

Benchmarking Computers for High Energy Physics

Computing

Yang Suli
yangsuli@gmail.com

Department of Physics, Peking University, Beijing, 100871

Abstract:

Today’s high energy physics requires enormous computing resources, so there is a
common desire for a standard benchmarking method, which gives a standard and
simple evaluation to computers’ capability to do high energy physics computing.
Traditionally, the industry standard benchmark suite SPEC CPU2000 is used. But
this benchmark suite has been retired, and is not representative to modern
computers anymore.
In this paper I will examine several aspects of CPU2006----SPEC’s next generation,
CPU intensive benchmark suite; compare it to real HEP applications; and try to
establish a fairly accurate and convenient way to evaluate computing powers that are
used to do data analysis in high energy physics. Also, I will use the established
method to benchmark several machines with different configurations, so that the
effect of different factors on high energy physics computing, such as the operating
system and the processors’ effect, can be shown.

Content:

0. Acknowledgment
1. Introduction
2. The SPEC benchmark suite and Platforms for test

2.1 SPEC CPU2006 benchmark suite
2.2 Platforms for test
2.3 Complier flags and configuration files

3. Discussion of accidental errors
4. The standard HEP benchmarking method

4.1 Multispeed vs. Rate
4.2 The ALL_CPP bset
4.3 Version 1.0 vs. 1.1
4.4 Conversion from CPU2000 to CPU2006 results

5. Comparison of SPEC benchmark results to HEP code performance
6. Multiple factors that may affect computing performance

6.1 Operating Systems
6.2 Processors

7. Conclusions

0. Acknowledgment

I hereby wish to thank my supervisor Dr. Peter Wegner, for his support and
constructive feedback at various opportunities during the work.
Some data cited in this paper is obtained by Dr. Michele Michelotto, Alejandro
Iribarren and other members in the HEPIX group. The private discussion in their
mail list is also very helpful. I want to give my special gratitude to them.
I would also like to thank Mr. Goetz Waschk and Mr. Stephan Wiesand for their
kind help to my work.

1. Introduction

Today’s high energy physics requires enormous computing resources, so there is a
common desire for a standard benchmarking method, which gives a standard and
simple evaluation to computers’ capability to do high energy physics computing.
Traditionally, the industry standard benchmark suite SPEC CPU2000 is used. But
this benchmark suite has been retired, and is not representative to modern
computers anymore. CPU2006 is the next generation, industry-standardized, CPU
intensive benchmark suite supported by SPEC, which gives it the potential to serve
as the HEP standard benchmark. However, high energy physics experiments
applications have their own characteristics. This benchmark must be adjusted to our
own needs in order to properly represent computers’ capability to do high energy
physics computing. In this paper I will examine several aspects of CPU2006,
compare it to real HEP applications, and try to establish a fairly convenient and
accurate method to do high energy physics benchmarking.
The rest of this paper is organized as follows: in section 2 I give a brief introduction
to the SPEC CPU2006 benchmark suite and the platforms under test. The accidental
error fluctuation of the results is discussed in section 3. Then in section 4 several
properties of CPU2006 are studied, corresponding adjustments are given and the
standard method for HEP benchmarking is established. I also discuss the conversion
from CPU2000 results to CPU2006 results in section 4. The comparison of the
standard benchmark results to real HEP application performance is given in section
5. In section 6 this standard method is used to analyze operating system and
processor’s effect on high energy physics computing performance. Finally I conclude
in section 6.

2. The SPEC CPU2006 benchmark suite and platforms for test

There has already been an agreement of using an industry standard benchmark
suite, instead of using codes from experiments, to evaluate the performance of
computers, though we may use it in a nonstandard way. There are several reasons for
such a decision. First, having an industry standard benchmark saves us a great deal
of trouble of maintaining it. We will have the benchmark venders to fix the bugs

and port it to new compliers and operating systems for us. We can expect that an
industry benchmark to be maintained for 5, or even 10 years. In contrast, the codes
from experiments are relatively unstable, have a much shorter lifetime, and are hard
to run. Second, a cluster of machines can be used for various experiments computing,
e.g. a machine runs both CMS and ATLAS analysis, which makes it very difficult to
choose a representative collection of codes from experiments as benchmark suite.
Also, using an industry standard benchmark makes the communication with
hardware venders easier.

