
Working with Linux

Wolfgang Friebel

Summer student lectures 2011

The Window manager

Before logging in a window manager can be chosen

If you are already used to e.g. Gnome or KDE select that one

Otherwise the recommended choice is Gnome

 Other Windowmanagers available as well

KDE, a widely used alternative to Gnome
Icewm, a lightweight window manager
Windowmaker, modeled after the nextstep user interface

After login the window manager fulfills several tasks

Start applications by selecting from menus or clicking on icons

Have applications running in windows

Move windows around and resize windows

Switch between virtual desktops thus enlarging your useable screen area

Copy and paste contents within or between applications

The look and feel of the window manager is highly configurable

Editors

A variety of editors to chose from for different purposes

for programming well suited editors have syntax highlighting like:

vi, vim, gvim very powerful editor[s], steep learning curve, very efficient afterwards

emacs another powerful editor, very rich command set and plugin system

nedit easy to use editor, especially for beginners, not very capable

gedit easy to use editor, comes with gnome

kedit easy to use editor, comes with KDE, no syntax highlighting(?)

The shell

Many but not all programs can be started from the window manager

Many more things are possible from within a shell

A window running a 'terminal program' and within that terminal program another
program, a 'shell' is started that lets you interact with the computer

The (login) shell is started from the WM and inherits some variables (e.g. LANG)

A terminal program is usually found in the 'System' or 'Utilities' menu

Popular terminal programs are gnome-terminal, konsole and xterm (menu entry 'terminal')

There are several shells available

zsh, bash, ksh, sh with similar functionality and syntax

tcsh and csh with a different syntax, not recommended

By default zsh is started in the terminal window (login shell)

zsh is almost identical to bash but has some advantages (see later)

bash cannot be started on login, but by typing bash you change the shell to bash

The shell prompt

After invocation the shell displays a prompt and does wait for input

The shell prompt looks different depending on the shell

zsh

bash

The zsh prompt displays the host name (pub2) and the working directory (~)

When typing after the prompt (the command line) a line editor is active

Backspace deletes before, Delete under the cursor, arrow keys, Home and End do work
as expected, other keys such as CTRL-K, CTRL-W can be used to modify the line as well

Shell history, shell completion

A history of text (commands) typed is preserved

Arrow keys up and down move within the history

Press Enter to execute a displayed command from the history

Press CTRL-O to execute a sequence of commands from the history instead

Search for commands starting with some text in the history by typing that text and
then use PgUp, PgDn to search within the history

Intelligent completion of commands, file names etc. is built in

Pressing Tab completes a unique part of all possible completions

les<Tab> displays less
Pressing Tab a second time shows all possible completions

less<Tab> displays less lessc lessecho lesskey
Pressing Tab further on cycles through the completions (Shift Tab backwards)

Completion depends on context: z<Tab> completes cmds, ls z<Tab> completes files

works on commands (e.g. z<Tab>), users (e.g. ~z<Tab>), variables (e.g. $Z<Tab)
files and directories (e.g ls z<Tab>) and even command line options (gcc -s<Tab>)

Shell syntax

Two families of shells, only bash/ksh like syntax discussed

Shell scripts help automating simple tasks

All important language concepts existing: variables, conditionals, loops, functions...

Shell programming nevertheless not as flexible as other scripting languages

Correct quoting and amount of white space is crucial
For larger tasks perl, python etc. is recommended

Use aliases or functions to define frequently used lengthy commands

See what aliases we have already defined: alias

Define new aliases, e.g. alias la='ls -la –color=tty | less'

See what functions are defined: functions

Define a new function: function v() { vim ${*} } ${*} means 'all arguments'

Aliases and functions may be set in ~/.zshrc

Shell variables

Variables

Assignment: PRINTER=znlo1 no space allowed, quote text with spaces

Usage: echo $PRINTER can also be surrounded by “ (double quotes)

Visibility: export PRINTER make vars visible to child processes (env vars)

Environment variables control processes (env to list its names/values)

PATH colon separated list of directories where the shell looks for commands

LANG influences several aspects of language dependent input/output

Other useful ones like OS, HOST, SHELL, TERM, USER, LESSOPEN

Variables can be set globally

Put the definitions in ~/.zprofile or ~/.zshenv

do not try to modify important environment variables such as PATH

Variables can be expicitly passed to commands: <VAR>=<value> <command>

Control flow

Several forms of conditionals

if [$a = 1]; then; echo hi terminate a command by newline or semicolon

 else; echo ha; fi spaces and semicolons are important here

if test $a = 1; then; echo hi; fi the cmd test is almost the same as the cmd [

if [[$a == 1]]; then; echo hi; fi [[is not a command but a shell built in

test $a = 1 && echo hi calls echo if cmd before && returns 0 (success)

test $a = 0 || echo hi calls echo if cmd before || fails (content of $? not 0)

