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Abstract

In the following work, we carried out a statistical study of long term Very High Energy (VHE)
Gamma-ray light curves of High frequency peaked BL Lac (HBL) sources (Mrk421, Mrk501, and
1ES1959 +650). We used the data collected from di�erent experiments (Tluczykont et al. 2010)
to generate long term light curves. During the analysis, we derived parameters and periodograms
of the light curves. Using the results from our statistical study, we generated arti�cial continuous
long term light curve and study the e�ects of di�erent class of bias which are introduced by real
observation constraints.
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1 Introduction

Very High Energy (VHE, E>100GeV) Gamma-ray astronomy is one of the youngest branches
of physics. It started around thirty years ago. In the �rst period of study in VHE Gamma-ray
astronomy, the most e�ort was put into discovering new classes of sources or detecting the Gamma-
ray signal from the known ones. However, the aim of study in recent year changed into analyzing
the previously collected data in more detail.

Studying properties of sources in Gamma-rays has some problems, because the light curves1 of
sources in VHE Gamma-rays are not continuous like in other wavelengths. The observation gaps in
data come from the limited duty cycle of the Imaging Atmospheric Cherenkov Telescopes (IACT)
and restricted visibility periods of many sources. It's a limiting factor to any time variability anal-
ysis. In this study, we concentrate on studying the variability of Gamma-ray �ux and generating
Gamma-ray light curves of sources by using long term data from di�erent IACT telescopes. The
results will make us understand more clearly the variability of observed �ux and the nature of the
physical processes taking place in the source.

2 Blazars classi�cation

An active galactic nucleus (AGN) is one type of extragalactic sources which we can observe in
VHE Gamma-ray. This work on AGNs has concentrated on the most powerful class of AGNs
called blazars. Blazars are often observable in all wavelength bands, from radio waves to Gamma-
ray. In many of them, relativistic out�ows (jets) are observed which are probably powered by
mass accretion onto a supermassive black hole (106 - 1010 solar masses) in the galactic center. The
characteristic property of blazars is that the jets are directed at a small angle with respect to the
line of sight of the observer.

The radiation from blazars generally have a continuous Spectral Energy Distribution (SED)
with two peaks, one from radio through optical to Ultraviolet range, is most likely due to syn-
chrotron emission from relativistic electrons in the jet. The second emission component extends
through X-ray and Gamma-ray energies and might be explained by the Synchrotron-Self Compton
(SSC) model. This model assumes that the VHE Gamma-ray production of AGNs come from
Compton scattering of lower energy radiation by the same relativistic electrons which are respon-
sible for the synchrotron emission at lower frequencies. However, there are alternative models in
which the high-energy emission is produced by hadronic processes in the jet.

High frequency peaked BL Lac (HBL) is a subclass of blazars which was �rst known to emit
VHE Gamma-ray after the detection of Mrk421 above 300 GeV by the Whipple group. Moreover,
the most frequently observed AGN sources that were early discovered belong to the HBL class.

∗Corresponding author. E-mail: �uke_supachai@hotmail.com
1A light curve shows the �ux measured from a given source as a function of time.
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Due to early discovery, there is more VHE Gamma-ray data of collected from HBL sources than
from any other subclass of blazars. In this work, we will focus on three HBL sources that were
early discovered: Mrk421, Mrk501 and 1ES1959 +650.

Figure 2.1: Features of an active galactic nucleus (AGN) and how to classify a type of AGN by
the di�erence in viewing angle (Courtesy NASA).

3 Statistical analysis

3.1 Light curve

We use the Gamma-ray data collected by the multi-messenger group at Deutsches Elektronen-
Synchrotron (DESY), Germany. In this work, we use the public light curve data from 1992 un-
til today that were collected from Whipple, HEGRA, CAT, H.E.S.S., MAGIC, and VERITAS
(Tluczykont et al. 2010) experiments. The data was converted to a common threshold of 1 TeV
to generate long term light curves of three sources: Mrk421, Mrk501 and 1ES1959 +650. The
upper limits were excluded from this study. The light curve shows the measured Gamma-ray �ux
integrated above 1 TeV as a function of time in Modi�ed Julian Day (MJD)2(Fig 3.1).

