# Statistical analysis of long term Gamma-Ray data

**DESY Summer Student Programme 2010** 



### S. Awiphan<sup>1</sup>, K. Satalecka<sup>2</sup>, E. Bernardini<sup>2</sup>

<sup>1</sup> Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Thailand <sup>2</sup> Multimessenger Young Investigator Group, DESY Zeuthen, Germany.



- Very High Energy (VHE, E>100GeV) Gamma-Ray astronomy is one of the youngest branches of physics (~30 years old).
- **Past** : Discovering the Gamma-Ray flux sources
- Now : Interest in more detailed and statistical studies is growing
- Problems
  - Light curves of VHE Gamma-rays aren't continuous like in other wavelengths



http://www.nasa.gov/

Statistical analysis of long term Gamma-Ray data

## Statistical analysis of long term Gamma-Ray data





#### Long-term collected Gamma-ray data

(Tauczykont M. et al. 2010)



## Long term collected Gamma-ray data

### **Light curve**

• Light curve data collected by the multi-messenger group at DESY.

Public data from 1992 until today

Collected from Whipple, HEGRA,

CAT, H.E.S.S., MAGIC, and VERITAS

- Common threshold of 1 TeV
- Upper limit excluded

(Tluczykont et al. 2010)

• Active Galactic Nuclei (Extragalactic sources)

- o Mrk421
- Mrk501

o 1ES1959 +650

#### Light curve of Mrk421



> The Modified Julian Day (MJD) is an abbreviated version of the old Julian Day (JD)

#### MJD=JD-2400000.5

Crab is a unit of the flux observed from the Crab Nebula, the standard candle of Gamma-ray astronomy

## **Flux distribution**

### Flux state distribution

- Flux values integrated above 1 TeV in one day bins
- Fit Gaussian and Log-normal distribution
- Integral of distribution is the probability to measure a flux above a certain level

## **Delta flux distribution**

Time derivative of the observed flux.Log-normal distribution



χ<sup>2</sup> / ndf N<sub>Gauss</sub>

 $\mu_{Gauss}$   $\sigma_{Gauss}$ 





75.98 / 64

Flux(Crab)

5



Vo. observatio

10



### Periodogram

- The modulus-squared of the Discrete Fourier Transform (DFT) of the data
- Use to estimate Power Spectral Density (PSD)
- Show some strange peaks at frequency range 10<sup>-7</sup> 10<sup>-6</sup> Hz
  - o Periodic nature of the Gamma-ray emission?
  - o Bias of the observation time?

#### Periodogram

log (Power)



#### Periodogram of Mrk421

Statistical analysis of long term Gamma-Ray data

DESY summer student programme 2010 8 September 2010

### The stationarity of light curve

• The analysis of periodogram is meaningful only when the underlying processes are statistically stationary

- Comparing PSDs
- Comparing variance

#### **Comparing PSDs**

• Comparing the PSDs from different periodograms

- Divide the light curve into 2 parts and calculate the periodogram of both parts.
- Compare power from periodogram of 2 periodogram
- Form the test statistic S (normally distributed with zero mean and unit variance)
- The light curves are strongly non-stationary (S=25-30)
- The periodogram of part which contains a large flare show strange peaks

# The stationarity of light curve

#### **Comparing variances**

Use simple variance

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

• 50 days intervals with at least 10 flux measurements.

• Cannot conclude that the light curves are stationary or not.

#### Variance of the flux as a function of time from Mrk421



 $2\sigma$  confidence interval

dash-dotted line



#### Simulate from flux state distribution

#### **Random method**

- Randomly generate flux from flux state distribution
- Problem : light curve looks too "spiky".

#### Simulated light curve(random method)



#### Simulated light curve(rearrange method)



#### **Rearrange method**

- Flux value generated in the n-th step is taken from the values with indexes in the range of  $n\pm 10\%n$
- **Problem** : Don't know how to realistically model the time evolution



#### Simulate from delta flux distribution

- Randomly choose the change in the flux from the delta flux distribution
- **Problem :** Very long and very high flares

### Simulate from periodogram

- Proposed by Timmer & König (1995)
- Problem : Don't know periodogram slope

### Simulate from periodic function

- Sine wave to describe the mean flux level
- Fluctuation proportional to that mean flux
- Problem : Very short low state period

Simulated light curve(periodogram)



Simulated light curve(periodic function)







