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Abstract 

At the moment, lattice quantum chromodynamics (lattice QCD) is the most well 
established non-perturbative approach to solving the theory of  Quantum 
Chromodynamics. To get the best performance of  Lattice QCD computing, it 
requires careful attention to balancing memory bandwidth, floating point 
throughput, and network performance. 
In this paper, I will discuss my investigation of  the effect to lattice QCD 
performance of  different commodity processors. I will also discuss the effect of  
different lattice size, computing precision etc. Finally, I will give my suggestion on 
how to do lattice QCD computing effectively and economically. 
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1. Introduction to the benchmark suite 

I use the BenchMZ suite made by Martin Luescher and Hartmut Wittig to evaluate 
the performance of  lattice QCD computing. This suite is based on the DD-HMC 
lattice QCD simulation package, which implements the DD-HMC algorithm for 
lattice QCD with the Wilson plaquette action and a doublet of  mass-degenerate 
O(a)-improved Wilson quarks [1].   
 
1.1 DD-HMC algorithm 
The DD-HMC algorithm combines domain decomposition ideas with the 
Hybrid-Monte-Carlo algorithm and the Sexton-Weingarten multiple-time 
integration scheme. In the relevant range of  quark masses and lattice sizes, it is 
much faster than any algorithm used before. Moreover, it is well suited for parallel 
processing, which is a critical requirement if  large lattices are to be simulated [1]. 
This algorithm is described in detail in [2] and [3].  

 
1.2 DD-HMC lattice QCD simulation package 
The DD-HMC lattice QCD simulation package which implements the DD-HMC 
algorithm is written by Martin Luescher, the same person who introduced this 
algorithm. So far this implementation has been extensively used in PC clusters, and 
we are using it in production runs. 
The code is this package is highly optimized for the machines with current Intel and 
AMD processors, but will run correctly on any system that complies with the ISO C 
and the MPI 1.2 standards [1]. Many modules in the package include SSE 
(Streaming SIMD Extension) inline-assembly code which can be activated at 
compilation time, to profit from the modern x86 processors’ extended capabilities of  
performing arithmetic operations on vectors of  4 single-precision or 2 
double-precision floating-point numbers in just one or two machine circles. 
In my investigation, the DD-HMC package version 1.0.1 is used. However, it should 
be easy to move to the latest version 1.2.1. 
 
1.3 The BenchMZ suite 
In the BenchMZ suite we focus on the computing time spent on various functions to 
benchmark a given system. The timing functions and short descriptions of  these 
functions are listed in Table 1. These functions are chosen in the benchmark suite 
because they contain most of  the time-critical parts of  actual lattice QCD 
applications.  
Typical values in production runs are used for the choice of  parameter set. Two 
different lattice sizes are considered, 32x16x16x32 and 32x16x24x48; the 
corresponding block sizes are 8x8x8x8 and 8x8x12x12, respectively. The coupling 

parameter 0.0β = and the hopping parameter 0.1κ =  are used. 
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Timing Function Short Description 
 

Qhat/Qhat_dble 
Part of  the application of  the even-odd 
preconditioned Wilson-Dirac operator.  Applies 
Qhat to the global single/double precision field 
and assigns the result. 

 
Qhat_blk/Qhat_blk_dble 

Part of  the application of  the even-odd 
preconditioned Wilson-Dirac operator. Applies 
Qhat to the single/double precision field on the 
block and assigns the result. 

spinor_prod/ 
spinor_prod_dble 

Computes the scalar product of  the fields.  

spinor_prod_re/ 
spinor_prod_re_dble  

Computes the real part of  the scalar product of  
the fields. 

normalize/ 
normalize_dble 

Replaces pk[] by pk[]/||pk|| and returns the 
norm ||pk|| 

mulc_spinor_ad/ 
mulc_spinor_ad_dble 

Replaces pk[] by pk[]+z*pl[] 

project/project_dble  Replaces ps_k by pk[]-(pl,pk)*pl[]  
rotate/rotate_dble  

 
Replaces p_k[] by sum_j p_j[]*v[n*j+k] where 
0<=k, j<n and p_k=ppk[k] 

norm_square/ 
norm_square_dble  

Computes the square of  the norm of  the field. 

