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Abstract

This report summarizes the study of the magnetic flux densities for two different
optical matching devices (OMD) proposed for the positron source of the International
Linear Collider (ILC). The goal of this study was to simulate the magnetic fields of the
various OMDs and to find a way to include the results in a beamline simulation of the
positron source.

1 The International Linear Collider

1.1 Introduction

The International Linear Collider (ILC) is a proposed counterpart to the LHC, analyzing its
results in more detail. In contrast to the LHC, the ILC will be a linear collider. It is anticipated
to collide polarized electrons with polarized positrons. By using e e -collisions, one will be
able to reconstruct the events more easily and thus being able to measure the properties
of particles and their interactions more accurately. The polarization offers the advantage,
that one can suppress certain particle interactions and increase the effective luminosity for
interactions one is interested in. An example of using polarized beams is that one would be
able to distinguish potential super symmetric particles or other predicted particles beyond
the standard model. [1]

1.2 The positron source

As mentioned before, the ILC uses polarized positrons. To produce them, high energetic
electrons from the main electron linear accelerator are sent through a helical undulator (see
figure 1). After that, they are returned to the main electron linac by using a bending magnet.
While going through the undulator, the electrons radiate circular polarized photons. The
photons hit a rotating metal target. There, the photons interact with atoms and can produce
particle showers. As part of those showers, longitudinally polarized electrons and positrons
are created via pair production (see figure 2). To increase the average polarization of the
positrons, a photon-collimator is used.

To optimize the positron yield an apparatus called optical matching device (OMD) creates a
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Figure 1: Schematic drawing of the ILC’s positron source [2]

tapering magnetic field, so that the positrons do not leave to the side but circle around the
central beam line. Right now, there are three different proposals for that device. After the
OMD, the positrons are separated from the electrons by a magnet. The produced electrons
are dumped just as the photons, which did not interact. The positrons are directed to a
pre-accelerator and a booster linac to increase their energy and then are stored in a damping
ring till they are used for the collisions in the main linear accelerator.

atom

Figure 2: Feynman diagram of pair production

2 Work at DESY Zeuthen

In Zeuthen, several people are working on the development of the ILC. In particular, one
group is working on simulations of the positron source. For that, they developed a software
called PPS-SIM [3].

2.1 PPS-SIM-Software

The PPS-SIM-Software is based on Geant/ and ROOT and is able to simulate the positron
source from the undulator up to the first accelerator structures. PPS-SIM supports different
proposals and includes the ability to change several parameters of the source. It also comprises
a graphical user interface, so that people not familiar with ROOT, Geant4 or C++ are able
to use this software, and a batch mode enabling high statistics runs.

PPS-SIM is able to simulate all three proposed OMDs: the quarter wave transformer (QWT),
the adiabatic matching device (AMD) and the lithium lens. To model the effects of the OMDs
on the particle beam, the magnetic fields of the OMDs are described by using simplified
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functions. To include more realistic fields in PPS-SIM, the magnetic flux densities needed to
be simulated.

2.2 Methods used

To simulate the magnetic flux densities caused by the QWT and the AMD, Maxwell’s equa-
tions needed to be solved including all boundary conditions and material properties. To do
this, a software called FlexPDE was used. It enables the user to describe the geometry, enter
material properties and defining the partial differential equations to be solved by using a sim-
ple script language. On this basis, the software creates a grid and solves the given equations
using the finite element method. The results are returned for single points of the grid. How-
ever, this discrete data can not be implemented directly for the simulation in PPS-SIM. One
has to find a continuous function describing the data which then can be used in PPS-SIM.

3 Magnetic fields of the QWT
The quarter wave transformer (QWT) is one of the possible OMD’s used for the ILC.

3.1 Design of the QWT

Figure 3: Cut through the QWT

The basic design of the quarter wave transformer is shown in figure 3. It is cut in half so
that all parts are properly visible. The green line going through the center is representing the
main beamline with the beam going from the upper left to the lower right corner. The dark
grey part is the target. Because it is under constant stress caused by the incoming photons,
it is planned to spin the target to prevent its destruction. For simplification, the apparatus
doing that is not drawn here. Surrounding the target, there are two solenoids. Both consist
of copper coils with an the electric current, drawn in red, and an iron shielding to reduce
eddy currents at the target, drawn in light grey. The currents in both coils have the same
magnitude but flow in different directions. Downstream, the radio frequency cavity is located.
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Again, the light grey part is the surrounding iron and the red part is the current flowing in
a copper coil.

