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tionWith the LHC getting started and the �rst data to be taken soon, pre
ise pre-di
tions of the expe
ted measurements are required. In my task, I will 
omparedi�erent Monte Carlo event generators whi
h are supposed to simulate top pairprodu
tion and de
ay with next-to-leading-order pre
ision.2 Monte Carlo methods in QCDMonte Carlo (MC) is the general term for various numeri
al methods usingrandom number generators, hen
e the name. These methods are widely inuse to do 
al
ulations that would be otherwise intra
table or very hard. Oneexample is to perform an integral numeri
ally not by dis
retizing it, and riskingproblems su
h as numeri
 artifa
ts, but by using a random number generator toeventually �ll the area under the integrand and approximating the result (Seefor instan
e [1℄). This is used in parti
le physi
s to 
al
ulate the 
ompli
atedintegrals resulting from the Feynman diagrams of perturbation theory.On
e one has 
al
ulated the di�erential probability densities or 
ross se
tionsfor a given pro
ess with regard to all interesting observables, su
h as angle andmomentum of the �nal state parti
les, one 
an use these to di
e random events.This simulation of parti
le physi
s pro
esses is 
alled MC event generation.2.1 Fa
torisation of the QCD 
ross se
tionDue to the properties of quark 
on�nement and asymptoti
 freedom in QCD,it is not possible to 
al
ulate a 
ross se
tion of a hadron-hadron pro
ess inthe perturbative framework. However, one 
an separate the problem into threeparts, whi
h 
an ea
h be dealt with by spe
ial methods:1. Whi
h partons 
ontribute with whi
h momentum fra
tion x to the 
ollisionis governed by the parton distribution fun
tions (PDFs) fa(x), where a
an either indi
ate valen
e quarks, sea quarks, or gluons. PDFs have beenmeasured for the proton in detail espe
ially at the HERA ele
tron-proton-
ollider.
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2. Hard s
attering 
an be 
al
ulated perturbatively due to asymptoti
 free-dom in QCD, given that the transferred momentum Q2 is high enough for
αs to be in the perturbative regime.3. Quarks and gluons produ
ed in hard s
attering, as well as remnants ofthe initial hadron, now undergo the pro
ess of showering. Due to radi-ation of further gluons, de
ays and hadronisation, the partons form 
as-
ades. Given a suitable algorithm, one 
an identify jets among these
as
ades. This lower-energeti
 phase of the rea
tion 
annot be 
al
ulatedusing perturbation theory, however there exist phenomenologi
al modelswhi
h work quite well, for example the Lund sting model implemented inpythia [2℄, or the 
luster model used in herwig [3℄.The di�erential 
ross se
tion for the 
ollision of two hadrons H1 and H2 withmomenta p1 and p2 respe
tively 
an be written as follows:

dσ(p1, p2) =
∑

a,b

∫∫

dx1dx2 · fH1

a (x1)f
H2

b (x2) · dσ̂ab(x1p1, x2p2) . (1)Here fHi

a denotes the PDF for the hadron Hi, and dσ̂ab(x1p1, x2p2) is the par-toni
 
ross se
tion with the partons a and b in the initial state. This will beexpanded in a power series in αs. The so 
alled fa
torisation theorem ensuresthat the fa
tored form of the 
ross se
tion in (1) remains valid for all ordersof αs (see for instan
e [4℄).3 Monte Carlo in next-to-leading orderUntil re
ently, most Monte Carlo generators have performed the �hard� partof the rea
tion in leading order (LO), that is just in
luding tree-level diagramswith two verti
es, whi
h give terms of order α2
s.One way to 
onsider next-to-leading order (NLO) e�e
ts is then to 
al
ulatethe total NLO 
ross se
tion by other means than MC, and then s
aling the LOdistributions to the NLO 
ross se
tion. While this may be a valid approximationfor some pro
esses, it is 
lear that there are e�e
ts whi
h 
annot be in
ludedthis way.For example, 
onsider the pro
ess gg → tt̄ (gg-fusion). A

ording to the LOmatrix elements, the top and antitop are emitted ba
k-to-ba
k. The in
lusionof �nal state gluon radiation in NLO allows for a per
entage of the momentumto be 
arried away, so that the angle between t and t̄ drops below 180◦. Whilethe showering pro
ess after LO also handles gluon radiation in the �nal state,it doesn't manage to 
reate the same angular distribution that NLO MC gives.It is expe
ted that the tt̄ 
ross se
tion will be measureable at LHC with anun
ertainty of about 5% [5℄. In this 
ase a 
omparable a