 
Table 1. List of  the functions that are used to benchmarking the system and their short 

descriptions.   

 
 

hostname Processors Memory(GB) System Compiler 
 

hpbl1.ifh.de 
Intel Xeon 

E5440 
Quad Core * 2 

 
16 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

 
gcc 3.4.6 

 
hpbl2.ifh.de 

Intel Xeon 
E5440 

Quad Core * 2 

 
16 

Scientific Linux 
5.2 64bit 

(kernel 2.6.18) 

 
gcc 4.1.2 

 
hpbl3.ifh.de 

AMD Opteron 
2356 

Quad Core * 2 

 
16 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

 
gcc 3.4.6 

 
hpbl4.ifh.de 

AMD Opteron 
2356 

Quad Core * 2 

 
16 

Scientific Linux 
5.2 64bit 

(kernel 2.6.18) 

 
gcc 4.1.2 

 
Table 2. Test platforms 
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2. Introduction to the platforms for test 

2.1 Platforms for test 
The platforms used to performing the benchmarking are listed in Table 2. They are 
all x86_64 machines, with typical modern configurations. Multi-core architecture is 
the main focus of  this investigation, because we want to know how the data 
exchanging between cores constrains the performance of  lattice QCD. Scientific 
Linux Operating System is used because this is the most popular OS in high energy 
physics computing.  For 64-bit executables in SL5 machines, OpenMPI 1.2.5 is used 
as MPI implementation, otherwise OpenMPI 1.2.3 is used.     
 
2.2 Complier flags 
For 32-bit executables, the complier flags used are “-ansi –pedantic –Wno-long-long 
–Wall –mcpu=i586 –malign-double –fno-force-mem –O –DSSE3 –DPM”. For 64-bit 
executables, the complier flags used are “-std=c89 -pedantic -Wno-long-long -Wall 
–fomit -frame-pointer -O -DSSE3 –DPM”. These flags are suggested by the author 
of  the DD-HMC simulation package. Actually, several compiler options mentioned 
in gcc man pages are tried, but the effects are not very significant. What tend to 
really drive the performance are the prefetch distance (which is set by –DPM) and 
the SSE inline-assemble activation (which is set by –DSSEx). 
 

3. Effect to lattice QCD performance of  different processor 

architectures 

High lattice QCD performance requires excellent single and double precision 
floating point performance, high memory bandwidth* and fast communications 
between nodes. The effect of  network communications will not be investigated in 
this paper; and the other two factors both largely depend on the CPU architectures. 
Previous study shows that for older CPUs, memory bandwidth typically constrains 
the performance on single nodes [4].  
 
3.1 Introduction to the compared CPU architectures 
Two popular commodity processors, Intel Xeon E5440 and AMD Opteron 2356, 
which are believed to be representative to the modern Intel and AMD multi-core 
CPUs, are investigated. 
Detailed technical information about these two processors can be found in the official 
websites of  Intel and AMD companies [5-6]. I will concentrate only on the key 
aspects that affect the floating-point performances and memory bandwidth.  
The main frequency of  Intel E5440 is 2.83 GHz, while it is 2.30 GHz for AMD 2356, 
which basically means that E5440 runs faster than 2356.  
 
*The term memory bandwidth used here not only refers to the access to main 
memory, but also to the data exchanging between cores and processors. 
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Both CPUs have integrated floating point unit and support SSE3 instruction set. 
AMD Opteron 2356 also provides 128-bit floating-point pipeline enhancements To 
improve float-point performance. Figure 1 gives the illustration of  the comparison 
of  floating-point performance on these two processors. One can find from the figures 
that generally AMD Opteron 2356 does better than Intel Xeon E5440 in 
floating-point performance despite its lower main frequency. However, this 
advantage is not obvious in low optimization codes that are typically used in high 
energy computing. 
 

 
Fig. 1.a [7]                                   Fig. 1.b 

Figure 1: Illustration of  the floating-point throughput performance comparison of  Intel Xeon 

E5440 and AMD Opteron 2356 2P servers. Fig. 1.a is the SPECfp*_rate results with high 

optimization; while Fig. 1.b is the SPECfp*_multispeed results with typical optimization used in 

high energy computing [8].    

