
 1 / 11

Lattice QCD Performance

on Multi­core Linux Servers

Yang Suli
*

Department of Physics, Peking University, Beijing, 100871

Abstract

At the moment, lattice quantum chromodynamics (lattice QCD) is the most well
established non-perturbative approach to solving the theory of Quantum
Chromodynamics. To get the best performance of Lattice QCD computing, it
requires careful attention to balancing memory bandwidth, floating point
throughput, and network performance.
In this paper, I will discuss my investigation of the effect to lattice QCD
performance of different commodity processors. I will also discuss the effect of
different lattice size, computing precision etc. Finally, I will give my suggestion on
how to do lattice QCD computing effectively and economically.

Contents

1. Introduction to the benchmark suite ..3
1.1 DD-HMC algorithm
1.2 DD-HMC lattice QCD simulation package
1.3 The BenchMZ suite

2. Introduction to the platforms for test………………………………………….4
2.1 Platforms for test
2.2 Compiler flags

3. Effect to lattice QCD performance of different processor architectures….4
3.1 Introduction to compared CPU architectures.
3.2 Benchmark results

4. Effect to lattice QCD performance of different lattice size and computing
precision…………………………………………………………………………..8

5. Effect to lattice QCD performance of different ELF format………………10
6. Conclusion………………………………………………………………………10

*Email: yangsuli@gmail.com

 2 / 11

1. Introduction to the benchmark suite

I use the BenchMZ suite made by Martin Luescher and Hartmut Wittig to evaluate
the performance of lattice QCD computing. This suite is based on the DD-HMC
lattice QCD simulation package, which implements the DD-HMC algorithm for
lattice QCD with the Wilson plaquette action and a doublet of mass-degenerate
O(a)-improved Wilson quarks [1].

1.1 DD-HMC algorithm
The DD-HMC algorithm combines domain decomposition ideas with the
Hybrid-Monte-Carlo algorithm and the Sexton-Weingarten multiple-time
integration scheme. In the relevant range of quark masses and lattice sizes, it is
much faster than any algorithm used before. Moreover, it is well suited for parallel
processing, which is a critical requirement if large lattices are to be simulated [1].
This algorithm is described in detail in [2] and [3].

1.2 DD-HMC lattice QCD simulation package
The DD-HMC lattice QCD simulation package which implements the DD-HMC
algorithm is written by Martin Luescher, the same person who introduced this
algorithm. So far this implementation has been extensively used in PC clusters, and
we are using it in production runs.
The code is this package is highly optimized for the machines with current Intel and
AMD processors, but will run correctly on any system that complies with the ISO C
and the MPI 1.2 standards [1]. Many modules in the package include SSE
(Streaming SIMD Extension) inline-assembly code which can be activated at
compilation time, to profit from the modern x86 processors’ extended capabilities of
performing arithmetic operations on vectors of 4 single-precision or 2
double-precision floating-point numbers in just one or two machine circles.
In my investigation, the DD-HMC package version 1.0.1 is used. However, it should
be easy to move to the latest version 1.2.1.

1.3 The BenchMZ suite
In the BenchMZ suite we focus on the computing time spent on various functions to
benchmark a given system. The timing functions and short descriptions of these
functions are listed in Table 1. These functions are chosen in the benchmark suite
because they contain most of the time-critical parts of actual lattice QCD
applications.
Typical values in production runs are used for the choice of parameter set. Two
different lattice sizes are considered, 32x16x16x32 and 32x16x24x48; the
corresponding block sizes are 8x8x8x8 and 8x8x12x12, respectively. The coupling

parameter 0.0β = and the hopping parameter 0.1κ = are used.

 3 / 11

Timing Function Short Description

Qhat/Qhat_dble
Part of the application of the even-odd
preconditioned Wilson-Dirac operator. Applies
Qhat to the global single/double precision field
and assigns the result.