#### Simulate light curve with separate high state and low state Low state

- Generating from periodogram (Power law)
- Power from slope of low state periodogram from real data

#### High state

- Generating from periodic function
- Period from fit to real data periodogram
  - Simulated light curve with separate high state and low state and corresponding periodogram







• Work on statistical study of long term VHE Gamma-ray light curves of three sources: Mrk421, Mrk501, and 1ES1959+650

- The periodograms show strange peaks at frequency range 10<sup>-7</sup> 10<sup>-6</sup> Hz.
- The stationarity of the light curve : non-conclusive
- Many different algorithms to generate light curves were developed using the results from our statistical studies and tested
- The light curves simulated with separate high state and low state can very well reproduce the behavior of the real light curve
- The sine function does not exactly describe the structure of the flare. Exponential function will be use to describe the structure of flare in future work





[1] Bevington P.R., & Robinson D.K., 1992, Data Reduction and Error analysis for the Physical Sciences, McGraw-Hill (New York)

- [2] Bloomfield P., 2000, Fourier Analysis of Time Series, Wiley (New York)
- [3] Gaskell C.M., 2004, AJ, 612, 24
- [4] Giebels B., & Degrange B., 2009, A&A, 503, 797
- [5] Jenkins G.M., 1961, Technometries, 3, 133
- [6] Papadakis I.E., & Lawrence A., 1993, MNRAS, 261, 612
- [7] Papadakis I.E., & Lawrence A., 1995, MNRAS, 272, 161
- [8] Priestley M.B., 1981, Spectral Analysis and Time Series, Academic Press (London)
- [9] Punch M. et at., 1992, Nature, 358, 477
- [10] Rödig C. et al., 2009, A&A , 501, 952
- [11] Timmer J., & König M., 1995, A&A, 300, 700
- [12] Tluczykont M. et al., 2010, A&A (Accepted)
- [13] van der Kils M., 1989, ARA&A, 27, 517
- [14] Vaughan S. et al., 2003, MNRAS, 345, 1271

### Thank you for your kind attention.





# Statistical analysis of long term Gamma-Ray data (Backup slide)

**DESY Summer Student Programme 2010** 



### S. Awiphan<sup>1</sup>, K. Satalecka<sup>2</sup>, E. Bernardini<sup>2</sup>

<sup>1</sup> Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Thailand <sup>2</sup> Multimessenger Young Investigator Group, DESY Zeuthen, Germany.

### Blazar



#### Blazar

- •Relativistic outflows (jets) powered by mass accretion onto a supermassive black hole  $(10^6 10^{10} M_{sun})$  in the galactic center.
- The jets are directed at a small angle with respect to the line of sight of the observer.
- A continuous Spectral Energy Distribution (SED) with two peaks
  - *Radio to UV* : synchrotron emission from relativistic electrons in the jet
  - X-ray to Gamma-ray : the Synchrotron-Self Compton (SSC) model. Compton scattering of lower energy radiation by the same relativistic electrons which are responsible for the synchrotron emission at lower frequencies





### **Light curve**





Statistical analysis of long term Gamma-Ray data

DESY summer student programme 2010 8 September 2010

## **Flux state distribution**

### Flux state distribution

- Low state : Gaussian distribution.
  - <0.5 Crab

•The mean of Gaussian distribution may represent the baseline flux.

*High state* : Log-normal distribution
 Probably related to accretion disk activity.











## **Log-normal distribution**

#### **Log-normal distribution**

• A random variable whose logarithm is normally distributed

$$f(x;\sigma_{Ln},\mu_{Ln}) = \frac{1}{x\sigma_{Ln}\sqrt{2\pi}}e^{(-\frac{1}{2\sigma_{Ln}^2}(\ln(x)-\mu_{Ln})^2)}$$



## **Probability of high state**

### **Probability of high state**

• The probability that the source in a flux state higher than a certain threshold.

$$P_{F>F_{th}} = 1 - \int_{0}^{F_{th}} f_{Total}(x) dx$$

• where f<sub>Total</sub>(x) is the function fitted to the flux state distribution

