and precision below 0.1%
Luminosity:

Year 1-4: L, = 500 fb-':

> expected statistics:
few 104 ee > HZ at 350 GeV (mH=120 GeV)

10° ee > tt at 350 GeV
5105 (1-105) ee = qq (up) at 500 GeV
108 ee > WW at 500 GeV

statistical cross section uncertainties at per-mille level !!

1 AL _AE AP
Ao ollglEglh | 3
CEINCLCEC P 0(107)

> Precision measurements

29
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Design
of future e+e- Colliders

30
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Design of future e+e- Colliders

* Which centre-of-mass energy ?
» why linear collider?

* which luminosity ?

» accelerator components
«ILC
« CLIC

31
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Which centre-of-mass energy??

Physics:

* hint for light Higgs Boson < 200 GeV

» SUSY: s-particles < 1TeV, (~200 GeV ?)

* No Higgs: new strong interactions <1.3 TeV

« threshold for top-quark pair production: 350 GeV

Scale of electroweak symmetry breaking : ¢ = 246 GeV

Technology:
* big steps are risky

Js =500 GeV s “reasonable” first step

Upgrade to ~1 TeV must be possible
Multi-TeV accelerator to extend LHC search reach

32
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Why linear colliders?

Synchrotron radiation AE E4
- Energy loss per turn - oC 7

(radius R) revolution Rm

B LEP (R, = 3.1km):

AE / Umlauf = 180 MeV
AE [t = 2TeVis

. Bei E,,,,, = 100 GeV:
AE [t ~33 TeVis Il

7

Energy loss has to be compensated by RF system !

no problem at hadron colliders (m,~ 1GeV ~ 2000m,) with
synchrotron radiation

Bei E, .., = 50 GeV (E,,,,=100GeV):

Scaling of costs at a circular collider

» ‘Linear costs (tunnel, magnets, etc.):

$in <R
* RF costs:
$zr c AE o E4/ R
« Cost optimum if $lin = $RF
> Ry ~ E?

Total cost: ($,;,+$g¢) ~ E?

For details check: B. Richter, NIM 136 (1976) pp. 47-60!

Sabine Riemann, DESY Summer Student Lectures 2011

Scaling the costs of LEP ....
LEP-ll Super-LEP Hyper-

LEP
E.n GeV 180 500 2000
L km 27 200 3200
AE GeV 1.5 12 240
$t 10° SF 2 15 240

Circular e+e- collider for Eg),> 200 GeV is ineffective!

= The e+e- future is linear: $ .~E

35
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Luminosity of future e+e- colliders
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N=Loc. Design luminosity?

Physics argument: ) 2

» as much as possible, o ~ 1/ E,,, > L~E,

* precision measurement with uncertainty O(1%)
>10000 events

» Example: SM-Higgs production ~20fb > need 500 fb™'

Hup oo

olete — Higgs) [b]  HZ— | 5 years <500 days
- - Perday > 1fb™ or

o0 "
L >1 x 1034 cm-2s-1

Or more.....

100 200 300 400 500 GO0 oo

37
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Luminosity

Number of
Number of . particles per Repetition rate of
bunches per “train”  bunch “punch trains”

nN?f
| =2 "™ ¢H

/ Beam enhancement factor

Beam size at interaction B b ) fion > Li d
point (|P) eam-beam interaction Increase:

by factor 1.5-2 due to “pinch effect”

38
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Pinch effect

Electrons - < positrons

39
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Luminosity at linear collider

Beam Power, Pyeam = NRF > beam PrF

Lzﬁ(Ecm frepnbN)LX HD

P
cm X7y
1

L:4”Ecm (U'PRF)

N

x H - M — efficiency to transfer

o.0 power from RF >beam

x=y
Example:
Ecm =500 GeV
N =100
Nb = 100 > Pbeam = 8 MW
frep = 100
Taking into account efficiency n, power > 100MW needed
to accelerate and maintain luminosity

~ Repetition rate f,, is power limited

40
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Luminosity at linear collider

Beam Power, Ppeam = NRF > beam PRrF

1 N
L:47ZEcm (Ecm frepnbN) ; ;XHD
1 VN -
L= (77. Re) xHp 1 — efficiency to transfer
ArE,, : ; power from RF > beam

» High RF power needed to accelerate beam, transferred
with efficiency n

> Repetition rate f,., is power limited in linear colliders
- less Iuminosify than with circular colliders