Qhat_blk/Qhat_blk_dble

Part of the application of the even-odd
preconditioned Wilson-Dirac operator. Applies
Qhat to the single/double precision field on the
block and assigns the result.

spinor_prod/
spinor_prod_dble

Computes the scalar product of the fields.

spinor_prod_re/
spinor_prod_re_dble

Computes the real part of the scalar product of
the fields.

normalize/
normalize_dble

Replaces pk[] by pk[]/||pk|| and returns the
norm ||pk||

mulc_spinor_ad/
mulc_spinor_ad_dble

Replaces pk[] by pk[]+z*pl[]

project/project_dble Replaces ps_k by pk[]-(pl,pk)*pl[]
rotate/rotate_dble

Replaces p_k[] by sum_j p_j[]*v[n*j+k] where
0<=k, j<n and p_k=ppk[k]

norm_square/
norm_square_dble

Computes the square of the norm of the field.

Table 1. List of the functions that are used to benchmarking the system and their short

descriptions.

hostname Processors Memory(GB) System Compiler

hpbl1.ifh.de
Intel Xeon

E5440
Quad Core * 2

16

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6

hpbl2.ifh.de

Intel Xeon
E5440

Quad Core * 2

16

Scientific Linux
5.2 64bit

(kernel 2.6.18)

gcc 4.1.2

hpbl3.ifh.de

AMD Opteron
2356

Quad Core * 2

16

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6

hpbl4.ifh.de

AMD Opteron
2356

Quad Core * 2

16

Scientific Linux
5.2 64bit

(kernel 2.6.18)

gcc 4.1.2

Table 2. Test platforms

 4 / 11

2. Introduction to the platforms for test

2.1 Platforms for test
The platforms used to performing the benchmarking are listed in Table 2. They are
all x86_64 machines, with typical modern configurations. Multi-core architecture is
the main focus of this investigation, because we want to know how the data
exchanging between cores constrains the performance of lattice QCD. Scientific
Linux Operating System is used because this is the most popular OS in high energy
physics computing. For 64-bit executables in SL5 machines, OpenMPI 1.2.5 is used
as MPI implementation, otherwise OpenMPI 1.2.3 is used.

2.2 Complier flags
For 32-bit executables, the complier flags used are “-ansi –pedantic –Wno-long-long
–Wall –mcpu=i586 –malign-double –fno-force-mem –O –DSSE3 –DPM”. For 64-bit
executables, the complier flags used are “-std=c89 -pedantic -Wno-long-long -Wall
–fomit -frame-pointer -O -DSSE3 –DPM”. These flags are suggested by the author
of the DD-HMC simulation package. Actually, several compiler options mentioned
in gcc man pages are tried, but the effects are not very significant. What tend to
really drive the performance are the prefetch distance (which is set by –DPM) and
the SSE inline-assemble activation (which is set by –DSSEx).

3. Effect to lattice QCD performance of different processor

architectures

High lattice QCD performance requires excellent single and double precision
floating point performance, high memory bandwidth* and fast communications
between nodes. The effect of network communications will not be investigated in
this paper; and the other two factors both largely depend on the CPU architectures.
Previous study shows that for older CPUs, memory bandwidth typically constrains
the performance on single nodes [4].

3.1 Introduction to the compared CPU architectures
Two popular commodity processors, Intel Xeon E5440 and AMD Opteron 2356,
which are believed to be representative to the modern Intel and AMD multi-core
CPUs, are investigated.
Detailed technical information about these two processors can be found in the official
websites of Intel and AMD companies [5-6]. I will concentrate only on the key
aspects that affect the floating-point performances and memory bandwidth.
The main frequency of Intel E5440 is 2.83 GHz, while it is 2.30 GHz for AMD 2356,
which basically means that E5440 runs faster than 2356.

*The term memory bandwidth used here not only refers to the access to main
memory, but also to the data exchanging between cores and processors.

