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Abstract: 

Today’s high energy physics requires enormous computing resources, so there is a 
common desire for a standard benchmarking method, which gives a standard and 
simple evaluation to computers’ capability to do high energy physics computing. 
Traditionally, the industry standard benchmark suite SPEC CPU2000 is used. But 
this benchmark suite has been retired, and is not representative to modern 
computers anymore.     
In this paper I will examine several aspects of  CPU2006----SPEC’s next generation, 
CPU intensive benchmark suite; compare it to real HEP applications; and try to 
establish a fairly accurate and convenient way to evaluate computing powers that are 
used to do data analysis in high energy physics. Also, I will use the established 
method to benchmark several machines with different configurations, so that the 
effect of  different factors on high energy physics computing, such as the operating 
system and the processors’ effect, can be shown. 
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1. Introduction 

Today’s high energy physics requires enormous computing resources, so there is a 
common desire for a standard benchmarking method, which gives a standard and 
simple evaluation to computers’ capability to do high energy physics computing.  
Traditionally, the industry standard benchmark suite SPEC CPU2000 is used. But 
this benchmark suite has been retired, and is not representative to modern 
computers anymore. CPU2006 is the next generation, industry-standardized, CPU 
intensive benchmark suite supported by SPEC, which gives it the potential to serve 
as the HEP standard benchmark. However, high energy physics experiments 
applications have their own characteristics. This benchmark must be adjusted to our 
own needs in order to properly represent computers’ capability to do high energy 
physics computing. In this paper I will examine several aspects of  CPU2006, 
compare it to real HEP applications, and try to establish a fairly convenient and 
accurate method to do high energy physics benchmarking.  
The rest of  this paper is organized as follows: in section 2 I give a brief  introduction 
to the SPEC CPU2006 benchmark suite and the platforms under test. The accidental 
error fluctuation of  the results is discussed in section 3. Then in section 4 several 
properties of  CPU2006 are studied, corresponding adjustments are given and the 
standard method for HEP benchmarking is established. I also discuss the conversion 
from CPU2000 results to CPU2006 results in section 4. The comparison of  the 
standard benchmark results to real HEP application performance is given in section 
5. In section 6 this standard method is used to analyze operating system and 
processor’s effect on high energy physics computing performance. Finally I conclude 
in section 6. 

 

2. The SPEC CPU2006 benchmark suite and platforms for test 

There has already been an agreement of  using an industry standard benchmark 
suite, instead of  using codes from experiments, to evaluate the performance of  
computers, though we may use it in a nonstandard way. There are several reasons for 
such a decision. First, having an industry standard benchmark saves us a great deal 
of  trouble of  maintaining it. We will have the benchmark venders to fix the bugs 



and port it to new compliers and operating systems for us. We can expect that an 
industry benchmark to be maintained for 5, or even 10 years. In contrast, the codes 
from experiments are relatively unstable, have a much shorter lifetime, and are hard 
to run. Second, a cluster of  machines can be used for various experiments computing, 
e.g. a machine runs both CMS and ATLAS analysis, which makes it very difficult to 
choose a representative collection of  codes from experiments as benchmark suite. 
Also, using an industry standard benchmark makes the communication with 
hardware venders easier. 
 
2.1 The SPEC CPU2006 benchmark suite 
SPEC CPU2006, an industry-standardized, CPU-intensive benchmark suite which 
provides comparative measure of  compute-intensive performance across different 
hardware platforms, seems to be a good choice. This benchmark suite stresses a 
system’s processor, memory subsystem and compiler, which are the key factors in 
high energy physics computing. Also, this benchmark suite is widely accepted in the 
industry world. The basic idea of  this benchmark is to run several real user 
applications as benchmarks, including some physics applications like QCD 
computing; to compare the execution time of  each benchmark to a reference 
machine (a SUN SPARC); to decide the score of  each benchmark by calculating how 
many times faster the tested machine executes a given benchmark than the reference 
machine; and finally, to take the geometric mean of  all the benchmarks’ scores as the 
final result. There are two basic components of  this benchmark suite: CINT2006, 
which tests the integer performance; and CFP2006, which tests the floating-point 
performance. The ALL_CPP bset is also heavily used, which will be discussed in its 
respective section. More technical details can be found in [1]. 
However, as I mentioned before, just copying the industry benchmark method is not 
suitable to evaluate the computing power in high energy physics world. Especially, 
the results in the SPEC website published by the venders are pointless to us. Because 
these results are obtained by carefully setting up the environment and highly 
optimizing the generated binary to get the highest score, which is not representative 
to the production runs in high energy physics.  
For the above reasons, we will use the standard SPEC CPU2006 benchmark suite, 
but in a nonstandard way, which will be explained later. 
 