2.1 The SPEC CPU2006 benchmark suite
SPEC CPU2006, an industry-standardized, CPU-intensive benchmark suite which
provides comparative measure of compute-intensive performance across different
hardware platforms, seems to be a good choice. This benchmark suite stresses a
system’s processor, memory subsystem and compiler, which are the key factors in
high energy physics computing. Also, this benchmark suite is widely accepted in the
industry world. The basic idea of this benchmark is to run several real user
applications as benchmarks, including some physics applications like QCD
computing; to compare the execution time of each benchmark to a reference
machine (a SUN SPARC); to decide the score of each benchmark by calculating how
many times faster the tested machine executes a given benchmark than the reference
machine; and finally, to take the geometric mean of all the benchmarks’ scores as the
final result. There are two basic components of this benchmark suite: CINT2006,
which tests the integer performance; and CFP2006, which tests the floating-point
performance. The ALL_CPP bset is also heavily used, which will be discussed in its
respective section. More technical details can be found in [1].
However, as I mentioned before, just copying the industry benchmark method is not
suitable to evaluate the computing power in high energy physics world. Especially,
the results in the SPEC website published by the venders are pointless to us. Because
these results are obtained by carefully setting up the environment and highly
optimizing the generated binary to get the highest score, which is not representative
to the production runs in high energy physics.
For the above reasons, we will use the standard SPEC CPU2006 benchmark suite,
but in a nonstandard way, which will be explained later.

2.2 Platforms for test
The platforms used to perform the benchmarking are listed in Table 1. They are all
x86_64 machines, with typical modern configurations. Scientific Linux [2] is used
because this is the dominating operating system in high energy physics computing.
We use a 64-bit OS because that is how our production machines are installed. All
the new hardware is 64bit capable and we're not interested in running a 32-bit OS
[3]. Several typical Intel and AMD architectures are investigated in order to get an
impression of modern commodity processors’ performance in high energy physics.
This paper has also cited some external benchmark results in order to enlarge the
statistics. Those benchmark runs are conducted in machines from CERN and INFN,

whose parameters are listed in Table 2.

2.3 Complier flags and configuration files
The complier used is gcc with tuning “-m32 –O2 –fPIC –fpthread”. These are the
flags mandated by the LCG board, and are supposed to be the common flags used in
the production runs. We use “-m32” to produce 32-bit mode applications because
some 32-bit-only resources are still used in the experiments codes, and 32-bit
application on a 64-bit OS represents a usual environment.
To control the way SPEC CPU2006 benchmark suite runs, one need a config file to
specify the compliers for the source codes, the optimization flags, the selection of
benchmarks, and various other settings. To unify the benchmark settings so that one
can get comparable results in different systems to represent typical high energy
physics computing performance, the hepix group has offered a reference config file,
which is used in our benchmark runs [3].

hostname Processors Memory(GB) System Compiler

hpbl1.ifh.de
Intel Xeon

E5440
Quad Core * 2

2.83GHz

16

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

hpbl2.ifh.de*

Intel Xeon
E5440

Quad Core * 2
2.83GHz

16

Scientific Linux
5.2 64bit

(kernel 2.6.18)

gcc 4.1.2

hpbl3.ifh.de

AMD Opteron
2356

Quad Core * 2
2.30GHz

16

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

hpbl4.ifh.de

AMD Opteron
2356

Quad Core * 2
2.30GHz

16

Scientific Linux
5.2 64bit

(kernel 2.6.18)

gcc 4.1.2

qftquad3.ifh.d

e

Intel Xeon
E5450

Quad Core * 2
3.00GHz

32

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

Blade5a.ifh.de

Intel Xeon
E5450

Quad Core * 2
3.00GHz

32

Scientific Linux
5.2 64bit

(kernel 2.6.18

gcc 4.1.2

Tab. 1: Platforms for Test (inside DESY)

*On hpbl2, Scientific Linux 4.6 and Scientific Linux 5.2 have in turn been installed. I will state it

explicitly when citing results obtained on hpbl2 using SL4.6.