 5 / 11

Both CPUs have integrated floating point unit and support SSE3 instruction set.
AMD Opteron 2356 also provides 128-bit floating-point pipeline enhancements To
improve float-point performance. Figure 1 gives the illustration of the comparison
of floating-point performance on these two processors. One can find from the figures
that generally AMD Opteron 2356 does better than Intel Xeon E5440 in
floating-point performance despite its lower main frequency. However, this
advantage is not obvious in low optimization codes that are typically used in high
energy computing.

Fig. 1.a [7] Fig. 1.b

Figure 1: Illustration of the floating-point throughput performance comparison of Intel Xeon

E5440 and AMD Opteron 2356 2P servers. Fig. 1.a is the SPECfp*_rate results with high

optimization; while Fig. 1.b is the SPECfp*_multispeed results with typical optimization used in

high energy computing [8].

Concerning memory bandwidth, AMD has made some important changes in the
processor architectures of Opteron series. Each Opteron has an integrated memory
controller and a separate memory bus attached to the controller. HyperTransport™
Technology Links are used to link between processors. A given processor can
address both local memory, and memory attached to the other processor. However,
NUMA-aware kernels such as the Linux 2.6.x series must be used to gain the best
performance on AMD processors [4]. In the contrast, Intel Xeon E5400 series still
use the traditional front-size bus architectures, with E5440 having a 1333 MHz FSB.
Figure 2 gives the comparison of memory bandwidth of these two processors. One
can find from the figure that the memory bandwidth of Intel Xeon E5440 processor
system only approaches 45%-55% of the bandwidth of AMD Opteron 2356
processor system.

3.2 Benchmark results
The Benchmark results used to evaluate performances of different processors are
shown in Figure 3; performances are given in Mflops (higher is better), whose value

is in
with
64-b
hpb
Perf
AM
fact
perf
one

Figu

Opte

nversely pr
h single an
bit executa

bl3, hpbl4 (A
formances v

MD-based m
t that AM
formance a
 will obse

ure 2: Illustra

eron 2356 2P

roportional
nd double p
able format,
AMD-based
vary from

machines ha
MD Opteron
and memory
rve that fo

ation of the m

P servers. Th

Fig 3.a

to time sp
precision, sm
, are runne

d machines)
different tim
ve a higher
n2356 bea
y bandwidt

for bigger

memory band

e results are

 6 / 11

pent per lat
maller and
ed in hpbl1
.
ming funct
r Mflops va
ts Intel X
th despite i
lattice size

dwidth compa

obtained usin

ttice point.
bigger latt

1, hpbl2 (In

tions, but on
alue, which

Xeon E544
its lower m
e or highe

arison of Int

ng STREAM

Lattice QC
tice, as wel
ntel-based

ne can find
 is in accor
0 in both

main freque
er (double)

tel Xeon E54

M benchmark

Fig 3.b

CD applicat
ll as 32-bit
machines),

d that gener
rdance with
 floating-p
ency. Moreo
 precision,

40 and AMD

 suite [7].

tions
 and
 and

rally
h the
point
over,
 the

D

 7 / 11

 Fig 3.c Fig 3.d

Fig 3.e Fig 3.f

 8 / 11

 Fig. 3.g Fig 3.h

Figure 3: Benchmark results for processor architecture comparison.

Intel-based machine performances have the tendency of approaching 40%-50% of
AMD-base machine performances. This tendency can be seen more clearly when one
looks at the Qhat_blk and norm_squre timing functions. This observation can be
explained by that memory bandwidth is still the constraining factor in lattice QCD
computing, so when the lattice extends into main memory, the lattice QCD
performance basically reflects the memory bandwidth performance of the particular
machine, which is 40%-50% of AMD for Intel-based machines.