2.2 Platforms for test 
The platforms used to perform the benchmarking are listed in Table 1. They are all 
x86_64 machines, with typical modern configurations. Scientific Linux [2] is used 
because this is the dominating operating system in high energy physics computing. 
We use a 64-bit OS because that is how our production machines are installed. All 
the new hardware is 64bit capable and we're not interested in running a 32-bit OS 
[3]. Several typical Intel and AMD architectures are investigated in order to get an 
impression of  modern commodity processors’ performance in high energy physics. 
This paper has also cited some external benchmark results in order to enlarge the 
statistics. Those benchmark runs are conducted in machines from CERN and INFN, 



whose parameters are listed in Table 2.  
 
2.3 Complier flags and configuration files 
The complier used is gcc with tuning “-m32 –O2 –fPIC –fpthread”. These are the 
flags mandated by the LCG board, and are supposed to be the common flags used in 
the production runs. We use “-m32” to produce 32-bit mode applications because 
some 32-bit-only resources are still used in the experiments codes, and 32-bit 
application on a 64-bit OS represents a usual environment. 
To control the way SPEC CPU2006 benchmark suite runs, one need a config file to 
specify the compliers for the source codes, the optimization flags, the selection of  
benchmarks, and various other settings. To unify the benchmark settings so that one 
can get comparable results in different systems to represent typical high energy 
physics computing performance, the hepix group has offered a reference config file, 
which is used in our benchmark runs [3].   
 

hostname Processors Memory(GB) System Compiler 
 

hpbl1.ifh.de 
Intel Xeon 

E5440 
Quad Core * 2 

2.83GHz 

 
16 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

 
hpbl2.ifh.de* 

Intel Xeon 
E5440 

Quad Core * 2 
2.83GHz 

 
16 

Scientific Linux 
5.2 64bit 

(kernel 2.6.18) 
 

gcc 4.1.2 

 
hpbl3.ifh.de 

AMD Opteron 
2356 

Quad Core * 2 
2.30GHz 

 
16 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

 
hpbl4.ifh.de 

AMD Opteron 
2356 

Quad Core * 2 
2.30GHz 

 
16 

Scientific Linux 
5.2 64bit 

(kernel 2.6.18) 
 

gcc 4.1.2 

 
qftquad3.ifh.d

e 

Intel Xeon 
E5450  

Quad Core * 2 
3.00GHz 

 
32 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

 
Blade5a.ifh.de 

Intel Xeon 
E5450 

Quad Core * 2 
3.00GHz 

 
32 

Scientific Linux 
5.2 64bit 

(kernel 2.6.18 
 

gcc 4.1.2 

Tab. 1: Platforms for Test (inside DESY) 

 
*On hpbl2, Scientific Linux 4.6 and Scientific Linux 5.2 have in turn been installed. I will state it 

explicitly when citing results obtained on hpbl2 using SL4.6. 



hostname Processors Memory(GB) System Compiler 

Povada 
AMD Bacerlona 
Quad Core * 2 

2.50GHz 

 
16 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

lxbench01 
Intel Nocona 

Single Core * 2 
2.80GHz 

2 
Scientific Linux 

4.6 64bit 
(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

 
lxbench02 

Intel Irvingdale 
Single Core * 2 

2.80GHz 

 
4 

 
Scientific Linux 

4.6 64bit 
(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

lxbench03 

AMD Opteron 
275 

Dual Core * 2 
2.20GHz 

 
2 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

lxbench04 
Intel Woodcrest 
Dual Core * 2 

2.66GHz 

 
8 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

lxbench05 
Intel Woodcrest 
Dual Core * 2 

3.00GHz 

 
8 

Scientific Linux 
4.6 64bit 

(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

lxbench06 

AMD Opteron 
2218 Rev.F 

Dual Core * 2 
2.60GHz 

8 
Scientific Linux 

4.6 64bit 
(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

lxbench07 

Intel 
Clovertown 

Quad Core * 2 
2.33GHz 

16 
Scientific Linux 

4.6 64bit 
(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

lxbench08 

Intel 
Harpertown 

E5410  
Quad Core * 2 

2.33GHz 

16 
Scientific Linux 

4.6 64bit 
(kernel 2.6.9) 