3.2 Flux state distribution

The distribution of the Gamma-ray �ux values integrated above 1 TeV in one day bins for Mrk421
is shown in left panel of Fig 3.2. We described the �ux state distribution by Gaussian and Log-
normal distribution. Low state �ux measurements (less than 0.5 Crab) are described by the
Gaussian distribution. The mean of Gaussian distribution may represent the baseline �ux. For
high state �ux measurement, the Log-normal distribution has been chosen. Log-normal variability
is probably related to accretion disk activity. This type of variability has been discovered in X-
ray emission of various compact systems: Seyfert galaxies, X-ray binaries and blazars (Giebel &
Degrange 2009).

The probability density function of Log-normal distribution is de�ned by:

f(x : µLn, σLn) =
1

xσLn
√

2π
exp(− 1

2σ2
Ln

(ln(x)− µLn)2), (3.1)

for x > 0, where µLn is the mean and σLn is the standard deviation of the Log-normal distri-
bution.

2The Modi�ed Julian Day (MJD) is an abbreviated version of the old Julian Day (JD), MJD=JD-2400000.5.
The JD is measured from January 1, 4713 BC Greenwich noon.
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Figure 3.1: Long term light curve of Mrk421: in units of Crab (units of the �ux observed from the
Crab Nebula, the standard candle of Gamma-ray astronomy)

3.3 Probability of high states

The probability that the source in a �ux state higher than a certain threshold, Fth is de�ned as:

PF>Fth
= 1−

ˆ Fth

0

ftotal(x)dx, (3.2)

where ftotal(x) is the function �tted to the �ux state distribution (the sum of the Gaussian
and Log-normal distribution). To �nd out the high state threshold, we use Gaussian distribution
parameters from the �t. We de�ne the source as being in high state when the �ux level exceed the
µGauss by NσGauss. Table 1 shows di�erent threshold �ux value for each source where N is 5, 10,
and 20.

Table 1: The threshold of high state �ux and probability that the source in the higher state than
the threshold of 5, 10, and 20σGauss.

Mrk421 Mrk501 1ES1959 +650

Fth(Crabs) PF>Fth
(%) Fth(Crabs) PF>Fth

(%) Fth(Crabs) PF>Fth
(%)

5σGauss 0.9 45 1.1 16 1.3 9

10σGauss 1.5 31 1.9 10 2.7 2

20σGauss 2.6 16 3.5 6 5.4 -

The probabilities of �nding Mrk421 in high state at all �ux threshold levels are higher than for
other sources. From this result and �ux state distribution, we can conclude that Mrk421 seems
to have high states more often than other sources. Mrk501 show longer period of low state with
occasional �are. For 1ES1959 +650, most of data that we have is in low state with only one
prominent �are.

3.4 Delta �ux distribution

We call �delta �ux�, the time derivative of the observed �ux. To calculate the delta �ux distribution,
we use only two nearby �ux measurements which have the start time of the observation not more
than 2 days apart to avoid the long time gaps present in the data. The delta �ux distribution
of Mrk421 is shown Fig 3.2 (right panel). The distributions can be described by a Log-normal
distribution. Moreover, we found that the changing in binning size of delta �ux distribution do
not a�ect the values of the �tted parameters. This is a con�rmation that the original data should
be properly described by a Log-normal distribution.
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Figure 3.2: Flux state distributions of Mrk421 with �t function as a combination of the Gaussian
and Log-normal distribution (left panel). Delta �ux distributions of Mrk421 �tted with Log-normal
distribution (right panel).

3.5 Relation between delta �ux and �ux

We plot delta �ux as a function of �ux to understand the �uctuations (Fig 3.3, left panel). A linear
equation was used to �t the graph. The results show that the �uctuations are proportional to the
�ux level. The slopes that we got from �tting the three sources; Mrk421, Mrk501 and 1ES1959
+650 have values in the range of 0.25-0.50 Crab.