=> Regain luminosity using small beam sizes

41
Sabine Riemann, DESY Summer Student Lectures 2011

Beamstrahlung

-y
— Radiation of hard
~ photons in strong

.y el-magn. field

= Beamstrahlung

2 > Energy smearing +
535 = E o _Ecm % background in detector
E o, \oy+0y ) - Limit: 555~ few %
Flat beams:

* oy, <<o, —> minimal beamstrahlung
¢ small oyo, = high luminosity

42
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Maximize luminosity

Finally: %
™ Lente(n)

cm gY

+ High transfer efficiency from RF to beam: M
» High RF power (klystrons)
+ small vertical emittance: ¢,

v
=~ -
+
-~  Hoem] -

A
I\

FFTB 50nm

[ ILc — 1 Eam ]
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Future e+e- projects

ILC CLIC

gggggﬁgggzctmg * Normalconducting
acceleration

» 2-beam acceleration

* 31.5MV/m, 1.3 GHz . 100 MV/m, 12 GHz

Ecm = 500 GeV E,,, = 500 GeV — 3 TeV
(> 1TeV)
« Still fundamental R&D
+ Technology at hand phase
(XFEL)

44
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The International Collider Project (ILC)

* Produce a design for the ILC that includes a
* detailed design concept
* performance assessments
* reliable international costing
+ an industrialization plan
* siting analysis
» detector concepts and scope

45
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www.linearcollider.org

* Reference Design Report (RDR), 2007:

* Executive summary
* Accelerator

* Physics at the ILC

* Detector
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ILC Collaboration
=|LC is most advanced future project for reasearch
at high energy frontier
=International team: Global Design effort (GDE)
« Joint effort of all leading accelerotor labs

47
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The ILC (2007)

Ec.m adjustable from 200 — 500 GeV (upgradeable to 1TeV):

* L~2x10%m2s, collect 500 /fb in 4 years
« Energy stability and precision below 0.1%
Polarized electron source P > 80%
(Polarized) positron source (P > 30%)
two damping rings
Main linacs: 16 000 SC cavities, 2000 cryomodules, 31km
2 “push-pull” detectors

YVVVYVYVY

more than 100 labs contribute [ 7=




o0 Towards the TDR in 2012

F é'a_ ,

€7 Main Linac

B. Foster - LC Forum Munich 7/11

Not to scale

Schematic 30- 20110011 B
49|

The ILC bunch structure

Superconductiong RF has small dissipation losses in
cavity walls = long pulses with large bunch spacing
are possible

: 200 ms .
. 968 ps )
369 ns
—
/ // | | // ‘
I
2625 bunches

(reduced by factor 2 in new baseline design SB2009)

Electron source
Positron source \
\ e N @ )

ILC: Sources

Requirements:
« Long bunch trains of high charge bunches
(~3000 bunches per train, 5 trains per second)
» Small emittances
* Beam polarisation
» Mandatory for electrons

+ Desired for positrons
51
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Electron Source (polarized)
Damping fing
Faraday Cup
Energy Compression s and Mott
: : L-band (= 0.75) i
Spin Rotation NC tune-up dump TW Bunching p:?_‘:z;;ﬂ
SC o LINAC (5.0 GeV) (113KW]  and Pre-Acceleration
P I Y R = g i 20
SC tune-up dump (311 kW)
BxloMw Energy Collmation 10 MW 10MW 10 MW g%
(Vertical Chicanel SPARE he
FA O Drive
SHE Lasar
laberve
32nC &nC Ground]
I 76 MeV - 5.0 Gev | 140 ke - 76 MoV |
FIGURE 2.2-1. Schematic view of the polarized Electron Source
52
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Production of Positrons

| Primary Beam | | Target | | Capture Optics |

Photons 10-20 MeV
thin target: 0.4 X,

Electrons 0.1-10 GeV

thick target: 4-6 X,

53
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Positron source

250GeV e to IP

ete- pairs

. INsINsINs NSNS

P

L
e-linac s

.....v..... ~30MeV photons

undulator (~100m)

0.4X target

Polarized Positrons from helical undulator

* Ribbon-wire wound in a double helix

Circularly Polarized
., Photons

e beam

EEY
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Undulator based positron source

250 GeV 250 GeV To

Collisions
Helical

Undulator

56
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Short undulator prototypes