hostname Processors Memory(GB) System Compiler

Povada
AMD Bacerlona
Quad Core * 2

2.50GHz

16

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench01
Intel Nocona

Single Core * 2
2.80GHz

2
Scientific Linux

4.6 64bit
(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench02

Intel Irvingdale
Single Core * 2

2.80GHz

4

Scientific Linux

4.6 64bit
(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench03

AMD Opteron
275

Dual Core * 2
2.20GHz

2

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench04
Intel Woodcrest
Dual Core * 2

2.66GHz

8

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench05
Intel Woodcrest
Dual Core * 2

3.00GHz

8

Scientific Linux
4.6 64bit

(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench06

AMD Opteron
2218 Rev.F

Dual Core * 2
2.60GHz

8
Scientific Linux

4.6 64bit
(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench07

Intel
Clovertown

Quad Core * 2
2.33GHz

16
Scientific Linux

4.6 64bit
(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

lxbench08

Intel
Harpertown

E5410
Quad Core * 2

2.33GHz

16
Scientific Linux

4.6 64bit
(kernel 2.6.9)

gcc 3.4.6
(gcc 4.1.2 for
Fortran part)

Tab. 2: Platforms for Test (outside DESY)

3. Discussion of accidental errors

Even if benchmarks are runned in machines with the same configurations, or even in
the same machine, one may get results with slight differences. These accidental
errors are introduced because of the differences in different batches of hardware
products, the unpredictable disturbance of the runtime environment, or various
other reasons. In order to correctly compare results from different benchmark runs,
we must take into account the accidental error fluctuations.

To decide the accidental errors in benchmark results, benchmark runs are repeated
several times in the same machine, as well as in the machines with same
configurations. The comparison is showed in Table 3 and Table 4.

 RUN_1 RUN_2 RUN_3
Standard
Deviation

Greatest
Difference

(%)
INT 61.27 61.36 61.15 0.105357 0.3%
FP 52.59 51.49 51.79 0.568624 2.1%

ALL_CPP 60.67 59.63 59.4 0.676683 2.1%
Tab. 3: benchmark results obtained in the same machine.

Machine hpbl3 (AMD Opteron 2356, SL4) is used.

 hpbl1 hpbl2 Difference (%)

INT 72.92 73.03 0.2%
FP 51.5 52.66 2.3%
Tab. 4: benchmark results obtained in machines with the same configurations.

Machine hpbl1 and hpbl2 (Intel E5440, SL4) are used.

From the data we can find that while the INT benchmark results keep relatively
stable (deviations no more than 0.5%), fluctuation of FP or ALL_CPP benchmark
results can get up to 2%-3%. So a difference less than 3% in benchmark results
should be considered as accidental error fluctuation, which does not indicate a real
inequality.

4. The standard HEP benchmarking method

4.1 Multispeed vs. Rate
SPEC offers two modes to run benchmark on multi-core machines. The SPEC speed
benchmark runs a single copy of the benchmark on the machine, using only a single
core, which hardly presents the production environment. The SPEC rate benchmark
runs as many benchmarks as there are cores, but it calculates the results as a
function of the total elapsed time. This skews the results, as a single slow core can
keep the others idle until it finishes.
To overcome these problems, we decided to run multiple speed benchmarks in
parallel. We launch one independent speed benchmark for each core in the system
and then add up the results to come up with a total result for the system. This
mimics what we do in our production environment, where we run multiple
independent single-threaded applications in parallel. The graphical explanation of
the difference between SPEC rate and multispeed is showed in Fig. 1 [3].