3.6 Relation between excess variance and average �ux

The observed light curves will have �nite uncertainties due to measurement errors. These uncer-
tainties on the individual �ux observations will contribute to an additional variance. This leads us
to use the �excess variance� to estimate the intrinsic source variance (Vaughan et al. 2003). The
excess variance is de�ned by:

σxs =

√√√√ 1

N

N∑
i=1

(xi − x)2 − σ2
i , (3.3)

where xiis the i -th �ux measurement, x is average �ux and σi is statistical error of the i -th
�ux measurement. For this calculation, the data were divided into time-intervals of 50 days, each
comprising at least 20 �ux measurements. The excess variance estimates the variability corrected
for the Poisson noise. In Fig 3.3 (right panel), we show the excess variance versus the mean �ux
of Mrk421. As can be seen, it con�rms the result from the previous section, that the variability of
the �ux is directly proportional to the mean �ux level.

Figure 3.3: The delta �ux versus �ux of Mrk421 (left panel) and the excess variance versus the
average �ux of 50 days intervals with at least 20 �ux measurements of Mrk421 (right panel). The
black solid line represents a �t with linear function.
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3.7 Periodogram

One of the most common tools for examining AGN variability is the Power Spectral Density (PSD)
which represents the amount of variability power as a function of frequency. The high frequency
PSDs of AGNs are usually well-represented by power-laws over a broad range of frequencies. The
relation between power and frequency can be written as:

P (f) ∝ f−α, (3.4)

where P (f) is the power at frequency f . The PSD can be estimated by calculating so-called
the periodogram. For a light curve with period ∆T , the periodogram is the modulus-squared of
the Discrete Fourier Transform (DFT) of the data. For a light curve comprising a series of �uxes
xi measured at discrete times ti where i = 1, 2, 3, ..., N . The power at frequency vp is:

I(vpj ) = A|DFT (vp)|2 = A|
N∑
i=1

xie
2πifjti |2 = A{

N∑
i=1

xi cos(2πfjti)}2 +A{
N∑
i=1

xi sin(2πfjti)}2,

(3.5)
where A is a normalization. We use A = 2∆T

N in order to give the periodogram in absolute
units (Vaughan et al. 2003).

Figure 3.4: Periodograms of Mrk421.

The periodograms of Mrk421, Mrk501 and 1ES1959 +650 show some strange structures (peaks)
in the frequency range 10−7 - 10−6 Hz. These kind of structures were not found in previous studies
of periodograms of HBL sources in the X-ray bands. However, in a multi-wavelength study of
Mrk501 by Rödig et al. 2002, they found that Mrk501 show a 72, 35 and 23 days period. At �rst,
we assumed that the peaks in the periodograms may from same periodic nature of the Gamma-ray
emission from this sources. We calculate the periods by �tting the periodograms with polynomial
of 2nd degree and using the �rst derivative to �nd out the position peaks. To �nd out the optimum
range of �t, we compare the χ2 per number of degree of freedom (NDF) value of each �t in the
frequency range 10−7 - 10−6.4 for the 1st period, 10−6.6 - 10−6.2 for the 2nd period, and 10−6.3 -
10−5.9 for the 3rd period. We use the range that yielded the smallest value of χ2 per number of
degree of freedom.

We compare the periods that we got for Mrk501 from our study with those from Rödig et al.
(2002). We �nd that our periodicities have di�erent lengths in comparison to previous studies, but
they are still of the same order.

Our second hypothesis was that some of the structures came from the gaps the of observation
time. We plotted the periodogram of Monte Carlo generated light curve which we sampled at the
same observation times as in the original data. The sampling introduces peaks in periodogram,
but the structures of the peaks are not exactly the same as in the real data.
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Table 2: Periods from a �t of the periodogram with polynomial 2nd degree function.

Period (Days) Mrk421 Mrk501 1ES1959 +650

1st period 58.9±0.8 64.6±0.7 58.8±0.4

2nd period 29.0±0.1 27.46±0.05 25.58±0.02

3rd period 13.13±0.01 16.93±0.04 13.13±0.03

3.8 The stationarity of light curves

The analysis of periodograms is meaningful only when the underlying processes are statistically
stationary. We used two independent methods in order to test the stationarity of the VHE Gamma-
ray light curves.