57
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Positron Source Layout

Pre-accelerator
(125400 MeV) *

Target Booster Linac

105 Ge)

250 GeV

—_—
Undulator t Gk by X 1Dump
i Capture RF - R
Collricy nmwen  * OUP Dunplng fing
{not to scale)

2001
BT

Target wheel (rotating to
distribute heat load)

58
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ILC: Damping Ring

+ Damping rings reduce emittances of e- and
e+ from source
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Damping rings (DR)
d Emi;tances of e- and e+ from source are too high

dipole RF cavity DR: Acceleration in
longitudinal direction

Energy loss by radiation

* Interplay between radiation and acceleration reduces
transverse emittance
* Reduce damping time from synchrotron radiation b
damping wigglers
(SR due to dipoles is not
not sufficient)
* ~100 ms damping time

60
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Damping rings

Long pulses: —

incomin

Tmsxc = 285km! \

vceding  traj@ctony of
:mrsﬂ

—>compress whole bunch
train to DR with \
O(10km) ot

- Injection & extraction

61
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ILC: Energy and Gradient

62
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Energy of the ILC

bang
>t

VYV VYV VYV VVVVia®. VYV VVVVVVVVVV,

}‘7 10 km 4" (Remember: cost ~ E)

=> high gradient

For E., =500 GeV:
Gradient G = 250 GV / 10 km= 25 MV/m
(L=28.8km: 550 GeV > G=23.4 MV/m
800 GeV > G =35 MV/m)
(LEP2 cavities ~ 7TMV/m)
=>» and high efficiency to transfer primary power
to the beam
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e*

e

63

Gradient in ILC cavities

* fundamental limit at 55 MV/m
higher fields - critical B field of superconduction is exceeded
* superconducting cavities experience: FLASH

Challenge

1. Increase gradient
2. Reduction of costs
3. Mass productions

’ A2 . Superconductlng 9-cell caV|ty ; ‘
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Gradient

In practice: Limitation due to quality of surface and niobium
Gradients > 35 MV/m reached after “electro-polishing” of the
surface

200 ym - 200 um

Ls

~ Average surface roughness:
1um — 0.1um

- BCP EP

etching - “buffered chemical polish® electro-polishing

Sabine Riemann, DESY Summer Student Lectures 2011

65

The quality factor Q

* Primary AC power - beam
- Key number for cavities: Quality factor Q

Q is a measure of how much energy the cavity stores divided by

how much it loses on each oscillation of the RF electric field:

ILC goal: Q =10"°

A church bell (2000 Hz) with Q of 1010
would ring for several months after
being struck.

stored energy

energy loss per cycle

W
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10

Qg 10I'3.

10° S : .
0 10 20 30 40
Accelerating Gradient (MV/m) o7
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SCREF, big cost driver

High gradient R&D goals:?
* >35 MV/m in 9-cell cavities

Superconducting RF

Cavity Integration with Cryomodul@s eSSl s
Accelerator system engineering and test ««-

« Cavity string test in one cryomodule

» Cryomodule string test with beam acceleration
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e

KLYSTRON MOBULATOR
W, 1d ) AV 10 A

" ACAVITIES  QUAD 4 CAVITIES # CAVITIES r

S CRNOUOBULES
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ILC: Beam delivery system
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Tasks of the beam delivery system

+ Collimation
* Remove beam halo to reduce background
* Beam diagnostics
* Measurement upstream and downstream the interaction
point
* Final Focus System
» Sgeeze the beams to nm sizes < high luminosity
* Beam Dumps
* Dispose spent beams after collision

71
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Final focus
f f

1

Telescope optics to de-magnify beam by factor m :?1 3
2

Typically, m=300 needed
With L* =2m < f, = 600m

| —

—

/|

However, also corrections for large chromatic and geometric
ﬁberr?tlons needed (life is much more complicated than depicted
ere...
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Interaction Point

Crossing angle at interaction point

x
- = Reduction of luminosity
g = by factor ~10
p—
S -_
_,.-""‘” '\\.
X 2 -
- ___a RQ_B Need transverse (crab) RF
- N cavity to tilt the bunch
3 | for collision
|
‘_/71RFW Ny,
/ ‘\\
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FD Cryostats

LumiCal

1P Chamber

74
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Detectors and Interaction Region (IR)

» Desired: at least 2 experiments

« At linear colliders, the integrated
luminosity does NOT scale with |
the number of interaction regions I}

« ILC proposal:
only one IR,
but'2 detectors

Solution:
Push-Pull system,

both detectors on
platform

(but different size of
detectors)

Sabine Kiemann, UESY SUmmer STUdent LeCtures ULl

* Under study:

* Deep sites:

- Americas: Fermilab
- Asia: Japan

- Europe: CERN

- Shallow sites:
- DESY
- Dubna

- Choice of real site
- will be a political decision!