gcc 3.4.6 
(gcc 4.1.2 for 
Fortran part) 

Tab. 2: Platforms for Test (outside DESY) 

 

3. Discussion of  accidental errors 

Even if  benchmarks are runned in machines with the same configurations, or even in 
the same machine, one may get results with slight differences. These accidental 
errors are introduced because of  the differences in different batches of  hardware 
products, the unpredictable disturbance of  the runtime environment, or various 
other reasons. In order to correctly compare results from different benchmark runs, 
we must take into account the accidental error fluctuations. 



To decide the accidental errors in benchmark results, benchmark runs are repeated 
several times in the same machine, as well as in the machines with same 
configurations. The comparison is showed in Table 3 and Table 4. 
 

 RUN_1 RUN_2 RUN_3 
Standard 
Deviation 

Greatest 
Difference 

(%) 
INT 61.27 61.36 61.15 0.105357 0.3% 
FP 52.59 51.49 51.79 0.568624 2.1% 

ALL_CPP 60.67 59.63 59.4 0.676683 2.1% 
Tab. 3: benchmark results obtained in the same machine.  

Machine hpbl3 (AMD Opteron 2356, SL4) is used. 

 
 hpbl1 hpbl2 Difference (%) 

INT 72.92 73.03 0.2% 
FP 51.5 52.66 2.3% 
Tab. 4: benchmark results obtained in machines with the same configurations.  

Machine hpbl1 and hpbl2 (Intel E5440, SL4) are used. 

 
From the data we can find that while the INT benchmark results keep relatively 
stable (deviations no more than 0.5%), fluctuation of  FP or ALL_CPP benchmark 
results can get up to 2%-3%. So a difference less than 3% in benchmark results 
should be considered as accidental error fluctuation, which does not indicate a real 
inequality. 
 

4. The standard HEP benchmarking method 

4.1 Multispeed vs. Rate 
SPEC offers two modes to run benchmark on multi-core machines. The SPEC speed 
benchmark runs a single copy of  the benchmark on the machine, using only a single 
core, which hardly presents the production environment. The SPEC rate benchmark 
runs as many benchmarks as there are cores, but it calculates the results as a 
function of  the total elapsed time. This skews the results, as a single slow core can 
keep the others idle until it finishes.  
To overcome these problems, we decided to run multiple speed benchmarks in 
parallel. We launch one independent speed benchmark for each core in the system 
and then add up the results to come up with a total result for the system. This 
mimics what we do in our production environment, where we run multiple 
independent single-threaded applications in parallel. The graphical explanation of  
the difference between SPEC rate and multispeed is showed in Fig. 1 [3].  
 



 
Fig.1: Graphical explanation of  multi-speed mode 

To understand the difference between rate and multispeed method, some tests are 
runned. The results are shown in Table 5 and Figure 2.  

machine Architecture 
number 

of  cores 

INT32 

Multispeed 

INT32 

RATE 

 FP32 

Multispeed 

 FP32 

RATE 

lxbench01 Intel 2 11.06 11 9.5 9.42 
lxbench02 Intel 2 10.09 10.1 7.7 7.66 
lxbench03 AMD 4 28.76 27.8 25.23 23.9 
lxbench04 Intel 4 36.77 36.2 27.85 27.4 
lxbench05 Intel 4 39.39 38.9 29.72 29.3 
lxbench06 AMD 4 31.4 32.3 27.82 27.2 

hpbl1 Intel 8 72.92 69.8 51.5 48.4 
hpbl2(SL4) Intel 8 73.03 69.8 52.66 48.3 

hpbl3 AMD 8 61.27 62.1 52.59 53 
hpbl4 AMD 8 62.98 63.6 53.05 53 

Tab. 5: Comparison of  multi-speed and rate modes runs 

From the results we can find that there is significant difference between Multispeed 
and Rate for benchmarking in Intel machines. But that’s not the case for AMD 
machines. Also, we can see that for fewer cores in the box, the differences between 
the multispeed and rate are smaller. This fact can be easily understood in the way 
that for fewer cores, the time used for the idle cores to wait the slower one is less. 