Loops

for i in 1 2 3; do; echo $i; done (zsh only, bash needs a new line after do)

for i in {1..10} do; echo $i; done; (again, no one-liner in bash)

For other constructs (while, until) and many more details see man page

Shell scripts

First line decides which program executes the script

#!/bin/zsh or #!/bin/bash or #!/bin/ksh or #!/bin/sh

Try to use shell syntax that is not specific to one of these shells

Can be used like any other command if the script is in the PATH and executable
(chmod +x <script>), otherwise zsh <script> will work as well

Scripts can be made more universal by using arguments

Available inside the script as $1, $2 etc.

or by 'eating' the arguments using <var>=shift

Scripts can indicate success or failure

The return code (contained in variable $?) indicates success or failure

Can be explicitly set by exit 0 (success) or exit <number> failure

Will implicitly set otherwise by the last command executed in the script

Zsh documentation

man zshall (compare also: man bash) comprehensive

http://zsh.sourceforge.net/ reference URL

http://grml.org/zsh/zsh-lovers.html nice to read

http://zsh.sourceforge.net/
http://grml.org/zsh/zsh-lovers.html

Files and directories

Some important things to remember

File and directory names are case sensitive

May contain arbitrary characters (not recommended though)

Some characters have to be escaped when typing, e.g. space in 'My\ Documents'
(Tab completion would have done the correct escaping

file/directory names starting with dot are hidden from display (use ls -a instead of ls)

File name extensions such as .c .h may be important for proper functionality
(compiling) of applications, others like e.g. .pl are a pure convention

Locations relative to the current dir can be written using . (this dir) and .. (parent dir)

Hard and soft links

Hard links are referencing the same disk contents, are hard to detect in file listings,
do not work across file systems etc. and should be avoided (ln oldfile newfile)

Soft links consist of text describing the path to a real file. They are easily recognized
in ls -l listings and have less restrictions than hard links (ln -s oldfile newfile)

dots

Special directory names

Relative addressing of files and directories using

. (dot) the current directory

.. (two dots) the parent directory

Home directories

most shells and some applications recognize the special meaning of the tilde char

~ my home directory

~foo home directory for a user with account name foo

Special directory names

/afs/<cell_name> such as /afs/ifh.de, /afs/desy.de, /afs/cern.ch are mount points for
(volumes in) the world wide uniform file system AFS

/lustre name space for mount points related to the lustre file system

Wildcards in the shell (globbing)

Multiple file names (and some other strings) notation

Wildcard expansion is done on some types of info in the shell, most notably file and
directory names

* (star) matches any string (including the empty string)

** (zsh only, file names only) matches multiple directories

? (question mark) matches any single character (not a null string)

[...] (chars enclosed in brackets) matches any of the enclosed characters

[^...] matches any character which is not in the given set

more wildcard patterns available depending on shell, see the man page

Powerful syntax: ls **/*.[ch] list all .c or .h files in current dir and subdirs

When to quote wildcards

Wildcards are interpreted by the shell, not the application. To pass it on use quotes

tar tvf sources.tar.gz '*.h' lists only header files from the archive
scp pal.desy.de:'*.pl' ~/ copies .pl files from a Hamburg computer to here

Navigating in the file system

Using cd to change directory

cd without arguments changes into your home directory

cd <path> changes into a different directory (relative and absolute path notation)

cd - changes to previous directory

cpd lets you change into one of the previously used dirs (DESY zsh only)

cd $var changes into a directory whose name is contained in $var

<path> changes to <path> if path is not a command as well (zsh only)

Finding a file or directory

locate <string> finds all files/dirs containing <string> in its absolute path. Only for
files/dirs on the local disk, not in AFS and only for names that existed yesterday

find . -name <filename> finds filename in or below current directory

ls =command (zsh only)(same as which command) absolute path for command

AFS Storage

Most important for daily work, home directory is in AFS space

Important differences to local disk storage

No 'group' and 'other' UNIX rights

Almost all directories protected by ACL's

ACL changes can cause security holes, dirs may become world readable (literally!!!)

no ACL's for individual files

Restrictions for certain file types (hard links, named pipes) and concepts (like
locking)

Authenticated access to AFS space, limited to 25 hours (AFS token)

Disk space is broken up into volumes having disk quota assigned

AFS space organization

Individual volumes linked together, building a world wide visible tree of directories