For future references, the origin of the coordinate system is the center of the target. The
z-axis is equivalent to the beam line and p will be the perpendicular distance between the
z-axis and the point of interest as in any cylindrical coordinates system.

3.2 Relations from symmetry

In general, the magnetic vector potential A can be calculated by to following equation:

A(F) :/d3r’ () (1)

|7 = 7|

First of all, one can easily see, that A is constant on the axis of rotation and because there is
a gauge freedom we can set the value of A on the axis to zero.

In a first order approximation, the current through the solenoid can be regarded as to have
just components in €, direction. Thus, the components A, and A, of the vector potential,
considering our first gauging, are zero. The vector potential is simplified to:

—

A=(0,4,,0) (2)

3.3 Simulation of the magnetic field and vector potential

From Maxwell’s equations we know, that if there is no time depending electrical field E, then
V X B = prpoj. The relation between vector potential and magnetic flux density is given by
V x A = B. The function to solve is therefore:

- - A -
Vx|V x =7 (3)
Ko - fr
This equation was entered in FlexPDE together with all necessary boundary conditions and

material properties. The results of the vector potential and the non-zero components of the
magnetic field were exported as data files and stored for future use.

3.4 Fitting the results for future use in PPS-SIM
3.4.1 Mathematical background

The data received from FlexPDE is discrete but for the simulation of the beamline a continues
field is needed. To achieve that, a solution to Maxwell’s equation had to be chosen, to fit the
simulated data onto this solution. In this case, the spherical harmonics ¥, seemed to be a
good choice.

20 +1(1—m)? A
y" = (—l)m[ l4+ M] P™(cosf) e™?  spherical harmonics (4)
7r !
Z 1 (212
P"(x) = 242:(—1)m <m>( _l m> gl=2m Legendre polynomials  (5)
m=0
00 l
6 0,6) = 3 D0 V" 0,6) - a4 by 77| (6)
=0 m=—1
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The scalar function ¥ automatically fulfills the Laplace equation 621/1(7“, 0, ¢) = 0 and because
the Gauss’s law for magnetism states that V - B = 0, the function ¢(r, 0, ¢) can be used to
describe the magnetic flux density B. The relation between them is therefore given by:

é = 61/}(7”797(?) (7)

Because of the QWT’s rotational symmetry it is possible to consider just spherical harmonics
with m = 0. For further simplification, all constant factors depending only on ! were excluded
from the implemented equations (for further details see below).

3.4.2 Software implementation

With the discrete data from the simulation at hand, the spherical harmonics needed to be
fitted to this data. This was done using the programming language Python and the library
minuit? provided by ROOT. To describe the deviation between fitted function and simulated
values, a y2-function was defined as follows:

=3 (Blp2) - Ba(p.2)) ®)

data

In this formula, B, are the simulated values for the magnetic flux density in z-direction coming
from FlexPDE. Here, only data from a small region of interest, starting at the target and going
to the RF-cavity, was used. B, is the z-component of the magnetic induction calculated using
(7). If the scalar potential 1 is described by the spherical harmonics, then the components
of the magnetic flux density have to be calculated as described below. Before, it should be
mentioned that the functions below are those implemented in the fitting algorithm. Some
constant factors from the spherical harmonics were included in the fitting parameters and
thus do not appear in the function. This has to be considered if implementing the results in
an other software.

Additionally a point of origin for the spherical harmonics had to be chosen. The natural point
would be the crossing point of the target and the photon beam. However, at this point r = 0,
which would require all by, elements to be zero; otherwise there would be a divergence at
the point of origin. Hence, an offset from this point was introduced. The point of origin was
placed at (p = 0,z = —o) and the following definitions were established:

uo= z+o 9)

r o= (24 0)2 + p? (10)

In the implemented algorithm, the sum in equation 6 was broken apart and all exponents
were dealt with separately. Thus, the exponent p(i) was introduced and all fields could be
described as follows:

F(r0.0) — ZP’(”(“) ca - P00 (11)
B. = W - Zai P [Pl/(i)(#) AL =1} + Py () - p(0) “} (12)
B, = W:Zai-p-rm2{_3/(i)(ﬂ)'ﬂ+Pl(i>(“)'p(i)} (13)
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These formulae are implemented in the python program. The parameter for p(i) = 0 has
been excluded from the fit because it does not contribute to the magnetic flux density and
therefore causes an error in the minuit2 algorithm.