ura
y will be neededfor the theoreti
al predi
tions. This requires at least NLO, if not even NNLO(next-to-next-to leading order) 
al
ulations.3.1 Di�
ultiesThe NLO Feynman diagrams 
an be divided into two types, those with addi-tional virtual parti
les that form loops or vertex 
orre
tions, and those with2



extra (n > 2) outgoing parti
les. In traditional (LO) Monte Carlo, only 2 → 2hard pro
esses were 
al
ulated perturbatively, and 2 → n 
on�gurations werea
hieved through parton showering. In NLO, we would like to use the sameshowering algorithms, but now we have 2 → 3 pro
esses already in the pertur-bative part. In this 
ase, using the showering algorithms naively would leadto an overestimation of parton radiation, whi
h is 
alled over
ounting. Twostrategies to avoid this shall be mentioned in the following:
• The m
�nlo algorithm by Frixione and Webber [6℄ implements all NLOmatrix elements in a straightforward way. To deal with over
ounting, sim-ply speaking, the extra partons from the hard intera
tion are mat
hed topartons from showering, and it is determined when there will be over
ount-ing. For these 
ases, 
ounterevents with negative weights are generated,whi
h 
an
el the wrong events out. The number of negative weight eventsis about 10%-15% of the total event 
ount. In spite of the negative weights,for a su�
ient number of events all 
ross se
tions will be �nite and posi-tive. However, one has to 
al
ulate slightly more events to get the samestatisti
s in the end.The mat
hing 
al
ulations have to be done on
e for ea
h pro
ess and fora spe
i�
 showering algorithm. Be
ause of this, at the moment m
�nlo
an only be used with herwig for showering.
• The newer powheg approa
h by Frixione, Nason and Oleari [7℄ tries toavoid the problem of over
ounting and the negative weights, by doing themost energeti
 parton emission �rst, and letting the showering algorithm
ontinue from there. powheg 
an be used in prin
iple with any showeringtool whi
h supports the Les Hou
he interfa
e [8℄.4 Comparing two DistributionsFor my task I have to 
ompare various setups of Monte Carlo generators and�nd out if their results are equivalent, or if there are signi�
ant di�eren
es.The generators produ
e (after the showering part) a number of events that
ontain information about the in
oming and outgoing parti
les, as well as ofintermediate (de
ayed) states. This data is referred to asMC truth, as opposedto data whi
h has gone through a dete
tor simulation and re
onstru
tion, andtherefore has un
ertainties from measurements and re
onstru
tion algorithms.From the MC truth, observables of 
ertain parti
les (e.g. the transversemomentum p

T
of the top quarks) are extra
ted and �lled into histograms. In thelimit of a small bin size and large statisti
s, these histograms 
an be interpretedas di�erential 
ross se
tions (say dσ/dp

T
). My task is then to 
ompare twohistograms and de
ide if they are in agreement.Statisti
ally speaking: One has two measured distributions xi and yi, where

i = 1 . . .N . The null hypothesis H0 is the assumption that these datasetshave been drawn randomly from the same underlying distribution dσ/dx. Onewould like to be able to disprove this hypothesis by �nding signi�
ant di�eren
esbetween the two empiri
al distributions. Note that this 
an only be done onstatisti
al grounds, and one 
annot prove that two given distributions have to
ome from a di�erent sour
e. One 
an just give a statisti
al measure whether to3



reje
t the assumption of similarity (H0) or not. It is unavoidable to sometimesmake a mistake here:
• The error of the �rst kind o

urs when one reje
ts the null hypothesis(and says the histograms are �di�erent�), although they do 
ome from thesame underlying distribution.
• The error of the se
ond kind on the other hand is not to reje
t H0,although the two datasets have di�erent sour
es.When one has a number of histograms drawn statisti
ally from the same the-oreti
al distribution, using a 
ertain 
riterion for reje
tion, the probability tomake a mistake of the �rst kind is denoted by α. The 
on�den
e level (CL)is de�ned as 1 − α. A higher CL redu
es the 
han
e of an error of the �rstkind, at the 
ost of lowering the reje
tion power of the test. Typi
al values forthe 
on�den
e level are for example 90%, 95%, 99%. (See also any textbook onstatisti
al methods, for example [1℄).Note that while it is possible to reje
t H0 at a 
ertain CL, one 
an in prin
iplenot prove the null hypothesis. Imagine two theoreti
al distributions in x ∈ [0, 1],with their mean values di�ering just by ∆x̄ = 10−6 or less. A tremendousamount of statisti
s would be ne
essary to see this deviation. This also playsa role in my analysis, as the (theoreti
al) distributions from two di�erent MCgenerators will very likely not be the same, but for all pra
ti
al purposes theyshould be indis
ernible, whi
h will be the H0 in the following.4.1 Kolmogorow-Smirnov-TestThe Kolmogorov-Smirnov-Test (KS) 
an be either be used to 
ompare a set ofmeasurements xi with a given distribution fun
tion f(x) or, as in our 
ase, to
ompare two measured distributions xi and yj . First, the empiri
al 
umu-lative distribution fun
tion (CDF) Fn(x) is 
onstru
ted from the measure-ments. This fun
tion starts at zero for x < min(xi). It makes a step of height