Fig.1: Graphical explanation of multi-speed mode

To understand the difference between rate and multispeed method, some tests are
runned. The results are shown in Table 5 and Figure 2.

machine Architecture
number

of cores

INT32

Multispeed

INT32

RATE

 FP32

Multispeed

 FP32

RATE

lxbench01 Intel 2 11.06 11 9.5 9.42
lxbench02 Intel 2 10.09 10.1 7.7 7.66
lxbench03 AMD 4 28.76 27.8 25.23 23.9
lxbench04 Intel 4 36.77 36.2 27.85 27.4
lxbench05 Intel 4 39.39 38.9 29.72 29.3
lxbench06 AMD 4 31.4 32.3 27.82 27.2

hpbl1 Intel 8 72.92 69.8 51.5 48.4
hpbl2(SL4) Intel 8 73.03 69.8 52.66 48.3

hpbl3 AMD 8 61.27 62.1 52.59 53
hpbl4 AMD 8 62.98 63.6 53.05 53

Tab. 5: Comparison of multi-speed and rate modes runs

From the results we can find that there is significant difference between Multispeed
and Rate for benchmarking in Intel machines. But that’s not the case for AMD
machines. Also, we can see that for fewer cores in the box, the differences between
the multispeed and rate are smaller. This fact can be easily understood in the way
that for fewer cores, the time used for the idle cores to wait the slower one is less.

 Fig. 2.a: Intel INT multispeed vs. rate Fig. 2.b: Intel FP multispeed vs. rate

Fig. 2.c: AMD INT multispeed vs. rate Fig 2.d AMD FP multispeed vs. rate

 Fig. 2: Comparison of multi-speed and rate modes runs

4.2 The ALL_CPP bset
SPEC CPU2006 offers two basic benchmark suites: CINT2006 and CFP2006, which
measure the integer and the floating-point performance, respectively. But in our
production runs, both integer and floating-point computing are heavily used. That is
why we introduce the ALL_CPP bset suite, which is simply all the C++ benchmarks
contained in CPU2006, to measure the overall performance of high energy physics
computing. There are seven benchmarks in the ALL_CPP bset, 3 of them are from
CINT, while the others 4 are from CFP suite. To obtain the ALL_CPP benchmark
result one must take the geometric mean of the 3 integer benchmark results, and of
the 4 floating-point benchmark results, and then take an average of these two
numbers. The advantages of using ALL_CPP suite are as follows:

1) By using ALL_CPP we are incorporating floating-point part as well as the
integer part, and in same ratio as the HEP experiments are showing now. Low
level CPU statistics shows that the ALL_CPP suite contains about 10%-14%
floating-point instructions, which is in good agreement with HEP codes’ roughly
10% floating-point content. In contrast, the CINT suite contains only 0.1% of
floating-point instructions, which is negligible*. The measurement also shows
that ALL_CPP suite is a good match of HEP applications in the sense that its
loads and mispredicted branch ratio is very similar to the production
environment [4].

2) Compared to the CINT and CFP suite, running ALL_CPP suite saves significant
time. A simple study shows that in a machine with Intel Xeon E5430 processor
(Harpertown 2.66 GHz), the total elapsed time of CINT2006 is 48334s (13:20h),
while for ALL_CPP suite this time is only 19789s (5:30h). This means that
ALL_CPP runs at about 2.5 times faster than CINT, and we can benchmark the
same machine in 40% of the time [5].

The disadvantage is that the set of applications in CINT or CFP is carefully selected
by SPEC, but with ALL_CPP the selection is pretty random: just all the C++
benchmarks. In fact, for integer computing, the C++ benchmarks tend to have a
lower performance than average, while for floating-point computing the C++
benchmarks tend to have a higher performance. However, in the section 5 we will see
that ALL_CPP benchmark has a better agreement to experiments than any other
benchmark else, which means the advantage overcomes the disadvantage.
Concerning the method used to obtain the final results, there were two options:
geometric mean and arithmetic mean of the benchmark results. In principle,
geometric mean of all the 7 benchmark results is mathematically more correct,
because geometric mean has the property that a certain percentage change in any
one of the terms has the same effect as the same percentage change in any of the
other terms. In other words, no one benchmark (or no one set of benchmarks) will
become more important than any of the others in the suite. In contrast, an
arithmetic mean may give unfair weight to one single benchmark if this benchmark
has higher score than the others in one machine. This is why geometric mean is
traditionally used by SPEC [6]. However, compared to arithmetic mean, calculating
the geometric mean requires significant more effort and more complex scripts to
analyze the resulting SPEC log files; that goes against our wish of “making things
simple and stupid”. We use a method that may be less correct in the statistical sense,
but is much easier to conduct: to take the results of the INT and FP part in
ALL_CPP bset, which are given directly by the SPEC program, then to calculate the
arithmetic mean of these two. This method introduces two deviations from the
“correct” way:
1) We calculate the arithmetic mean instead of the geometric mean.
2) Since we have 3 INT tests and 4 FP tests we should make a weighted mean

instead of non-weighted mean. The method currently used gives INT part about
7% more credit than it deserves.