If the position of the offset o is also set as an optimizable parameter, minuit2 is again not able
to finish the fit because there seems to be a variety of local minima. To avoid this problem,
the offset was fixed before handed over to minuit2. This was done for several offsets and the
results are given in figure 4. Because this was a serious calculation, the batch farm was used
to obtain results in an acceptable time.

The results from this calculation revealed, that there really are several local minima and that
x? is extremely sensitive to the actual value of the offset (see inner diagram of figure 4). For
example, a Ao ~ 10716 m difference in the offset can cause a discrepancy of up to Ax? ~ 0,01
using the minuit2 algorithm. Realizing that, it is clear that fitting the offset using minuit2
alone produced errors in most cases, because the minuit2 algorithm uses, among others, the
partial derivative of x? with respect to the offset, which is not calculable for this function.
Looking at the results in figure 4, the best choice for an offset lies around o = 0,4245m
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Figure 4: x? over the offset and a detailed look at o = 0,7624 m

(marked with a red arrow). Additionally 37 other parameters a;, about half of them with
positive p(i) and the other half with negative exponents, were used to describe the scalar
function f. This number of parameters allowed a relative error of the magnetic induction of
less than 10% in an area close to the main beamline.

However, all those parameters describe the magnetic field only for a maximum of 1 T. To
optimize the positron source, a possibility to change the maximum flux density without having
to go through all previous steps again, would be beneficial. To check, if it is possible to describe
the parameters a; for different currents in the first solenoid, the entire procedure was repeated
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for several different current densities. However, the offset was held constant because of the
known problems discussed above. It turned out that for using a total of 37 parameters, the
relationship between current density and parameters was nearly linear. For less parameters,
this seemed not to be the case. Hence, a linear approximation for describing the parameter
values was used for the 37 parameters:

a; = Aj - igol + B; (14)

In this equation a; is the parameter of the spherical harmonics with summation-index i, A;
and B; are parameters for the linear function describing the linear fit. iy, is the current
density in the first solenoid.

For magnetic flux densities below 1,0 T the behavior was not linear anymore, so that the
calculated parameters can only be used in a range of 1,0 T to 2,5T. To check the accuracy of
this method, the results using the calculated parameters were compared to newly simulated
data from FlexPDE. For all checked currents, the spherical harmonics described the simulated
data adequate enough (see figure 5).
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Figure 5: Simulated and calculated data for a maximum of B, = 14T

4 Magnetic fields of the AMD

4.1 Design of the AMD

The AMD consists of a series of copper coils and so called magnetic shaping plates. There
is a total of five current-carrying copper coils and six shaping plates. The coils are simple
cylinders with a hole in the middle. The shaping plates are also made out of copper, but they
are not perfectly cylindrical. All of them are cut to minimize eddy currents and the cut of
two adjacent plates form an angle of 60°.

Figure 6 shows just one half of the first two shaping plates (grey and blue) and the copper
coil (green) in between. The yellow cylinder in the middle is supposed to represent the main
beamline with photons coming from the bottom, hitting a target, not drawn here, directly in
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front of the AMD and finally passing the AMD through the first hole. For simplification, not
all surfaces are transparent but some are completely clear. The cuts are drawn in red.

For the three dimensional simulation using FlexPDE, just these three parts of the AMD shown
here were used, because this was supposed to be used as a first test.

Figure 6: Cut through part of the AMD

The currents through the coils is reducing with the distance to the target. This causes the
magnetic induction in z-direction to have a maximum near the first two shaping plates. By
using pulsed currents, a current is induced in the shaping plates. This is supposed to increase
the magnetic field in the center as described in [4].