 

      Fig. 2.a:  Intel INT multispeed vs. rate           Fig. 2.b: Intel FP multispeed vs. rate 

 

 

 

                     

 

 

 

Fig. 2.c: AMD INT multispeed vs. rate            Fig 2.d AMD FP multispeed vs. rate 

                 Fig. 2: Comparison of  multi-speed and rate modes runs 

4.2 The ALL_CPP bset 
SPEC CPU2006 offers two basic benchmark suites: CINT2006 and CFP2006, which 
measure the integer and the floating-point performance, respectively. But in our 
production runs, both integer and floating-point computing are heavily used. That is 
why we introduce the ALL_CPP bset suite, which is simply all the C++ benchmarks 
contained in CPU2006, to measure the overall performance of  high energy physics 
computing. There are seven benchmarks in the ALL_CPP bset, 3 of  them are from 
CINT, while the others 4 are from CFP suite. To obtain the ALL_CPP benchmark 
result one must take the geometric mean of  the 3 integer benchmark results, and of  
the 4 floating-point benchmark results, and then take an average of  these two 
numbers. The advantages of  using ALL_CPP suite are as follows: 



1) By using ALL_CPP we are incorporating floating-point part as well as the 
integer part, and in same ratio as the HEP experiments are showing now. Low 
level CPU statistics shows that the ALL_CPP suite contains about 10%-14% 
floating-point instructions, which is in good agreement with HEP codes’ roughly 
10% floating-point content. In contrast, the CINT suite contains only 0.1% of  
floating-point instructions, which is negligible*. The measurement also shows 
that ALL_CPP suite is a good match of  HEP applications in the sense that its 
loads and mispredicted branch ratio is very similar to the production 
environment [4].   

2) Compared to the CINT and CFP suite, running ALL_CPP suite saves significant 
time. A simple study shows that in a machine with Intel Xeon E5430 processor 
(Harpertown 2.66 GHz), the total elapsed time of  CINT2006 is 48334s (13:20h), 
while for ALL_CPP suite this time is only 19789s (5:30h). This means that 
ALL_CPP runs at about 2.5 times faster than CINT, and we can benchmark the 
same machine in 40% of  the time [5].  

The disadvantage is that the set of  applications in CINT or CFP is carefully selected 
by SPEC, but with ALL_CPP the selection is pretty random: just all the C++ 
benchmarks. In fact, for integer computing, the C++ benchmarks tend to have a 
lower performance than average, while for floating-point computing the C++ 
benchmarks tend to have a higher performance. However, in the section 5 we will see 
that ALL_CPP benchmark has a better agreement to experiments than any other 
benchmark else, which means the advantage overcomes the disadvantage. 
Concerning the method used to obtain the final results, there were two options: 
geometric mean and arithmetic mean of  the benchmark results. In principle, 
geometric mean of  all the 7 benchmark results is mathematically more correct, 
because geometric mean has the property that a certain percentage change in any 
one of  the terms has the same effect as the same percentage change in any of  the 
other terms. In other words, no one benchmark (or no one set of  benchmarks) will 
become more important than any of  the others in the suite.  In contrast, an 
arithmetic mean may give unfair weight to one single benchmark if  this benchmark 
has higher score than the others in one machine. This is why geometric mean is 
traditionally used by SPEC [6]. However, compared to arithmetic mean, calculating 
the geometric mean requires significant more effort and more complex scripts to 
analyze the resulting SPEC log files; that goes against our wish of  “making things 
simple and stupid”. We use a method that may be less correct in the statistical sense, 
but is much easier to conduct: to take the results of  the INT and FP part in 
ALL_CPP bset, which are given directly by the SPEC program, then to calculate the 
arithmetic mean of  these two. This method introduces two deviations from the 
“correct” way:  
1) We calculate the arithmetic mean instead of  the geometric mean. 
2) Since we have 3 INT tests and 4 FP tests we should make a weighted mean 

instead of  non-weighted mean. The method currently used gives INT part about 
7% more credit than it deserves. 