 
 

Concerning memory bandwidth, AMD has made some important changes in the 
processor architectures of  Opteron series. Each Opteron has an integrated memory 
controller and a separate memory bus attached to the controller. HyperTransport™ 
Technology Links are used to link between processors. A given processor can 
address both local memory, and memory attached to the other processor. However, 
NUMA-aware kernels such as the Linux 2.6.x series must be used to gain the best 
performance on AMD processors [4]. In the contrast, Intel Xeon E5400 series still 
use the traditional front-size bus architectures, with E5440 having a 1333 MHz FSB. 
Figure 2 gives the comparison of  memory bandwidth of  these two processors. One 
can find from the figure that the memory bandwidth of  Intel Xeon E5440 processor 
system only approaches 45%-55% of  the bandwidth of  AMD Opteron 2356 
processor system. 
 
3.2 Benchmark results 
The Benchmark results used to evaluate performances of  different processors are 
shown in Figure 3; performances are given in Mflops (higher is better), whose value 
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                Fig 3.c                                    Fig 3.d               

 

Fig 3.e Fig 3.f 
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               Fig. 3.g                                    Fig 3.h 

Figure 3: Benchmark results for processor architecture comparison. 

 

Intel-based machine performances have the tendency of  approaching 40%-50% of  
AMD-base machine performances. This tendency can be seen more clearly when one 
looks at the Qhat_blk and norm_squre timing functions. This observation can be 
explained by that memory bandwidth is still the constraining factor in lattice QCD 
computing, so when the lattice extends into main memory, the lattice QCD 
performance basically reflects the memory bandwidth performance of  the particular 
machine, which is 40%-50% of  AMD for Intel-based machines.   
 

4. Effect to lattice QCD performance of  different lattice size 

and computing precision 

The Benchmark results used to evaluate performances of  different lattice size and 
computing precision are shown in Figure 4. The lattice QCD benchmark suite is 
runned in four different machines (hpbl1-4); and for each machine, the suite is 
runned with single and double precision, and with 32x16x16x32 and 32x16x24x48 
lattice, respectively. 
Comparing the results of  different lattice size runs, one can find that in single 
precision computing, there may be some performance decline for larger lattice; but in 
double precision runs, the Mflops performance value for different lattice size tends to 
become the same, i.e. in high precision computing the time spent on each lattice 
point does not increase when lattice size increases. 
Comparing the result of  different precision runs, one can find some analogous 
property. In small lattice runs, the double precision performance may only reach 1/5, 
or even 1/7 of  the single precision performance, e.g. in the normalize or norm_squre 
functions. However, in large lattice runs, almost all the benchmarking functions  
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5. Effect to lattice QCD performance of  32bit and 64bit 

applications 

The benchmark results used to evaluate performance of  32bit and 64 bit applications 
are showed in Figure 5. The 32-bit and 64-bit lattice QCD benchmark suites are 
runned in two machines with different architectures. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.a Benchmark results on Intel-based 

machine hpbl2 

Fig 5.b Benchmark results on AMD-based 

machine hpbl4 

Figure 5: Benchmark results for ELF format comparison 

 
One can see that there is no considerable performance difference between 32-bit and 
64-bit lattice QCD applications. The reason for this phenomenon still needs some 
investigation. But the guess is that it has something to do with the fact that the 
prefetch distance is 128 bit for both 32-bit and 64-bit executables.  
 

6. Conclusions     

Memory bandwidth is still the constraining factor of  lattice QCD computing even 
for fairly new machines. So processors with special technology to speed up the 
memory access have evident advantage in lattice QCD computing. As a respective 
case, AMD Opteron 2356 with integrated memory controller and HyperTransport 
channels gets a 120% higher score than Intel Xeon 2345 with traditional front size 
bus architecture in lattice QCD benchmarking. Besides, the increase of  lattice size or 
computing precision has a roughly linear effect on computing time.  . 
So for people who want to perform effective and economic lattice QCD computing, 
memory bandwidth should be a key factor to focus on; AMD Opteron systems with 
enhanced memory access design may probably be a good choice. Also, since there is 
no dramatic performance decline for larger lattice and higher computing precision; 
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this would be quite acceptable when there is need. 
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