We prefer this method because despite all those deviations above, it still gives results

very close to that given by the correct but complex way. The comparison of all kind
of methods is listed in Table 6. We can find that the deviation of results of this
“quick and dirty” method gets no more than 1%, not even reach the accidental error
fluctuation, well below the accuracy we aim for.

machine
CINT
results

CFP
results

geometric mean of
all benchmarks in
ALL_CPP bset (A)

arithmetic mean
of INT and FP

part in ALL_CPP
bset (B)

(B)/(A)

hpbl1 72.34 52.41 68.92 68.34 0.992
hpbl2 76.03 51.72 70.34 69.85 0.993
hpbl3 61.15 51.79 61.10 60.64 0.992
hpbl4 62.89 53.03 61.77 61.38 0.994

Padova 64.41 -- 64.08 63.89 0.997
lxbench01 11.06 9.50 10.27 10.23 0.996
lxbench02 10.09 7.70 9.66 9.57 0.991
lxbench03 28.76 25.23 28.18 27.92 0.991
lxbench04 36.77 27.85 35.39 35.17 0.994
lxbench05 39.39 29.72 37.98 37.82 0.996
lxbench06 31.40 27.82 30.61 30.35 0.992
lxbench07 60.89 43.37 57.45 56.96 0.991
lxbench08 64.78 46.48 60.74 60.15 0.990

Tab. 6: Comparison of benchmark results obtained in different ways

machine Benchmark set V1.1 result V1.0 result Difference
hpbl1 int 72.92 73.59 0.9%
hpbl2 int 73.03 73.1 0.1%
hpbl3 int 61.27 62.85 2.6%
hpbl4 int 62.98 64.41 2.3%
hpbl1 fp 51.5 52.03 1.0%
hpbl2 fp 52.65 52.98 0.6%
hpbl3 fp 52.59 54.09 2.9%
hpbl4 fp 53.03 51.14 -3.6%
hpbl1 all_cpp 67.75 68.38 0.9%
hpbl2 all_cpp 69.81 69.83 0.0%
hpbl3 all_cpp 54.91 60.67 10.5%
hpbl4 all_cpp 61.92 61.37 -0.9%

Tab. 7: Comparison of V1.1 and V1.0 results

4.3 Version 1.0 vs. 1.1
The current version of SPEC 2006 is V1.1, which is the recommended version by
SPEC organization. This version is an incremental update to V1.0, intended to
improve compatibility, stability, documentation and ease of use, but not to change

the benchmark results [6]. So the results generated by SPEC CPU2006 V1.0 should
be comparable to results from V1.1, as claimed by SPEC. To confirm this I had some
test runs. The results are shown in Table 7 and Figure 3.

 Fig. 3.a: INT results Fig. 3.b: FP results

 Fig. 3.c: ALL_CPP results

Fig. 3: Comparison of V1.1 and V1.0 results

From the results we can find that except for one special case, the difference between
V1.1 and V1.0 results are in the range of 0%-3%, i.e. inside the fluctuation range. So
we can safely say that the results from SPEC CPU2006 v1.1 and 1.0 are comparable.