 /afs/ifh.de/user/f/friebel

Home directory (~/) mounted under /afs/ifh.de/user/<initial>/<accountname>

AFS space belonging to your group in /afs/ifh.de/group/<groupname>

Quota in home dir is 500 MB, group space can be requested by group admins

 pts mem group:<groupname>_adm # yields the account names of admins

A snapshot of the home directory taken at the evening before is in ~/.OldFiles and
can be used to retrieve accidentally deleted files (does not count towards your
quota)

Other cells address volumes in other institutions

/afs/cern.ch/... cern.ch CERN
/afs/infn.it/... infn.it INFN (Italy)
...

home dir volumecell name

Important AFS commands

Useful AFS commands

klist # list validity of your Kerberos Tickets and the AFS token afs@IFH.DE

kinit # obtain a new Kerberos ticket and an AFS token (see also klog)

Kerberos tickets grant you access without a passwd to further services (mail, ssh, svn, ...)
fs lq [<path>] # list the volume name and the quota for the current location or <path>

Volume names whose 2nd letter is n are usually scratch volumes (not backed up)
fs la [<path>] # list the access rights for the current dir or the dir belonging to <path>

The letters rlidwka stand for read/lookup/insert/delete/write/lock/admin rights
arcx recover # recover deleted or old versions of files from backup if existing

Troubleshooting

Most access problems related to missing/expired AFS tokens (as well on Windows)

Use klist or klog to verify you have a valid AFS token, kinit to get a fresh one

Locking your screen or logging out when leaving the computer helps (you get a new
token on unlock or login)

Useful AFS commands

klist # list validity of your Kerberos Tickets and the AFS token afs@IFH.DE

kinit # obtain a new Kerberos ticket and an AFS token (see also klog)

fs lq [<path>] # list the volume name and the quota for the current location or <path>

Volume names whose 2nd letter is n are usually scratch volumes (not backed up)
fs la [<path>] # list the access rights for the current dir or the dir belonging to <path>

The letters rlidwka stand for read/lookup/insert/delete/write/lock/admin rights
arcx recover # recover deleted or old versions of files from backup if existing

Troubleshooting

Most access problems related to missing/expired AFS tokens (as well on Windows)

Use klist or tokens to verify you have a valid token, kinit or klog to get a fresh one

Locking your screen or logging out when leaving the computer helps (you get a new
token on unlock or login)

mailto:afs@IFH.DE
mailto:afs@IFH.DE

AFS access to files

AFS file and directory protections

All files in a directory do have the same ACLs in addition to the UNIX user rights rwx

All users belong to system:anyuser, authenticated users in addition to
system:authuser and <username>

Users may belong to additional groups, which can be seen by

pts mem <username>

Additional host based groups such as desy-hosts may be used to restrict access

Access to files is granted only if the access rights and group memberships allow it

Default protections in your home dir

~/ # world wide lookup access (ls), read and write access by you

~/public # world wide read access, additionally writable by you

~/private # read/write access by you, no other access rights

~/.xxx # some directories such as ~/.ssh are accessible exclusively by you

Access rights for files and directories

Display of rights

ls -l listing start with 10..11 chars displaying access rights

1st char is l and d for symlinks and directories respectively, - otherwise
Then 3 x 3 chars rwx for read, write and execute rights for owner, group and others
Group and other rights do not have any meaning in AFS
The x right for directories is the right to cd into it, without that right no directory listing!

The permissions rwx for owner/group/other can be written as an octal number

If a bit in the number is set it means that the corresponding right is granted
Example: 644 means read and write right for owner, read rights for group and other users

In the AFS file system ACL's are used to further restrict access

fs la <path> displays ACL's in AFS
Very rarely further file attributes may have been set (see lsattr command)

SELinux may restrict rights further, not easily recognizable by users

Setting access rights for files and directories

Non AFS file systems

chmod <mode> <file> sets rwx rights for owners, group and other

Mode written as string (who+-what): go-w (group and others without write right) or number
mode 600 - rw for owner, 644 – rw for owner, r for others, 755, rwx for owner, rx for others
chown and chgrp change ownerships, this is usually a privileged operation

AFS

fs sa <path> <owner_or_group> <ACL_string> sets ACLs

ACL string looks the same as displayed with fs la, e.g.: fs sa ~ friebel rlidwka

rlidwka can be written as 'al'l, no rights are written as 'none' (deletes ACL entry)
Setting ACL's for other owners is not good, better define a new (pts) group and add users
to that group, then restrict access using the newly created group
pts creategroup <your_accountname>:<groupname>
pts adduser <other_account> <your_accountname>:<groupname>
fs setacl <path> <your_accountname>:<groupname> <access_rights>
Example: fs sa ~/www friebel:wwwfriends rliw