4.2 Problems with FlexPDE

Because the design of the AMD has no rotational symmetry, a three dimensional approach to
describe the device was needed. However, to get a basic understanding of the physics behind
the AMD, rotational symmetry was assumed and based on that, a first model was created.
Including the three dimensional model turned out to be a challenge on its own. Several ap-
proaches were taken to include the AMD’s geometry in FlexPDE. In most cases, the approach
could not be used, because of internal errors in FlexPDE. Under the most common ones were:
creating a mesh with a depth of nearly zero, where no grid should be; missing grid points
close to the cuts or the number of cells running off for thin layers. Most of these problems
had to do with the sloped holes in the middle of the shaping plates.

4.3 Mathematical background

Because simulating the magnetic flux density of the AMD is a time depending problem,
equation 3 has to be adjusted. From Maxwell’s equation, we know, that:

- - OE
V x B = piopy (] +de.> + Hopr - S0 - 50 (15)
Because there are no free charged particles, the electric field can be described by E = —BB—? .

The induced current is given by find, =0- E, with o being the conductance. By combining
all equations one gets a partial differential equation of second order in time:
- (6 x A ) - A 9?A
V x

= —_— 07—68 - —_—
porr |07 or T o

(16)
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This formula was implemented in FlexPDE, excluding the last term, because its contribution
was very small.

4.4 Results from the simulations

As mentioned, the current through the coils is time dependent to increase the flux density and
this time dependency was considered in both the two dimensional and the three dimensional
simulation.

4.4.1 2D-simulation

For the two dimensional simulation, an additional condition was introduced for the induced
currents to compensate for the missing cuts in the shaping plates. This was realized by
demanding that the total induced current on the cut-section had to be zero. This prevented
the induced currents from circling the shaping plates in just one direction. As expected, a
current close to the copper coils was induced and caused an compensating current closer to
the beamline. However, for the time dependent simulation, the magnetic flux density was
still by three orders of magnitude lower than expected.
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Figure 7: Magnetic flux density - 2D simulation

4.4.2 3D-simulation

A working 3D-model of the first parts of the AMD was created, which demonstrates how to in-
clude further parts in FlexPDE. All expected physical effects could be simulated qualitatively.
The obtained results show obvious discrepancies and further checks are needed.
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5 Conclusions

5.1 The quarter wave transformer

A possible way of including realistic magnetic fields for the QWT has been shown. The only
task left is to include this in PPS-SIM. For that, the scalar function and its derivatives have
to be written in C++ code to replace the simplified functions describing the magnetic field
at the moment.

5.2 The adiabatic matching device

The basic functionality of the AMD could be reproduced. However, because of the different
results in the magnitude of the magnetic fields compared to the data from LLNL [4], it was
not attempted to include the simulated magnetic fields in PPS-SIM. Further investigations
need to be done, to fully understand the physical behavior of this device.

Acknowledgements

I would like to thank DESY for offering this unique summer school. The work and the offered
lectures have been wonderful. Special thanks go to my supervisors Andreas Schalicke and
Andriy Ushakov for their patience and support. Thank you for all the nice discussions. Thanks
also to Sabine Riemann, who supported my request of taking exams during the summer school.
I would also like to thank Prof. Kobel and Prof. Zuber from Dresden University of Technology
for supporting my application for the DESY summer school. And of course, thanks to all the
other summer students who made this time unforgettable.

References

[1] G. A. Moortgat-Pick et al.
The role of polarized positrons and electrons in revealing fundamental inter-
actions at the linear collider
Phys. Rept. 460 (2008) 131 [arXiv:hep-ph/0507011]

[2] Editors: Nan Phinney, Nobukasu Toge, Nicholas Walker
International linear collider reference design report
Volume 3: accelerator
August, 2007

[3] A. Ushakov, S. Riemann, A. Schélicke
Positron source simulations using Geant4
Proceedings of the 1st International Particle Accelerator Conference (IPAC’10)
Kyoto, Japan, 23-28 May 2010, 4095

[4] Tom Piggott, Jeff Gronberg
LLNL Update (flux concentrator, rotation vacuum seals)

7th Positron Source Collaboration Meeting
Hamburg, Germany, 15-16 July 2010

10 / 10 linear collider group