4.4 Conversion from CPU2000 to CPU2006 results
SPEC CPU2000 is the last generation of benchmark suite used to benchmark high

energy physics computing power. It is no longer supported by SPEC; and the results
given by SPEC CPU2000 are not very representative for current computers.
However, since there are some CPU2000 INT results available for relatively older
machines, it is still our interest to give a conversion from CPU2000 to CPU2006
results to make them, at least in some sense, comparable.
In table 8 I list the SPEC CPU2000 and CPU2006 results obtained in different
machines. Linear fits of these data are shown in Figure 4.a and 5.a. We can find that
the linear correlation between CPU2000 and CPU2006 results is significant (linear
correlation coefficient R² = 0.967 or 0.942). Especially we notice that the data points
of hpbl3 and hpbl4 remarkably deviate from the trend line (Notice that both
abnormal values are coming for AMD machines, for whatever reason). After
excluding those data points that obviously violate the linearity, one can get a much
better linear fit (linear correlation coefficient R² gets up to more than 0.99), which
are shown in Fig 4.b and 5.b. So for conversion from CPU2000 INT results to
CPU2006 INT results, we have y = 0.006x + 2.458; where y is the CPU2006 INT
benchmark value, and x is the CPU2000 INT benchmark result. For conversion from
CPU2000 INT results to CPU2006 ALL_CPP results, a similar conversion method
y = 0.0056x + 3.1618 is given. Actually in practice, a simple y = 0.006x + 3 would
be sufficient, for both INT and ALL_CPP conversion, where y is the CPU2006 value,
and x is the CPU2000 result.

MACHINE SPEC 2000 INT SPEC2006 INT SPEC2006 ALL_CPP
lxbench01 1501 11.06 10.23
lxbench02 1495 10.09 9.57
lxbench03 4133 28.76 27.92
lxbench04 5675 36.77 35.17
lxbench05 6181 39.39 37.82
lxbench06 4569 31.44 30.34
lxbench07 9462 60.89 56.96
lxbench08 10556 64.78 60.15

hpbl1 11873 72.92 68.34
hpbl2 12022 76.03 69.85
hpbl3 8146 61.27 60.64
hpbl4 8133 62.98 61.38

Tab. 8: Conversion from CPU2000 to CPU2006 results

Through the above discussion we have established the standard procedure to do high
energy physics benchmarking: using either SPEC CPU2006 v1.0 or v1.1, launching
ALL_CPP suite in the multispeed mode, and then calculating the arithmetic mean of
the results of integer part and floating-point part as the final benchmark result. The
proposal of making it the official HEP benchmark method has already been
submitted to the LCG board.

 Fig. 4.a Fig. 4.b

Fig. 4: Conversion from CINT2000 to CINT2006 results

 Fig. 5.a Fig. 5.b

Fig. 5: Conversion from CINT2000 to SPEC CPU2006 ALL_CPP results

5. Comparison of SPEC benchmark results to HEP code

performance

To measure the agreement of the benchmark results to real HEP application
performance, three major experiments in LHC are selected: ATLAS, CMS and
ALICE. The elapsed time of generation, simulation, digitization and reconstruction
of typical physical processes are measured, and the Pearson product-moment
correlations of the performance to the benchmark results are calculated and listed in
Table 9.

Test
SPEC

CINT2000
SPEC

CINT2006
SPEC

CFP2006
SPEC

ALL_CPP
ATLAS Generation 0.645 0.651 0.693 0.743
ATLAS Simulation 0.679 0.686 0.737 0.743

ATLAS Digitization 0.726 0.729 0.76 0.771
ATLAS Reconstruction 0.691 0.706 0.752 0.822

ATLAS Total 0.685 0.692 0.743 0.751
Tab. 9.a: Correlations of ATLAS experiment codes performance to benchmark results