• The source as being in high state when the flux level exceed the  $\mu_{Gauss}$  by  $\sigma_{Gauss}$ 

|                    | Mrk421                  |      | Mrk501                  |      | 1ES1959 +650            |      |
|--------------------|-------------------------|------|-------------------------|------|-------------------------|------|
|                    | F <sub>th</sub> (Crabs) | P(%) | F <sub>th</sub> (Crabs) | P(%) | F <sub>th</sub> (Crabs) | P(%) |
| $5\sigma_{Gauss}$  | 0.9                     | 45   | 1.1                     | 16   | 1.3                     | 9    |
| $10\sigma_{Gauss}$ | 1.5                     | 32   | 1.9                     | 11   | 2.7                     | 2    |
| $20\sigma_{Gauss}$ | 2.6                     | 16   | 3.5                     | 6    | 5.4                     | -    |



## **Delta flux distribution**

#### **Delta flux distribution**

• "delta flux", the time derivative of the observed flux.

• Use only 2 nearby flux measurements which have the start time of the observation not more than 2 days apart to avoid the long time gaps present in the data.

#### Exponential distribution

 Reflects a stochastic process of the object

#### Log-normal distribution

Better fit





## **Flux distribution**

### **Relation between delta flux and flux**

The delta flux is proportional to flux

# Relation between excess variance and average flux

• Use "excess variance" to estimate the intrinsic source variance

$$\sigma_{xs} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} ((x_i - \bar{x})^2 - \sigma_i^2)}$$

The variability of the flux is directly proportional to the mean flux level
Confirms the log normal variability of the

• Confirms the Log-normal variability of the source

Delta flux VS flux of Mrk421



#### Excess variance VS average flux of Mrk421







### Periodogram

- The modulus-squared of the Discrete Fourier Transform (DFT) of the data
- Use to estimate Power Spectral Density (PSD)
- Show some strange peaks at frequency range 10<sup>-7</sup> 10<sup>-6</sup> Hz
  - Periodic nature of the Gamma-ray emission?
  - o Bias of the observation time?

#### • Periodogram of Mrk421



#### Periodogram

- Tools for examining AGN variability
- Represents the amount of variability power as a function of frequency

• Periodogram is the modulus-squared of the Discrete Fourier Transform (DFT) of the data (Press et al. 1996).

Ν

$$I\left(v_{p_{j}}\right) = A\left|DFT\left(v_{p}\right)\right| = A\left\{\sum_{i=1}^{2} x_{i} \cos(2\pi f_{j} t_{i})\right\} + A\left\{\sum_{i=1}^{2} x_{i} \sin(2\pi f_{j} t_{i})\right\}$$

2

Ν



2





Statistical analysis of long term Gamma-Ray data

DESY summer student programme 2010 8 September 2010



### Periodogram

- Calculate the periods by fitting the periodograms with polynomial of 2<sup>nd</sup> degree
- Use the 1<sup>st</sup> derivative to find out the position peaks
- Range of fit : compare the  $\chi^2$  per number of degree of freedom (NDF)
  - $1^{st}$  period  $10^{-7} 10^{-6.4}$  Hz •  $2^{nd}$  period  $10^{-6.6} - 10^{-6.2}$  Hz
  - $3^{rd}$  period  $10^{-6.3} 10^{-5.9}$  Hz

•Use the range that yielded the smallest value of  $\chi^2$  per NDF

| Period (Days)          | Mrk421     | Mrk501     | 1ES1959 +650 |
|------------------------|------------|------------|--------------|
| 1 <sup>st</sup> period | 58.9±0.8   | 64.6±0.7   | 58.8±0.4     |
| 2 <sup>nd</sup> period | 29.0±0.1   | 27.46±0.05 | 25.58±0.02   |
| 3 <sup>rd</sup> period | 13.13±0.01 | 16.93±0.04 | 13.13±0.03   |

#### Periodogram of MC generated

• The periodogram of Monte Carlo generated light curve which we sampled at the same observation times as in the original data

• Have peaks in periodogram, but the structures of the peaks are not exactly the same as in the real data.