4. Effect to lattice QCD performance of different lattice size

and computing precision

The Benchmark results used to evaluate performances of different lattice size and
computing precision are shown in Figure 4. The lattice QCD benchmark suite is
runned in four different machines (hpbl1-4); and for each machine, the suite is
runned with single and double precision, and with 32x16x16x32 and 32x16x24x48
lattice, respectively.
Comparing the results of different lattice size runs, one can find that in single
precision computing, there may be some performance decline for larger lattice; but in
double precision runs, the Mflops performance value for different lattice size tends to
become the same, i.e. in high precision computing the time spent on each lattice
point does not increase when lattice size increases.
Comparing the result of different precision runs, one can find some analogous
property. In small lattice runs, the double precision performance may only reach 1/5,
or even 1/7 of the single precision performance, e.g. in the normalize or norm_squre
functions. However, in large lattice runs, almost all the benchmarking functions

repo
Bot
con
com
non
incr
mor

 F

 Fi

Figure 4:

ort a 2:1 pe
h observat
strains the

mputing pre
nlinear effec
reasing. As
re statistics

Fig. 4.a

ig. 4.c

 Benchmar

rformance r
tions may
e lattice Q
ecision is s
ct of the a
 a result, t
 is still need

k results for

ratio for sin
result from

QCD perfor
pecified, th

algorithm i
time spent
ded to confi

 9 / 11

lattice size an

ngle vs. dou
m the fact
rmance. W

he lattice ex
is disguised
on per latt
irm this exp

nd computing

uble precisio
t that mem

When large
xtends to t

d by the lin
tice point r
planation.

 Fig. 4.b

Fig. 4.d

g precision co

on runs.
mory bandw
er lattice s
the main m
near memo
remains line

omparison

width typic
size or hig
memory, so
ory access
early. Howe

cally
gher

o the
time
ever,

 10 / 11

5. Effect to lattice QCD performance of 32bit and 64bit

applications

The benchmark results used to evaluate performance of 32bit and 64 bit applications
are showed in Figure 5. The 32-bit and 64-bit lattice QCD benchmark suites are
runned in two machines with different architectures.

Fig 5.a Benchmark results on Intel-based

machine hpbl2

Fig 5.b Benchmark results on AMD-based

machine hpbl4

Figure 5: Benchmark results for ELF format comparison

One can see that there is no considerable performance difference between 32-bit and
64-bit lattice QCD applications. The reason for this phenomenon still needs some
investigation. But the guess is that it has something to do with the fact that the
prefetch distance is 128 bit for both 32-bit and 64-bit executables.

6. Conclusions

Memory bandwidth is still the constraining factor of lattice QCD computing even
for fairly new machines. So processors with special technology to speed up the
memory access have evident advantage in lattice QCD computing. As a respective
case, AMD Opteron 2356 with integrated memory controller and HyperTransport
channels gets a 120% higher score than Intel Xeon 2345 with traditional front size
bus architecture in lattice QCD benchmarking. Besides, the increase of lattice size or
computing precision has a roughly linear effect on computing time. .
So for people who want to perform effective and economic lattice QCD computing,
memory bandwidth should be a key factor to focus on; AMD Opteron systems with
enhanced memory access design may probably be a good choice. Also, since there is
no dramatic performance decline for larger lattice and higher computing precision;

 11 / 11

this would be quite acceptable when there is need.

Acknowledgment

This research is sponsored by DESY summer student program. I want to thank my
supervisor Peter Wegner for his guidance. I want to thank Mr. Martin Luescher and
Mr. Hartmut Wittig for their kindness and patience when answering my rather naive
questions. I would also like to thank Mr. Goetz Waschk and Mr. Stephan Wiesand
for their kind help to my work.

References

[1] M. Luescher, README file of the DD-HMC package.
[2] M. Luescher, Comput. Phys. Commun. 165 (2005) 199
[3] M. Luescher, Comput. Phys. Commun. 156 (2004) 209
[4] D. Holmgren et. al, FERMILAB-CONF-04-484-CD
[5]http://www.intel.com/products/processor/xeon5000/documentation.htm
[6]http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8796,0
0.html
[7]http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8796_
8800,00.html
[8]https://hepix.caspur.it/processors/dokuwiki/doku.php?id=benchmarks:introduc
tion