The cost estimate in 2007

» Estimated cost (2007) ~6.7 Billion ILCU*
* 4.87 BILCU shared
» 1.78 BILCU site-specific

Zax B SCRF Main Linac
_ Conw. Facilities, Civil
Construction
37%

Accelerator Systems

+ ~10,000 person-years “implicit” labour
» Engineering design, preparation activities, prototypes
+ Surface acquisition, underground easement costs
+ Detectors
+ Contingency for risks, escalation (inflation)

*1ILCU = 1 US Dollar (2007) =0.83 Euro = 117 Yen
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ILC Technical Design R&D Plans

* ILC could be built now — if money was available
* Budget cuts (black Dezember 2007)

* schedule delayed
* Technical Design Phase 1 (till summer 2010)
« Critical R&D demonstrations
=> ‘re-baseline’ document
» Technical Design Phase 2 (till end 2012)

->Ready for construction / decision to politicians
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ILC Timeline
+2012: Technical Design Report
CLIC
LHC results feasibilty
study
T ;e Coounton
I ix'xrence Design
I, e e

- LC RAD Programene

E = Exprevsion of interest 1 Hest

Irter=ationy Uangermast
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# ILc & CLIC ?

Decision will be driven by
* Physics requirements
* LHC results
» Technology success
* Feasibility

80

Sabine Riemann, DESY Summer Student Lectures 2011




The Compact Linear Collider (CLIC)
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;‘: The Compact Linear Collider (CLIC)

*Develop technology to extend e-e+ linear
colliders into the Multi-TeV energy range
http://clic-study.web.cern.ch/CLIC-Study/

* Physics motivation:

* http://clicphysics.web.cern.ch/CLICphysics
* "Physics at the CLIC Multi-TeV
Linear Collider”
by CLIC Physics Working
Group:CERN 2004-5
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Q‘i COMPACT LINEAR COLLIDER (CLIC)

E., energy range
« from ILC to LHC: E_,, = 500 GeV - 3 TeV

=acceleration gradient: ~100 MV/m
=“Compact” collider: total length ~50 km at
3TeV
«L > few 103 cm2s-"

* E., and L to be reviewed when LHC physics results
available

Total power consumption <500MW
= (LEP in 1998: ~240 MW)
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1‘: CLIC: Two beam scheme

* Drive Beam supplies RF power
* low energy (2.4 GeV - 240 MeV)
* high current (100A)

* Main beam for physics
* high energy (9 GeV - 1.5 TeV)
* current 1.2 A

84
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©

126 kystrons

CLIC layout

MW, 139 | | circumfetences
delay loop 724 m
drive beam accelerator CR11448m

CR24343m
-

Ll

126 kiystrons
33 MW, 13945

drive beam accelerator

CLIC parameters

©

Thm * Thm
delay loop | > < | delay loop
@ @ decelarator, 24 wecton of 876 m

e !!t!t "!t!t i\!t!t! E!t!i! ' ___m.m £ Ji!:{ t!t!t & !t!uﬁ Lm nee
ﬁr 275 kml 275 km 445
[FAr=120m @ main linac, 12 GHz, 100 MV/m, 21,02 km L @* main linac TA raddius = 120 m

- 48.3km "
CR  combiner ring

TA  twmarcund

DR damping ring

| boostor linac. .14 Gel

P interaction point
- dump

ILC CLIC CLIC

500 GeV | 500 GeV 3 TeV
Lumi [10%4cm2s™] 2 23 5.9
Repetition rate [Hz] 5 50
Bunch separation [ns] 370 0.5
Beam pulse duration 950us 177ns 156ns
Beam size [nm] ~600/6 | 200/2.3 40/1.0
horizontal / vertical
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* Beam sizes in linear colliders
. 1000
E sLc|s
£ 100 FFTB|
2 *
: Thrrd
| o el
o CLIC 500 GeV| / -
::; 3 Tev/‘ ILC
s 1 GeV 500
s |
0.1 \ i
10 100 1000
Horizontal Beam Size (nm)
-> High level of beamstrahlung at CLIC (3TeV)‘
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* CLIC accelerator program