#### Periodogram of 2 parts

- Only one of the periodograms from each pair shows strange structures (peaks)
  - The part which contains a large flare. From this result
- The large flare generated strange structures on periodograms of all sources and made their light curve look nonstationary



log (Power)



# The stationarity of light curve

#### **Comparing PSDs**

- Method proposed by Papadakis & Lawrence (1995) based on an original idea by Jenkins (1961)
- Comparing the PSDs from different periodograms. If the PSDs show significant difference, the underlying process can be said to be strongly non-stationary
  - Divide the time series into two parts and calculate the periodogram

$$S(v_p) = \frac{\log[I_{PartI}(v_p)] - \log[I_{PartII}(v_p)]}{\sqrt{var\{\log[I_{PartI}(v_p)]\} + var\{\log[I_{PartII}(v_p)]\}}}$$

- Where  $var\{\log[I(v_p)]\} \approx 0.310$  (Papadakis & Lawrence, 1993)
- The mean and variance of the random variable  $S(v_p)$  have to be 0 and 1.
- Form the test statistic S

$$S = \frac{1}{\sqrt{p_{max}}} \sum_{p=0}^{p_{max}} S(v_p)$$

• Where p<sub>max</sub> is total number of frequencies

#### Simulate from delta flux distribution

- Introduced a time evolution constraint
- Rearrange the generated fluxes in ascending order

• The flux value generated in the n-th step is then taken from the values with indexes in the range of  $n\pm 10$ /%n.



### Simulate from periodogram

- Proposed by Timmer & König (1995).
- This algorithm is based on a main result of the theory of spectral estimation.

$$DFT(v_p) = \aleph\left(0, \frac{1}{2}S(v_p)\right) + i\aleph\left(0, \frac{1}{2}S(v_p)\right)$$

Choose a power law from which we want to generate the light curve.

$$S(v_p) \sim (\frac{1}{2\pi v_p})^{\alpha}$$

 $\bullet$  For each Fourier frequency  $v_{\rm p}$ , generate two Gaussian distributed random numbers and multiply them by

$$\frac{1}{2}S(v_p) \sim (\frac{1}{2\pi v_p})^{\frac{\alpha}{2}}$$

- Use the result as the real and imaginary part of the Fourier transform
- Obtain the time series by using Inverse Discrete Fourier Transform (IDFT)

## Simulate from periodogram



#### Simulate from periodogram



Statistical analysis of long term Gamma-Ray data DESY summer student progra

#### Simulate from periodic function

• Use sine wave to describe the mean flux level and fluctuation proportional to that mean flux level to generate light curve.

apply the flux fluctuations on top of sine wave

 $\Delta x = \pm (S_d x + I_d) \pm Random\{0, (S_v x + I_v)\}$ 



# Simulated light curve (separate)

# Simulate light curve with separate high state and low state

• Generated a big flare from a periodic function and a low state from periodogram

$$x_i = (\overline{x_F} - \overline{x_L})\sin(\frac{2\pi t_i}{T} - \frac{\pi}{2}) + \overline{x_F}$$

Periods of sine wave as obtained from real data

• The shape of the resulting periodograms is very similar to the real ones







### Simulate light curve with separate high state and low state

- Simulated 1,000 light curves from this algorithm
- Found the average S-Value between them and the periodogram of original data

 Use second period to generate big flare gives the best average S-Values for all sources.

| S-Value                | Mrk421 | Mrk501 | 1ES1959 +650 |
|------------------------|--------|--------|--------------|
| 1 <sup>st</sup> period | 6.0    | 1.5    | 14           |
| 2 <sup>nd</sup> period | 0.8    | 1.2    | 11           |
| 3 <sup>rd</sup> period | 1.7    | 1.2    | 20           |



### Simulate light curve with separate high state and low state

- Ddefine as high state flux which exceeds  $\mu_{\text{Gauss}}$  by 20 $\sigma_{\text{Gauss}}$
- Take the second period from fit to define the standard duration, called "cycle", of a flare
- Calculate how many cycles are observed during the high state period in real data.



# Simulated light curve (separate)

# Simulate light curve with separate high state and low state

 Calculated average flux and maximum flux to plot them as a function of the number of cycles

• Average flux and maximum flux in each flare are proportional to the number of cycles.



# Simulate light curve with separate high state and low state

#### Low state

- Generating from periodogram (Power law)
- Power from slope of low state periodogram from real data

#### High state

- Generating from periodic function
- Period from fit to real data
- Cycle is the standard duration of a flare
- Number of cycles in high state has an Exponential distribution
- Average flux and maximum flux in each flare are proportional to the number of cycles.

$$x_i = (N_c S_{max} + I_{max} - N_c S_{avg} - I_{avg}) \sin\left(\frac{2\pi t_i}{T} - \frac{\pi}{2}\right) + (N_c S_{avg} + I_{avg})$$

Simulated light curve(separate)



Corresponding periodogram



