Studies of the influence of the geomagnetic field on the sensitivity of gamma-ray observations

Maria Krause

Brandenburg University of Technology Cottbus Deutsches Elektronen Synchrotron

8th September 2010

b-tu

Brandenburgische Technische Universität Cottbus

Maria Krause Cherenkov Telescope Array **BTU** Cottbus

- 1 Cherenkov Telescope Array
- 2 Geomagnetic field
- 3 Lateral distribution
- 4 Energy spectrum

5 Conclusion

Cherenkov Telescope Array

High energy gamma-ray observatory which will study astrophysical sources

- Telescopes with different sizes: diameter of 12 m, 23 m and ~ 7 m
- Wide energy range from 10 GeV to greater than 100 TeV
- CTA Design Study and Research & Development-phase
 - Array Control Center
 - Camera electronics
 - Monte Carlo experiments

- Origin of cosmic rays
- Looking for dark matter
- Physics beyond the standard model

BTU Cottbus

DESY - CTA

Cherenkov Telescope Arrav

- Photon can not penetrate the atmosphere
- EAS consists of charged particles (e^+, e^-)

- Pair production
- Coulomb scattering
- Detection of Cherenkov light which comes from the cascade of particles

Maria Krause Cherenkov Telescope Array

BTU Cottbus

Where will CTA be located? Studies of the influence of the geomagnetic field on the sensitivity of gamma-ray observations

- Calculation of the influence of the geomagnetic field on shower parameters
- Run simulations of EAS of different sites

DESY - CTA

Maria Krause

Cherenkov Telescope Array

Map of candidate sites

NOAA - National Geophysical Data Center

Cottbus BTU Cottbus

b-tu Brandenburgische Technische Universität

Cherenkov Telescope Array

Geomagnetic field

- θ: angle between the direction of the EAS and the direction of the GF
- Azimuth angle: refers to the momentum of the incoming γ-ray (from the positive x-axis towards west)
- Telescope optical axis: parallel to the direction of the primary γ-ray

Geomagnetic field

BTU Cottbus

Geomagnetic field

BTU Cottbus

Lateral distribution

- Shows the density of Cherenkov photons on the ground as a function of the impact parameters
- Influenced by the Cherenkov angle and Coulomb scattering angle

- Energy of the primary photon: 100 GeV
- Altitude of all sites: 2000 m
 - \rightarrow Measurements of the geomagnetic effects on the showers

Cherenkov photon position

BTU Cottbus

Cherenkov Telescope Array

Lateral distribution relative to B=0

BTU Cottbus

Maria Krause

Cherenkov Telescope Array

Lateral distribution relative to B=0

Maria Krause

BTU Cottbus

Cherenkov Telescope Array

Energy spectrum and energy threshold

- Energy spectra of the detected showers
- 9 telescopes with a diameter of 23 m, separated by 80 m
- Energy threshold = Maximum
- $E_T = 20 \, GeV(ZE = 20^\circ)$

•
$$E_T = 38 \, GeV(ZE = 40^\circ)$$

BTU Cottbus

Cherenkov Telescope Array

СТА	Geomagnetic field	Lateral distribution	Energy spectrum	Conclusion
Results				

- Intensity of the geomagnetic field on the Earth's surface: $20\mu T$ to $70\mu T$
 - \rightarrow Location with a low absolute value of the Earth's magnetic field

BTU Cottbus

СТА	Geomagnetic field	Lateral distribution	Energy spectrum	Conclusion
Results				

Intensity of the geomagnetic field on the Earth's surface: $20\mu T$ to $70\mu T$

 \rightarrow Location with a low absolute value of the Earth's magnetic field

 Geomagnetic field has not a big influence on the density of Cherenkov photons on the ground (5 %)

СТА	Geomagnetic field	Lateral distribution	Energy spectrum	Conclusion
Results				

Intensity of the geomagnetic field on the Earth's surface: $20\mu T$ to $70\mu T$

 \rightarrow Location with a low absolute value of the Earth's magnetic field

- Geomagnetic field has not a big influence on the density of Cherenkov photons on the ground (5 %)
- Altitude of the site

 \rightarrow Number of photons depends on the density the shower travels through the atmosphere

СТА	Geomagnetic field	Lateral distribution	Energy spectrum	Conclusion
Results				

Intensity of the geomagnetic field on the Earth's surface: $20\mu T$ to $70\mu T$

 \rightarrow Location with a low absolute value of the Earth's magnetic field

- Geomagnetic field has not a big influence on the density of Cherenkov photons on the ground (5 %)
- Altitude of the site

 \rightarrow Number of photons depends on the density the shower travels through the atmosphere

ightarrow $h \leq$ 4000 m