Physical Process Test
SPEC

CINT200
0

SPEC
CINT200

6

SPEC
CFP200

6

SPEC
ALL_CP

P

HiggsZZ4LM19
0

GEN+SIM 0.983 0.988 0.986 0.997
DIGI 0.971 0.977 0.974 0.999
RECO 0.979 0.985 0.983 0.998

TOTAL(SUM) 0.982 0.988 0.986 0.997

MinBias

GEN+SIM 0.982 0.988 0.986 0.997
DIGI 0.972 0.978 0.973 0.998
RECO 0.970 0.976 0.970 0.997

TOTAL(SUM) 0.981 0.987 0.984 0.997

QCD_80_120

GEN+SIM 0.980 0.986 0.984 0.998
DIGI 0.973 0.980 0.976 0.999
RECO 0.975 0.981 0.977 0.998

TOTAL(SUM) 0.980 0.986 0.983 0.998

SingleElectronE
1000

GEN+SIM 0.983 0.989 0.988 0.996
DIGI 0.970 0.976 0.974 0.999
RECO 0.962 0.968 0.960 0.995

TOTAL(SUM) 0.983 0.989 0.987 0.996

SingleMuMinus
Pt10

GEN+SIM 0.972 0.978 0.974 0.998
DIGI 0.970 0.976 0.972 0.998
RECO 0.956 0.963 0.955 0.994

TOTAL(SUM) 0.966 0.972 0.967 0.997

SinglePiMinusE
1000

GEN+SIM 0.985 0.991 0.992 0.993
DIGI 0.968 0.974 0.969 0.998
RECO 0.980 0.986 0.995 0.965

TOTAL(SUM) 0.985 0.991 0.992 0.993

TTbar

GEN+SIM 0.982 0.987 0.985 0.997
DIGI 0.974 0.980 0.975 0.998
RECO 0.902 0.908 0.891 0.963

TOTAL(SUM) 0.977 0.982 0.978 0.998
Total Total 0.969 0.975 0.970 0.998
Tab. 9.b: Correlations of CMS experiment codes performance to benchmark results

Physical
Process

Test
SPEC

CINT2000
SPEC

CINT2006
SPEC

CFP2006
SPEC

ALL_CPP

pp
MinBias

GEN+SIM 0.974 0.981 0.980 0.999
DIGI 0.949 0.959 0.979 0.992
RECO 0.956 0.966 0.989 0.981

TOTAL(SUM) 0.965 0.974 0.983 0.998
PbPb
per2
8.6 -

11.2fm

GEN+SIM 0.976 0.983 0.982 0.999
DIGI 0.754 0.752 0.682 0.733
RECO 0.942 0.949 0.943 0.990

TOTAL(SUM) 0.976 0.983 0.983 0.999
Tab. 9.c: Correlations of ALICE experiment codes performance to benchmark results

Tab. 9: Pearson product-moment correlation of benchmark results and experimental

performance given by events/second. Data comes from machine lxbench01-lxbench07.

From the results we can find that for CMS and ALICE experiments, the ALL_CPP
benchmark introduced by us gives very good agreement to real performance. For
ATLAS experiments, though the agreement is not as good, ALL_CPP result still
shows better correlation to real performance than any other benchmark method.

6. Multiple factors that may affect computing performance

Establishing a standard benchmark method enables us to further investigate how
various factors would affect computer’s performance on high energy physics
computing, and how we can improve computer’s performance. In the following
sections I will discuss different operating systems and processors’ effect on high
energy physics computing performance.

6.1 Operating Systems
Operating system can affect computing performance in many ways: compliers may
generate binaries with unequal efficiency; kernels may deal with memory access and
process scheduling using different strategy, standard libraries may use improved
algorithms, etc. We will focus on the comparison of Scientific Linux 4 (SL4) and
Scientific Linux 5 (SL5), both of which are heavily used in the production
environment of high energy physics. Currently, SL4 is the mainstream operating
system in CERN, while SL5 is widely deployed in DESY.
The results of the comparison are shown in Table 10 and Figure 6. SL4.6 (kernel
2.6.9-67.0.20.ELsmp, gcc 3.4.6) and SL5.2 (2.6.18-92.1.6.el5, gcc 4.1.2) are used. We
can find that for integer benchmarks, the performance gain of using SL5 instead of
SL4 get up to 2.5%-4.5%. Given that INT benchmark results have relatively smaller
fluctuations, it is clear that SL5 has a better integer performance than SL4. However,
for FP benchmark results, we do not have such an unambiguous tendency. In most
cases, the differences of results can be considered inside the range of fluctuations,
thus one would expect a roughly equal floating-point performance of SL4 and SL5.
For ALL_CPP benchmark results, again, the performance gain does not exceed the
accidental error fluctuation. Since the ALL_CPP suite contains a large fraction of

integer part, and SL5 has a better performance in integer computing than SL4, one
may expect a performance gain of SL5 in ALL_CPP benchmark suite as well. But
even if there is a difference, it’s not very significant.