3.8.1 Comparing PSDs

First, we use the method proposed by Papadakis & Lawrence (1995) based on an original idea by
Jenkins (1961). This method works by comparing the PSDs from di�erent periodograms. If the
PSDs show signi�cant di�erence, the underlying process can be said to be strongly non-stationary.

In the �rst step, we divide the time series into two parts and calculate the periodogram of both
parts, IpartI (vp) and IpartII(vp). We have to test this hypothesis at all frequencies. In order to do
it, we calculated the following parameters:

S(vp) =
log[IpartI(vp)]− log[IpartII(vp)]√

var{log[IpartI(vp)]}+ var{log[IpartI(vp)]}
, (3.6)

where var{log[I(vp)]} = var
{
χ2
2

2

}
= π2

6(ln 10)2 ≈ 0.310 (Papadakis & Lawrence, 1993). We

assume that the periodogram estimates are distributed as χ2
2 variables. Then, the mean and

variance of the random variable S(vp) have to be 0 and 1, respectively. Finally, we form the test
statistic S:

S =
1

√
pmax

pmax∑
p=0

S(vp), (3.7)

here pmax is total number of frequencies over which we have estimated the periodogram. If
pmax is large enough, S will be normally distributed with zero mean and unit variance.

The absolute values of S that we got were 33.4 and 27.5 for Mrk421 and Mrk501 respectively.
For 1ES1959 +650, the number of measurement in second part is too low when compared with
the number of data in the �rst part and we couldn't calculate its S − V alue. S is expected to be
normally distributed with zero mean and unit variance, but the result that we got from Mrk421
and Mrk501 S − V alue was very largely (≈ 25-30 σ) away from zero. We conclude that the light
curves of Mrk421, Mrk501 and 1ES1959 +650 are strongly non-stationary.

Figure 3.5: Periodograms of �rst (left panel) and second (right panel) parts of the light curves that
used to �nd S − V alue of the light curves of Mrk421.
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In Fig 3.5, the periodograms of the �rst and second parts of the light curve are shown. Sur-
prisingly, only one of the periodograms from each pair shows strange structures (peaks) - the part
which contains a large �are. From this result, we assume that the large �are generated strange
structures on periodograms of all sources and made their light curve look non-stationary.

3.8.2 Comparing variances

In the second method (Vaughan et al. 2003), the variance of the observed �ux is used to test the
stationarity of the light curve. In Fig 3.6, we show the �ux variances as a function of time to
see the �uctuations in the light curve. Those variances were calculated for 50 days intervals with
at least 10 �ux measurements each. The con�dence intervals were calculated using the standard
deviation of the variances.

Figure 3.6: Variance of the �ux avaeraged over 50 day intervals with at least 10 measurements as a
function of time for Mrk421. The lines show with average variance (dotted line), 1σ (dashed line)
and 2 σ (dash-dotted line) con�dent interval.

We can see that all sources have at least one variance value lying outside of the 2σ con�dence
interval. However, if we look on the error bar of the variances, we �nd that almost all variance
values, including those from the �aring period are compatible with 2σ con�dence level. Further-
more, we have a small number of points in these plots. Then, we cannot conclude that the light
curves of Mrk421, Mrk501 and 1ES1959 +650 are stationary or not. In the future work, the con-
�dence interval of variance distribution should be calculated using a Monte Carlo simulation like
in Vaughan et al. (2003) for stronger conclusion

4 Generating a �realistic� VHE Gamma-ray light curve

4.1 Algorithms to simulate a light curve from the �ux state distribution

As discussed in Section 3.2, we can �t the �ux state distribution with Gaussian and Log-normal
distribution. Then, we use the parameters of Gaussian and Log-normal distribution obtained from
the �t to generate VHE Gamma-ray light curves of HBL sources.