We prefer this method because despite all those deviations above, it still gives results 



very close to that given by the correct but complex way. The comparison of  all kind 
of  methods is listed in Table 6. We can find that the deviation of  results of  this 
“quick and dirty” method gets no more than 1%, not even reach the accidental error 
fluctuation, well below the accuracy we aim for.  
 

machine 
CINT 
results 

CFP 
results 

geometric mean of  
all benchmarks in 
ALL_CPP bset (A) 

arithmetic mean 
of  INT and FP 

part in ALL_CPP 
bset (B) 

(B)/(A) 

hpbl1 72.34 52.41 68.92 68.34 0.992 
hpbl2 76.03 51.72 70.34 69.85 0.993 
hpbl3 61.15 51.79 61.10 60.64 0.992 
hpbl4 62.89 53.03 61.77 61.38 0.994 

Padova 64.41 -- 64.08 63.89 0.997 
lxbench01 11.06 9.50 10.27 10.23 0.996 
lxbench02 10.09 7.70 9.66 9.57 0.991 
lxbench03 28.76 25.23 28.18 27.92 0.991 
lxbench04 36.77 27.85 35.39 35.17 0.994 
lxbench05 39.39 29.72 37.98 37.82 0.996 
lxbench06 31.40 27.82 30.61 30.35 0.992 
lxbench07 60.89 43.37 57.45 56.96 0.991 
lxbench08 64.78 46.48 60.74 60.15 0.990 

Tab. 6: Comparison of  benchmark results obtained in different ways 

 

machine Benchmark set V1.1 result V1.0 result Difference 
hpbl1 int 72.92 73.59 0.9% 
hpbl2 int 73.03 73.1 0.1% 
hpbl3 int 61.27 62.85 2.6% 
hpbl4 int 62.98 64.41 2.3% 
hpbl1 fp 51.5 52.03 1.0% 
hpbl2 fp 52.65 52.98 0.6% 
hpbl3 fp 52.59 54.09 2.9% 
hpbl4 fp 53.03 51.14 -3.6% 
hpbl1 all_cpp 67.75 68.38 0.9% 
hpbl2 all_cpp 69.81 69.83 0.0% 
hpbl3 all_cpp 54.91 60.67 10.5% 
hpbl4 all_cpp 61.92 61.37 -0.9% 

Tab. 7: Comparison of  V1.1 and V1.0 results 

 

4.3 Version 1.0 vs. 1.1 
The current version of  SPEC 2006 is V1.1, which is the recommended version by 
SPEC organization. This version is an incremental update to V1.0, intended to 
improve compatibility, stability, documentation and ease of  use, but not to change 



the benchmark results [6]. So the results generated by SPEC CPU2006 V1.0 should 
be comparable to results from V1.1, as claimed by SPEC. To confirm this I had some 
test runs. The results are shown in Table 7 and Figure 3.  
 
 
   

 

 

 

 

 

 

 

 

 

 

 

              Fig. 3.a: INT results                           Fig. 3.b: FP results 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
                      Fig. 3.c: ALL_CPP results 

 
Fig. 3: Comparison of  V1.1 and V1.0 results 

 
From the results we can find that except for one special case, the difference between 
V1.1 and V1.0 results are in the range of  0%-3%, i.e. inside the fluctuation range. So 
we can safely say that the results from SPEC CPU2006 v1.1 and 1.0 are comparable. 
 