 machine SL4 SL5 SL5 on SL4 Gain

SPEC CPU2006 INT

hpbl2 73.03 76.03 4.11%
hpbl2 73.1 75.29 3.00%

hpbl3/4 61.27 62.98 2.79%
hpbl3/4 62.85 64.41 2.48%

SPEC CPU2006 FP

hpbl2 52.66 51.72 -1.79%
hpbl2 52.98 51.23 -3.30%

hpbl3/4 52.59 53.03 0.84%
hpbl3/4 54.09 51.14 -5.45%

SPEC CPU2006 ALL_CPP
hpbl3/4 59.63 61.37 2.92%
hpbl1/2 68.12 69.83 2.51%

Tab. 10: Benchmark results comparison for different operating systems. Machine hpbl1/2,

hpbl3/4 have the same hardware configuration, respectively; but differ in operation system (SL4

vs. SL5). Also, both SL4 and SL5 were in turn installed in hpbl2, for comparison.

 Fig. 6.a Fig. 6.b

Fig. 6.c

Fig. 6 Benchmark results comparison for different operating system.

6.2 Processors
To study the effect of processors on high energy physics computing, two popular
commodity processors, Intel Xeon E5440 and AMD Opteron 2356, which are
believed to be representative to the modern Intel and AMD multi-core CPUs, are
investigated.
Intel E5440 has a higher main frequency of 2.83 GHz, whereas AMD 2356 has a
2.30 GHz main frequency. AMD Opteron 2356 provides 128-bit floating point
pipeline enhancement to improve floating-point performance, and HyperTransport
technology to refine memory access strategy. Detailed technical information about
these two processors can be found in Intel and AMD’s official Website. The
comparisons are shown in Table 11 and Figure 7.

 run Intel E5440 AMD Opteron 2356 Difference

SPEC CPU2006 INT

1 72.92 61.27 19.0%
2 73.59 62.85 17.1%
3 76.03 62.98 20.7%
4 75.29 64.41 16.9%

SPEC CPU2006 FP

1 51.5 52.59 -2.1%
2 52.03 54.09 -3.8%
3 51.72 53.03 -2.5%
4 51.23 51.14 0.2%

SPEC CPU2006
ALL_CPP

1 68.38 60.67 12.7%
2 69.83 61.37 13.8%

Table 7: Benchmark results comparison for different processors. The results are obtained from

machine hpbl1/3 and hpbl2/4, which has the same software environment but different processors,

respectively.

 Fig. 7.a Fig. 7.b

Fig. 7.c

Fig. 7: Benchmark results comparison for different processors

From the results we can find that for INT benchmark suite, Intel E5440 has a much
higher score, which approximates 120% of the performance of AMD Opteron 2356.
This roughly agrees with the fact that Intel E5440’s main frequency exceeds AMD
Opteron 2346’s for 23%. As for the FP benchmark suite, despite its lower main
frequency, AMD Opteron 2356 has an almost equal performance with Intel E5440,
which is largely due to the floating-point pipeline enhancement. As a combination of
integral and floating-point benchmarks, the ALL_CPP benchmark results fall in
between of FP and INT results. Intel E5440 has a roughly 110% performance of
AMD Opteron 2356.
We are now expecting the next generation of Intel processor, which is believed to be
able to combine the advantage of current Intel and AMD architectures. However, it
is not available yet.

0
10
20
30
40
50
60
70
80

1 2

Comparison of ALL_CPP
benchmarking results

Intel E5440

AMD Opteron 2356

7. Conclusions

In this paper we established a standard procedure to benchmark high energy physics
worker nodes, and checked its agreement with experiment application performance.
This benchmark method is proved to be simple and accurate. We then used this
standard method to investigate the effect to performance of different operating
systems and processors, and have got some interesting results.

References

[1] http://www.spec.org/cpu2006/
[2] https://www.scientificlinux.org/
[3]https://twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC
[4] https://edms.cern.ch/file/917289/1/A.Hirstius_presentation.pdf
[5] Manfred Alef, private communication
[6] John Russell Mashey, ACM SIGARCH Computer Architecture News, Vol. 32, pp.

1-14
[7] http://www.spec.org/cpu2006/Docs/changes-in-v1.1.html