4.1.1 Random method

The �rst method that we explored to generate arti�cial light curves is a random method. In
this method, we just randomly generate �ux from Gaussian and Log-normal distributions with
parameters obtained from the �t to the distributions of collected data. The light curves that we
got from this method (Fig 4.1, left panel) have the same �ux distribution as original data, but the
evolutions of �ux level have a di�erent structure and the arti�cial light curve looks too �spiky�.
The absolute values of the �ux di�erence on two consecutive days are higher than the original ones.
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4.1.2 Rearrange method

To solve the problem of high value of �ux �uctuations of the results from simulation obtain in the
random method, we introduced a time evolution constraint. In this algorithm, we rearrange the
generated �uxes in ascending order. The �ux value generated in the n-th step is then taken from
the values with indexes in the range of n ± 10%n. The result in Fig 4.1 (right panel) shows the
light curve generated according to this method. We can generate light curves with combined low
state and �ares. However, we don't know how to realistically model the expected time evolution.

Figure 4.1: Light curve simulated using the random method (left panel) and rearrange method
(right panel) and the �ux state distribution of Mrk421.

4.2 Algorithm to simulate a light curve from the delta �ux distribution

In section 3.4, the delta �ux distribution was introduced. The parameters of from a Log-normal
�t to the data are used to generate �ux values to constraint the time evolution of generated light
curves. We generated random delta �ux from the distribution and add it to the �ux in pervious
step of simulation. An example light curve generated with this algorithm is shown in Fig 4.3. The
result shows �ares of long duration with very high �ux (more than 100 Crab) which don't happen
in the original data.

Figure 4.2: Light curve simulated using the delta �ux distribution of Mrk421.

4.3 Algorithm to simulate a light curve from periodogram

To generate light curve from periodogram, we use the algorithm proposed by Timmer & König
(1995). This algorithm is based on a main result of the theory of spectral estimation, i.e. that
DFT (vp) is a complex is Gaussian random variable:

DFT (vp) = ℵ(0,
1

2
S(vp)) + iℵ(0,

1

2
S(vp)), (4.1)
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where S(vp) is the data frequency spectrum, which variance does not depend on the number of
data points. These random variables are uncorrelated for di�erent frequencies.

In the �rst step of this algorithm, we have to choose a power law S(vp) ∼ (1/2πvp)
α from

which we want to generate the light curve. For each Fourier frequency vp, we have to generate two

Gaussian distributed random numbers and multiply them by
√

1
2S(vp) ∼ (1/2πvp)

α/2. Then we

use the result as the real and imaginary part of the Fourier transform in Equation 4.1. After that,
we have to obtain the time series by using Inverse Discrete Fourier Transform (IDFT) of f(vp) to
convert the values from the frequency domain to the time domain.

Figure 4.3: Simulated light curves from periodogram of α =1 (left panel) and 2 (right panel).

Examples of simulated light curves with this algorithm are shown in Fig 4.3. For α = 1, we can
simulate �icker noise light curve. In this case, the �rst frequency bin contributes the largest part of
the variance. This algorithm ensures that the �rst frequency bin does not dominate the time series
in a deterministic manner, but according to its natural �uctuations. To simulate random walk
light curve, we have to choose α = 2. Compared to the �icker noise light curve, the random walk
light curve is dominated by longer timescales. When we calculate the periodogram of generated
light curves, we found that the slope of the periodograms have increased in comparison with the

input α. This problem may came from using estimate value of
√

1
2S(vp) ∼ (1/2πvp)

α/2 to generate

light curve.

4.4 Algorithm to simulate a light curve from periodic function

Gaskell (2004) suggested that there is no fundamental di�erence between high state and low state
and division between high state and low state is not signi�cant. They used sine wave to describe
the mean �ux level and �uctuation proportional to that mean �ux level to generate light curve.
We apply this suggestion to implement a new algorithm to simulate light curves. The sine wave
function with a period of 100 days is used to generate mean �ux level and then we apply the �ux
�uctuations on top of it. To calculate the �uctuations ∆x, we use the following relation:

∆x = ±(Sdx+ Id)±Random{0, (Svx+ Iv)}, (4.2)

where Sd, Id, Sv and Iv are slope and intercept of linear functions describing the delta �ux as
a function of �ux (Fig 3.3, right panel) and excess variance as a function of average �ux (Section
3.6), respectively. The Sv and Iv are used to set the range of random �ux �uctuations above the
value which we get from Sd and Id. The plus-minus signs are also set by random.