Basic commands for files and directories

mkdir [-p] <dirpath> create a directory [and all missing dirs in <dirpath>]

rmdir <path> deletes an empty directory (watch out for existing dot files!)

rm <path> delete a file

rm -r <directory> deletes <directory> and all its subdirs (even if non empty !!!)

cp <from> <to> copy file with location <from> into directory <to> or file <to>

cp -a <dir> <to> copy directory and all its subdirs into directory <to> by

 preserving all access rights and ownerships

mv <from> <to> move (rename) file or directory to file or directory <to>

ln -s <old> <new> the already mentioned command to create symlinks

touch <path> create an empty file at location <path>

I/O Redirection

Processes have by default 3 I/O streams open

0 stdin input from the shell

1 stdout standard output to the shell (the terminal window)

2 stderr error messages to the shell

I/O can be redirected

< inputfile read from a file instead from stdin

> outfile write to a fille instead to stdout

>> outfile append to an existing file

>>| outfile append to a file if existing, otherwise write to it

> outfile 2>&1 redirect stderr to stdout and then redirect all to outfile

Pipes

Pipes connect stdout of one command with stdin of another one

cmd1 | cmd2 connects stdin of cmd1 to stdin of cmd2, stderr untouched

cmd1 |& cmd2 connects both stdout and stderr of cmd1 to stdin of cmd2

One of the most powerful concepts in Linux

Linux/UNIX comes with lots of utilities working on stdin and producing stdout

Most of these utilities do a single task (comparable to words in a language)

Connections by pipes produce new commands (like a sentence formed of words)

In the Quick Reference Guide Scientific Linux marked by F (filter) or f (input filter)

Sample more complex commands

du –exclude .OldFiles | sort -nr | head show disk usage and the 9 largest dirs

sort .history.pepe125.ifh.de | sed 's/.*;//' | awk '{print $1}' | sort | uniq -c | sort -nr|head

show my 10 most frequently used commands on host pepe125

Processes

Processes are always started from within another process

Normally this is the shell (which in turn was started by the WM)
Processes are started by duplicating the running process (forking)
From then on the duplicated process (child process) performs different operations
A child normally dies if the parent process is terminated/killed

A process running in a shell can be put in background

Suspend the process by CTRL/Z, then continue it in background: bg
Show running background jobs: jobs
Bring a job back into foreground: fg [%<n>]

Display processes

ps aux shows all processes
pp <pattern> show processes containing <pattern> in the ps output
top show processes using the most resources (cpu)

Kill processes

kill [-signal] <PID> get the PID from ps, pp, top, signal is a number or a name
Signal 9 (TERM) terminates, 15 (KILL) kills
CTRL-C sends INT (2) and interrupts the process
A HUP (1) signal is sometimes used to signal processes rereading config information

Working with files

Displaying file contents

less <filename> recommended way of displaying file contents
displays human readable information if possible for binary files, even more so after ini less
cat <filename[s]> writes contents to STDOUT, can be used to concatenate files
Editors are suited as well to display contents, danger of altering file, slower start up

Other useful commands for working with files or used as filters

file <filename> determine file type based on its contents
diff <file1> <file2> display differences between two files (see also cmp)
grep <pattern> <file> find lines containing a string in a file
sort -k <n> <file> sort lines in a file
uniq <file> remove duplicate lines from a file (and optionally count duplicates)
wc <file> count chars, words and lines in a file

Manipulating file contents

awk '<script>' <file> manipulate lines of space separated fields in a file
sed 'script' <file> manipulate lines in a file (using search/replace patterns)

Working with archives (several files packed into one larger file)

Depending on archive type tar, zip, ar, rpm has to be used. To just browse in the archives
less can be used (after 'ini less' for exploring archive contents further)

Using the batch system

Why using batch

CPU or I/O intense tasks can heavily disturb interactive work on the same machine

Batch machines are usually faster than the local desktop, have more memory and
the network bandwidth is typically a factor 10 bigger.