4.4 Conversion from CPU2000 to CPU2006 results 
SPEC CPU2000 is the last generation of  benchmark suite used to benchmark high 



energy physics computing power. It is no longer supported by SPEC; and the results 
given by SPEC CPU2000 are not very representative for current computers. 
However, since there are some CPU2000 INT results available for relatively older 
machines, it is still our interest to give a conversion from CPU2000 to CPU2006 
results to make them, at least in some sense, comparable.  
In table 8 I list the SPEC CPU2000 and CPU2006 results obtained in different 
machines. Linear fits of  these data are shown in Figure 4.a and 5.a. We can find that 
the linear correlation between CPU2000 and CPU2006 results is significant (linear 
correlation coefficient R² = 0.967 or 0.942). Especially we notice that the data points 
of  hpbl3 and hpbl4 remarkably deviate from the trend line (Notice that both 
abnormal values are coming for AMD machines, for whatever reason). After 
excluding those data points that obviously violate the linearity, one can get a much 
better linear fit (linear correlation coefficient R² gets up to more than 0.99), which 
are shown in Fig 4.b and 5.b. So for conversion from CPU2000 INT results to 
CPU2006 INT results, we have y = 0.006x + 2.458; where y is the CPU2006 INT 
benchmark value, and x is the CPU2000 INT benchmark result. For conversion from 
CPU2000 INT results to CPU2006 ALL_CPP results, a similar conversion method 
y = 0.0056x + 3.1618 is given. Actually in practice, a simple y = 0.006x + 3 would 
be sufficient, for both INT and ALL_CPP conversion, where y is the CPU2006 value, 
and x is the CPU2000 result.  
 

MACHINE SPEC 2000 INT SPEC2006 INT SPEC2006 ALL_CPP 
lxbench01 1501 11.06 10.23 
lxbench02 1495 10.09 9.57 
lxbench03 4133 28.76 27.92 
lxbench04 5675 36.77 35.17 
lxbench05 6181 39.39 37.82 
lxbench06 4569 31.44 30.34 
lxbench07 9462 60.89 56.96 
lxbench08 10556 64.78 60.15 

hpbl1 11873 72.92 68.34 
hpbl2 12022 76.03 69.85 
hpbl3 8146 61.27 60.64 
hpbl4 8133 62.98 61.38 

Tab. 8: Conversion from CPU2000 to CPU2006 results 

 
Through the above discussion we have established the standard procedure to do high 
energy physics benchmarking: using either SPEC CPU2006 v1.0 or v1.1, launching 
ALL_CPP suite in the multispeed mode, and then calculating the arithmetic mean of  
the results of  integer part and floating-point part as the final benchmark result. The 
proposal of  making it the official HEP benchmark method has already been 
submitted to the LCG board.  



   
             Fig. 4.a                                Fig. 4.b 

Fig. 4: Conversion from CINT2000 to CINT2006 results 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

                Fig. 5.a                               Fig. 5.b 

Fig. 5: Conversion from CINT2000 to SPEC CPU2006 ALL_CPP results 

 

5. Comparison of  SPEC benchmark results to HEP code 

performance 

To measure the agreement of  the benchmark results to real HEP application 
performance, three major experiments in LHC are selected: ATLAS, CMS and 
ALICE. The elapsed time of  generation, simulation, digitization and reconstruction 
of  typical physical processes are measured, and the Pearson product-moment 
correlations of  the performance to the benchmark results are calculated and listed in 
Table 9. 
 



Test 
SPEC 

CINT2000 
SPEC 

CINT2006 
SPEC 

CFP2006 
SPEC 

ALL_CPP 
ATLAS Generation 0.645 0.651 0.693 0.743 
ATLAS Simulation 0.679 0.686 0.737 0.743 

ATLAS Digitization 0.726 0.729 0.76 0.771 
ATLAS Reconstruction 0.691 0.706 0.752 0.822 

ATLAS Total 0.685 0.692 0.743 0.751 
Tab. 9.a: Correlations of  ATLAS experiment codes performance to benchmark results 

  