+ Organisation

» Strong CLIC/CTF3 collaboration (32 institutes involving
19 funding agencies of 17 countries)

* Uptoend 2010:
» Demonstrate feasibility of CLIC technology (CTF3)
» LC design based on CLIC technology
= Estimation of its cost in the CERN area
= Conceptual Design Report including cost by 2010
* ~End 2015
» Technical design report

Approval ? First beam (~2023) ??7?
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CLIC Test Facility (CTF3)

» Addressing all major CLIC technology key issues in CTF3
» Drive Beam generation (fully loaded acceleration, bunch frequency
multiplication )

* CLIC accelerating structures
» CLIC power extraction transfer structures (PETS)

CTF3 — Layout

>

DRIVE BEAM
LINAC

4
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Nominal CLIC structure performance
s demonstrated

Example of fruitful collaboration:
Design@CERN, built/tested @KEK, SLAC

b T18 [1] 230 ns, 1400 h
* T18 [2] KEK 252 ns

A T18[3]230 ns,200 h

O TD18[1]1230 ns, 1000 h
O TD18[2] KEK 252 ns
—CLIC goal

CLIC:

breakdown rate vs. gradient

ithout improvement
P by RF

conditioning

3

eakddwn probability [(m

[ 80 85 90 95 100 105 110 115 120
Average unjoaded gradient (MV/m)
4

CLIC goal:100 MV/m loaded with BR<3 10-7/m
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Summary 2: Accelerator design

Scientific case for a LC is strong and convincing,
a world consensus exists on its importance and
on its timing w.r.t. the LHC

Two projects — ILC and CLIC
* The SC technology for the ILC is well developed

* 2012 ILC Technical design will be ready
- Technical Report (TDR)

» CLIC Conceptual Design Report ~2011
Technical Design Report ~2015

 Politicians are following the process
(technical decision, joint global design..)
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Detectors

92

Sabine Riemann, DESY Summer Student Lectures 2011




Generic Detector

] Beam Fipe
(center)
B Tracking
Chamber
[ Vertex
detector

WEM

Calarimeter
B Hadron
Calarimeter

[ Magnet coil
M Return yoke

with muon
system
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Basic detector design concept

! Precision measurements !
Performance goal (common for all detector concepts)

« Vertex detector: 8(IP)<5@10/psin¥? 6[um]
excellent point resolution <4pm (5x better than LEP)

* Tracking: S_pzt <5x10°° [GeV’l]
p

(10x better than LEP) t

- Jet energy resolution 9E _ E[E in GeV]

(2x better than LEP) E JVE

- Detector optimized for particle flow algorithm (PFA)
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The Particle Flow Concept

* Typical jet:
* 65% visible jet energy from charged hadrons
* 25% photons (from = > yy)
* 10% neutral hadrons
* Traditional calorimetric approach:
» Measure total visible jet energy in ECAL and HCAL

» But 70% of energy are measured in HCAL & problem:
large fluctuations, poor resolution

-PFA:

Use the sub-detector with the best resolution for the energy

measurement

» Charged particles measured in tracker (essentially
perfectly)

* Photons in ECAL

* Neutral hadrons in HCAL

* Only 10% of jet energy from HCAL - substantially
improved resolution
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 ;-=’“=:-—~<-',_“-/..___} Validated ILC concepts '-"E

ILD: International Large Detector
“Large" : tracker radius 1.8m
B-field t35T
Tracker : TPC + Silicon
: high granularity particle flow
ECAL + HCAL inside large solenoid

“Small" : tracker radius 1.2m

B-field +BT

Tracker : Silicon

Calorimetry : high granularity particle flow
ECAL + HCAL inside large solenoid

CLIC detector concepts will be based on SiD and ILD.
Modified to meet CLIC requirements

hitp:iwww cern chied Lucie Linssen 13/11/2000 &7

More details see: http://www.ilcild.org/, www.linearcollider.org/physics-detectors/Detectors




Summary

The LHC results will need to be complemented by precision
measurements at a e+e- collider

The parameter for the FutureLC will be constrained by the LHC
results

ILC and CLIC - both have a strong programme
« ILC is the far most advanced collider design

« CLIC < high energy option

ILC and CLIC: Synergy and competition

Both ILC and CLIC demand high-tech solutions on yet untested
scales

More information: http://www.linearcollider.org/
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