Important resources (e.g. Lustre) are available on batch machines only

Resources are shared among users in an optimal way without user communication

More fair distribution of resources using batch than we could do manually

Users cannot overuse resources (fair scheduling)
Important tasks can get prioritized by admins and get processed faster

Several CPUs can be assigned to one program for parallel processing without
asking other users not to use these CPUs

Essential batch commands

Submitting a batch job

qsub <script> submits a batch job
It is essential to specify what resources the job will need, see later

See the status of batch jobs

qstat [-u <account>] show the status of jobs [for a certain account]
qstat -j <job_number> show many details of a job, e.g. why still waiting
Finished jobs are visible using qstat only for a short time, afterwards use
https://www-zeuthen.desy.de/dv-bin/batch/stat (make sure to select the proper farm)

Delete one of your (waiting) jobs

qdel <job_number>deletes a waiting job (qdel -f for running jobs)
See the status of available job queues

qstat -g c very compact output
See the status of available hosts for execution of jobs

qhost
Get a machine for interactive work

qrsh logs you onto a machine reserved for you (using ssh)

https://www-zeuthen.desy.de/dv-bin/batch/stat

Requesting resources

Without an explicit request minimal batch resources are provided

Usually not sufficient to run larger jobs

Requesting resources

See https://dvinfo.ifh.de/Batch_System_Usage#Requesting_resources

Can be specified with qsub command or in script containing the job

Look into https://www-zeuthen.desy.de/dv-bin/batch/stat to see what resources the
job really needed

Requesting to much resources puts you further down in the waiting queue and may
block resources which otherwise could be used by others

When requesting to few resources your job gets killed on exceeding that resources

Example: submit an 30 minute job with 2G memory

qsub -l h_vmem=2G -l h_cpu=00:30:00 <job_script>

To get a machine for 30' CPU time and 2G mem use the same parameters for qrsh

https://dvinfo.ifh.de/Batch_System_Usage#Requesting_resources
https://www-zeuthen.desy.de/dv-bin/batch/stat

Batch job scripts

Normal zsh or bash scripts

Start with usual shell script line #!/bin/zsh

Command line parameters for qsub can be written in the script using the prefix #$

A local directory that is removed at job end is provided: $TMPDIR

Sample well commented job script

Can be found at https://dvinfo.ifh.de/Batch_System_Usage#Batch_job_submission

Never use /tmp to store temporary files, always use $TMPDIR

STDOUT and STDERR of job go by default into AFS home directory

Make sure the quota there is sufficient
Has bad impact to AFS file server if many batch jobs running simultaneously
Good practice is to redirect these files into a directory, where you do not read from

Testing job scripts

Try to start with one or a few jobs only to avoid stressing the batch system

Minimize access of remote data during run time by copying data to/from $TMPDIR

https://dvinfo.ifh.de/Batch_System_Usage#Batch_job_submission

Publishing results

Might have experiences using Windows or Mac to produce documents

If you insist you can get access to a Windows machine from Linux using winrdp

For most tasks native Linux programs can be used

Writing documents

Popular choices include OpenOffice (ooffice, oowriter) and LateX (latex)

Producing graphics

Simple tasks can be done using OpenOffice (oograph), otherwise use gimp

Plotting and Histogramming

gnuplot fairly simple yet powerful plotting package

rrdtool useful for time series plots, can be installed on request on SL5

root powerful data analysis framework, developed by HEP community

Commercial math packages like maple, mathematica, matlab

Plenty of licenses for maple only

On resource usage

Resources provided by the computer center are shared by users

To help other users do their jobs do not waste resources

Usually there is a waiting queue for batch jobs due to lack of resources

Do not try to find tricks to circumvent the fair scheduling by the batch system

That does not work against the batch system but against other users (in your group)

Try several methods to solve problems

Often a change in algorithms gives much more speedup than using more resources

One day of optimizing an algorithm can be worth several days of running jobs
Search the advice from your group members, they often do have recipes for tasks

Look in various sources in the internet, often the task (or a similar one) you need to
program has already be done by somebody else or at least libraries do exist
containing useful procedures to simplify your programming task

Finding and correcting bugs

Write tests to verify the software (defined input produces known result)

Rerun the tests after changes

If something goes wrong typically the most recent changes contain the bug

Write code that is easier to debug by others

Do not use tricky constructs to gain minimal speed increases (don't optimise)

Optionally produce test output where the level of detail can be controlled

Do comment the code, use variable and procedure names related to the problem

Write assertions at critical places (code that must never fail)

Use system tools to find bugs

Use the debugger to run a program under its control gdb program

Use strace to see all system calls (especially important: open statements)

Watch the memory consumption of a process to find memory leaks

Final remarks

Thank you for your attention

do you have questions now?

If you have questions later: uco-zn@desy.de

If you have suggestions

improving this talk I'd like to hear from you wolfgang.friebel@desy.de
improving the documentation (web pages, booklet) we would like to hear from you

Have a nice stay here at Zeuthen

mailto:uco-zn@desy.de
mailto:wolfgang.friebel@desy.de

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