Physical Process Test 
SPEC 

CINT200
0 

SPEC 
CINT200

6 

SPEC 
CFP200

6 

SPEC 
ALL_CP

P 

HiggsZZ4LM19
0 

GEN+SIM 0.983 0.988 0.986 0.997 
DIGI 0.971 0.977 0.974 0.999 
RECO 0.979 0.985 0.983 0.998 

TOTAL(SUM) 0.982 0.988 0.986 0.997 

MinBias 

GEN+SIM 0.982 0.988 0.986 0.997 
DIGI 0.972 0.978 0.973 0.998 
RECO 0.970 0.976 0.970 0.997 

TOTAL(SUM) 0.981 0.987 0.984 0.997 

QCD_80_120 

GEN+SIM 0.980 0.986 0.984 0.998 
DIGI 0.973 0.980 0.976 0.999 
RECO 0.975 0.981 0.977 0.998 

TOTAL(SUM) 0.980 0.986 0.983 0.998 

SingleElectronE
1000 

GEN+SIM 0.983 0.989 0.988 0.996 
DIGI 0.970 0.976 0.974 0.999 
RECO 0.962 0.968 0.960 0.995 

TOTAL(SUM) 0.983 0.989 0.987 0.996 

SingleMuMinus
Pt10 

GEN+SIM 0.972 0.978 0.974 0.998 
DIGI 0.970 0.976 0.972 0.998 
RECO 0.956 0.963 0.955 0.994 

TOTAL(SUM) 0.966 0.972 0.967 0.997 

SinglePiMinusE
1000 

GEN+SIM 0.985 0.991 0.992 0.993 
DIGI 0.968 0.974 0.969 0.998 
RECO 0.980 0.986 0.995 0.965 

TOTAL(SUM) 0.985 0.991 0.992 0.993 

TTbar 

GEN+SIM 0.982 0.987 0.985 0.997  
DIGI 0.974 0.980 0.975 0.998  
RECO 0.902 0.908 0.891 0.963 

TOTAL(SUM) 0.977 0.982 0.978 0.998 
Total Total 0.969 0.975 0.970 0.998 
Tab. 9.b: Correlations of  CMS experiment codes performance to benchmark results 

 



Physical 
Process 

Test 
SPEC 

CINT2000 
SPEC 

CINT2006 
SPEC 

CFP2006 
SPEC 

ALL_CPP 

pp 
MinBias 

GEN+SIM 0.974 0.981 0.980 0.999  
DIGI 0.949 0.959 0.979 0.992  
RECO 0.956 0.966 0.989 0.981  

TOTAL(SUM) 0.965 0.974 0.983 0.998  
PbPb 
per2 
8.6 - 

11.2fm 

GEN+SIM 0.976 0.983 0.982 0.999  
DIGI 0.754 0.752 0.682 0.733  
RECO 0.942 0.949 0.943 0.990  

TOTAL(SUM) 0.976 0.983 0.983 0.999  
Tab. 9.c: Correlations of  ALICE experiment codes performance to benchmark results 

Tab. 9: Pearson product-moment correlation of  benchmark results and experimental 

performance given by events/second. Data comes from machine lxbench01-lxbench07. 

 

From the results we can find that for CMS and ALICE experiments, the ALL_CPP 
benchmark introduced by us gives very good agreement to real performance. For 
ATLAS experiments, though the agreement is not as good, ALL_CPP result still 
shows better correlation to real performance than any other benchmark method.  

6. Multiple factors that may affect computing performance 

Establishing a standard benchmark method enables us to further investigate how 
various factors would affect computer’s performance on high energy physics 
computing, and how we can improve computer’s performance. In the following 
sections I will discuss different operating systems and processors’ effect on high 
energy physics computing performance. 
 
6.1 Operating Systems 
Operating system can affect computing performance in many ways: compliers may 
generate binaries with unequal efficiency; kernels may deal with memory access and 
process scheduling using different strategy, standard libraries may use improved 
algorithms, etc. We will focus on the comparison of  Scientific Linux 4 (SL4) and 
Scientific Linux 5 (SL5), both of  which are heavily used in the production 
environment of  high energy physics. Currently, SL4 is the mainstream operating 
system in CERN, while SL5 is widely deployed in DESY. 
The results of  the comparison are shown in Table 10 and Figure 6. SL4.6 (kernel 
2.6.9-67.0.20.ELsmp, gcc 3.4.6) and SL5.2 (2.6.18-92.1.6.el5, gcc 4.1.2) are used. We 
can find that for integer benchmarks, the performance gain of  using SL5 instead of  
SL4 get up to 2.5%-4.5%. Given that INT benchmark results have relatively smaller 
fluctuations, it is clear that SL5 has a better integer performance than SL4. However, 
for FP benchmark results, we do not have such an unambiguous tendency. In most 
cases, the differences of  results can be considered inside the range of  fluctuations, 
thus one would expect a roughly equal floating-point performance of  SL4 and SL5. 
For ALL_CPP benchmark results, again, the performance gain does not exceed the 
accidental error fluctuation. Since the ALL_CPP suite contains a large fraction of  



integer part, and SL5 has a better performance in integer computing than SL4, one 
may expect a performance gain of  SL5 in ALL_CPP benchmark suite as well. But 
even if  there is a difference, it’s not very significant. 
 