4.5 Algorithm with separate high state and low state

4.5.1 Generating a big �are and a low state from the periodogram

In section 3.8.1, the periodograms of two parts of real light curve show that the strange structures
in periodogram may come from a part with �ares. Moreover, the result indicates that the light
curves may not be stationary. Both conclusions indicate that we may not be able to generate the
�ares and low state in the same way. Then, we separate the data into two parts: a big �are and a
low state. To de�ne a big �are, we use the 100 days interval that includes the highest �ux of the
light curve and the other periods we de�ne as low state.
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The periodograms from original data for both parts were plotted and �tted with a power law
(Fig 4.4). We used di�erent slops from the power-law function for a big �are and low state used
to generated light curve with our algorithm as presented in section 4.3.

Figure 4.4: Periodograms of a big �are (left panel) and low state (right panel) of Mrk421.

Fig 4.5 shows the simulated light curve and corresponding periodogram with parameters for
Mrk421. There is a problem on the transition between low state and a big �are that makes our
light curve look like a step function. This problem comes from our algorithm that doesn't have a
proper transition function between low state and a big �are.

Figure 4.5: Light curve with a big �are and low state simulated from periodogram (left panel)
and corresponding periodogram (right panel). Parameters derived from Mrk421 were used for
simulation.

4.5.2 Generating a big �are from a periodic function and a low state from peri-
odogram

From section 4.5.1, we have a problem with transition between low state and big �are. In section
3.7, we found that the light curve of HBL source have periods which we can �nd by �tting the
peaks in periodograms with a polynomial of 2nd degree. To make the transition between a big �are
and low state, we apply the algorithm that generates a light curve with sine wave to generate a
big �are. The sine wave function that we use is:

xi = (xF − xL) sin(
2πti
T
− π

2
) + xF , (4.3)

where xF and xL are the average �ux of a big �are and low state, respectively, and T is the
period of a sine wave. Light curves from this simulation have smooth transition between a big
�are and low state. Same as in section 4.4, we add random �ux �uctuation on top of the sine
wave function. We apply this simulation to simulate the light curve with periods of sine wave
as obtained from real data and then we sample the generated light curve using the observation
pattern of the real data (Table 2). The shape of the resulting periodograms is very similar to the
real ones.

However, in Table 2, we have three periods per sources which we obtain from �tting the pe-
riodogram. We want to �nd which period of sine wave function produces a simulated light curve
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Figure 4.6: Simulated light curves (left panel) and corresponding periodograms (right panel) of
Mrk421. The big �are is generated from periodic function and low state �ux is generated from
periodogram.

most similar to the original one. To check this, we compared the PSDs (Section 3.8.1). We simu-
lated 1,000 light curves from this algorithm and found the average S-Value between them and the
periodogram of original data.

Table 3: Average S-Value for di�erent high state period values (see Table 2) calculated from 1,000
generated light curves

S-Value Mrk421 Mrk501 1ES1959 +650

1st period 6.0 1.5 14

2nd period 0.8 1.2 11

3rd period 1.7 1.2 20

The average S-Values that we obtain in Table 3 show that using second period to generate
big �are gives the best average S-Values for all sources. For Mrk421, we obtained a very similar
light curve compared to the original one when we used the second period (the S-Values is less
than 1σ). The simulated light curves with the second period of Mrk501 are quite the same as the
original light curve, but have higher value of average S-Values than Mrk421 (1σ-2σ). In the case
of 1ES1959 +650, the values that we got are very high (more than 10σ). The very high value of
average S-Values may come from that we have few measurements and most of the data of 1ES1959
+650 have the same �ux value and the �ux of a big �are doesn't di�er from the low state so much.