 machine SL4 SL5 SL5 on SL4 Gain 

 
SPEC CPU2006 INT 

hpbl2 73.03 76.03 4.11% 
hpbl2 73.1 75.29 3.00% 

hpbl3/4 61.27 62.98 2.79% 
hpbl3/4 62.85 64.41 2.48% 

 
SPEC CPU2006 FP 

hpbl2 52.66 51.72 -1.79% 
hpbl2 52.98 51.23 -3.30% 

hpbl3/4 52.59 53.03 0.84% 
hpbl3/4 54.09 51.14 -5.45% 

SPEC CPU2006 ALL_CPP 
hpbl3/4 59.63 61.37 2.92% 
hpbl1/2 68.12 69.83 2.51% 

Tab. 10: Benchmark results comparison for different operating systems. Machine hpbl1/2, 

hpbl3/4 have the same hardware configuration, respectively; but differ in operation system (SL4 

vs. SL5). Also, both SL4 and SL5 were in turn installed in hpbl2, for comparison. 
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Fig. 6.c 

Fig. 6 Benchmark results comparison for different operating system. 

 
6.2 Processors 
To study the effect of  processors on high energy physics computing, two popular 
commodity processors, Intel Xeon E5440 and AMD Opteron 2356, which are 
believed to be representative to the modern Intel and AMD multi-core CPUs, are 
investigated. 
Intel E5440 has a higher main frequency of  2.83 GHz, whereas AMD 2356 has a 
2.30 GHz main frequency. AMD Opteron 2356 provides 128-bit floating point 
pipeline enhancement to improve floating-point performance, and HyperTransport 
technology to refine memory access strategy. Detailed technical information about 
these two processors can be found in Intel and AMD’s official Website. The 
comparisons are shown in Table 11 and Figure 7.  
    

 run Intel E5440 AMD Opteron 2356 Difference 

SPEC CPU2006 INT 

1 72.92 61.27 19.0% 
2 73.59 62.85 17.1% 
3 76.03 62.98 20.7% 
4 75.29 64.41 16.9% 

SPEC CPU2006 FP 

1 51.5 52.59 -2.1% 
2 52.03 54.09 -3.8% 
3 51.72 53.03 -2.5% 
4 51.23 51.14 0.2% 

SPEC CPU2006 
ALL_CPP 

1 68.38 60.67 12.7% 
2 69.83 61.37 13.8% 

Table 7: Benchmark results comparison for different processors. The results are obtained from 

machine hpbl1/3 and hpbl2/4, which has the same software environment but different processors, 

respectively. 
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Fig. 7.c 

Fig. 7: Benchmark results comparison for different processors 

 
From the results we can find that for INT benchmark suite, Intel E5440 has a much 
higher score, which approximates 120% of  the performance of  AMD Opteron 2356. 
This roughly agrees with the fact that Intel E5440’s main frequency exceeds AMD 
Opteron 2346’s for 23%. As for the FP benchmark suite, despite its lower main 
frequency, AMD Opteron 2356 has an almost equal performance with Intel E5440, 
which is largely due to the floating-point pipeline enhancement. As a combination of  
integral and floating-point benchmarks, the ALL_CPP benchmark results fall in 
between of  FP and INT results. Intel E5440 has a roughly 110% performance of  
AMD Opteron 2356. 
We are now expecting the next generation of  Intel processor, which is believed to be 
able to combine the advantage of  current Intel and AMD architectures. However, it 
is not available yet. 
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7. Conclusions 

In this paper we established a standard procedure to benchmark high energy physics 
worker nodes, and checked its agreement with experiment application performance.  
This benchmark method is proved to be simple and accurate. We then used this 
standard method to investigate the effect to performance of  different operating 
systems and processors, and have got some interesting results.  
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