4.5.3 Generating high state from periodic function and low state from periodogram

In section 4.5.1 and 4.5.2, we simulated the high state with only one big �are, but in real data, we
can observe also smaller sub-�ares in the big �are and single small �ares. In order to reproduce
those structures we have to answer two following questions. First, how many sub-�ares a big �are
has? And second, is there a relation between the duration of a �are and its maximum �ux?

We set a threshold on the �ux above which we de�ne the source as being in a high state and
then measure how long are these periods of high state and how many �ares occur. In this work, we
de�ne as high state �ux which exceeds the µGauss by 20σGauss (from the �t described in Section
3.3). We take the second period from Table 2 to de�ne the standard duration, called �cycle�, of a
�are and calculate how many cycles are observed during the high state period in real data.

We describe the histogram of number of cycles by an exponential distribution. For each �are,
we calculated average �ux and maximum �ux to plot them as a function of the number of cycles
and �t with linear relation. The result in Fig 4.7 shows that average �ux and maximum �ux in
each �are are proportional to the number of cycles.

As in the previous section, we generated �ares with sine wave function. However, in this
simulation, the sine wave function depends on more parameters:

xi = (NCSmax + Imax −NCSavg − Iavg) sin(
2πti
T
− π

2
) + (NCSavg + Iavg), (4.4)
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Figure 4.7: Average �ux (left panel) and maximum �ux (right panel) of high state as a function of
the number of cycles, in each �are of Mrk421.

where Smax, Imax, Savg and Iavg are the slope and intercept of the linear �t of Fig 4.7, respec-
tively, and NC is integer number of cycles generated randomly from the exponential distribution.

Figure 4.8: Simulated light curve. High state are generated from periodic function and low state are
generated from periodogram (Top) and periodogram (bottom). Simulation based on parameters
derived from that data from Mrk421.

In Fig 4.8, we show a simulated light curve from this algorithm, and corresponding �ux distri-
bution and periodogram. The �ux state distribution well reproduces the original data of Mrk421.
For the periodogram, it does not show strange structure like the original one. A peak at 10−6.4 Hz
comes from the period that we use to generated high state (29.0 days) and a peak with frequency
10−4.9 Hz relate to a day since the light curve were generated with one �ux point for each day. In
this simulation we did not apply the observation time pattern of real data. Therefore, we conclude
that this bias may have a stronger e�ect on the periodogram, compared to the �ares.

5 Conclusions

A statistical study of long term VHE Gamma-ray light curves of three HBL sources (Mrk421,
Mrk501, and 1ES1959+650) was performed. The data was previously collected from di�erent
experiments since 1992. We investigated the distributions of the integrated �ux values and the
distribution of the time derivative of the observed �ux. We found out that the �rst one is well
describe by a sum of a Gaussian and Log-normal distributions and the second one by a Log-normal
distribution.

To investigate the frequency domain of the light curve, periodograms are produced by using
Discrete Fourier Transform. The periodograms show strange peaks at frequency range 10−7 - 10−6

Hz. By �tting those peaks with polynomial of 2nd degree, three periods are obtained for each
source.

We tested the stationarity of the light curve with two methods: comparing PSDs and comparing
variances. In the �rst method, the results show that all light curves are non-stationary. In the
second test, due to small amount of data the results are non-conclusive.

In this study many di�erent algorithms to generate light curves were developed and tested.
They are based on the results from our statistical studies. First, we proposed an algorithm based
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on the �ux state distribution and delta �ux distribution, but they fail to properly describe �ares.
In the second approach, the periodogram and periodic functions were studied to generated light
curves. The light curves simulated with this algorithm can very well reproduce the behavior of the
real light curve.

The algorithm that we use to generate light curve by using periodogram still have some problems
that come from estimation of the power. In the future work, we will study this more detail. Also,
the sine function does not exactly describe the structure of the �ares. Exponential functions may
be more appropriate to describe the structure of �are in future work. We intend to continue this
work to understate the behavior of the VHE Gamma-ray sources more clearly.
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