1/N ea
h time x passes a data point xi, so that it rea
hes Fn(x) = 1 when
x ≥ max(xi) (Figure 1, left). In the same way one 
onstru
ts Gm(x) from the
yj . When dealing with binned data, the �integral� of the histogram, that is thesum of all bin 
ontents up to the bin 
ontaining x, given by F (x) =

∑

xi≤x f(xi),takes the role of Fn(x).The maximum distan
e between the two fun
tions Fn(x) and Gm(x) thende�nes the Kolmogorov distan
e Dn,m:
Dn,m := sup

x

{|Fn(x) − Gm(x)|} . (2)In the 
ase of 
omparison with a fun
tion f(x) its integral F (x) takes the roleof the se
ond CDF, and the Kolmogorov distan
e is given by:
Dn := sup

x

{|Fn(x) − F (x)|} . (3)The important insight by Kolmogorov was that, if the null hypothesis is true,as the number of data points n approa
hes in�nity, the Kolmogorov distan
e
Dn approa
hes zero. Furthermore, the quantity √

n · Dn should be distributed4



Figure 1: Left: Illustration of the empiri
al 
umulative distribution fun
tion(CDF) and the Kolmogorov distan
e Dn. From: Numeri
al Re
ipes in C++[9℄. Right: Sket
h of the Kolmogorov distribution, showing the 
on�den
e level
1 − α and the 
riti
al value Kα.a

ording to the so 
alled Kolmogorov distribution K. Likewise, in the 
ase of
omparing two empiri
al distributions, n is repla
ed by n′, whi
h is de�ned as:

n′ :=
n · m
n + m

.Now one would like to use this information to 
onstru
t a test for H0. Theidea is to pi
k a 
riti
al value Kα so that if √n · Dn > Kα, one reje
ts thehypothesis of similarity. To get Kα, one 
hooses a 
on�den
e level, say 1−α =
95%, and then �nds the position Kα in the Kolmogorov distribution, so thatonly the fra
tion α of the area en
losed by the 
urve lies beyond it (Figure 1,right). Now the probability for an error of the �rst kind is α.While this way one has a test that allows reje
tion at a given CL, there isanother well known approa
h whi
h I use for my analysis. Given a 
ertain valueof √n · Dn for a pair of distributions, I'm asking for the highest possible CL(the lowest α) at whi
h one 
ould still say that they are di�erent. The CDF(the integral up to Kα) of the Kolmogorov distribution is given by:

P (K ≤ Kα) = 1 − 2

∞
∑

j=1

(−1)j−1e−2j2K2

α = 1 − α . (4)Plugging in√
n·Dn as the 
riti
al value Kα, this gives the maximum CL 1−α. Alower value of α signi�es more strongly that the two distributions are di�erent.4.1.1 Pseudoexperiments approa
hA di�erent approa
h to the Kolmogorov test uses so 
alled pseudoexperiments.Again, we would like to 
ompare two empiri
al distributions A and B, where

A 
ontains n values. We interpret the histogram of A as a probability density,and di
e n random numbers a

ordingly. The result is a histogram A1, whi
his in form similar to the original one, but with the �llings of its bins Poisson-distributed around those of A. This is repeated a large number of times, say
N = 1000 times, to 
reate the pseudoexperiment histograms A1 to AN . Thenthe Kolmogorov distan
e between A and ea
h of the An, as well as between5



A and B is 
al
ulated. The question is, how many pseudoexperiments have alarger (=̂ worse) KS-distan
e to A than B does? This per
entage αpseudo is thena measure of the dissimilarity of A and B.Note that the pseudoexperiments test is not 
ompletely equivalent with themethod shown above. Due to the random nature of the histograms to be testedit is always possible that A is not a typi
al representative of the underlyingdistribution, but a ex
eptionally deviant one. It is not tested if A and B 
ouldstem from the same distribution, but rather if B 
ould be a variation of A. If oneequates αpseudo to the above α, one underestimates for this reason the error ofthe �rst kind. However, in the 
ase of large statisti
s (=̂ low relative errors) for
A � the limiting 
ase being the knowledge of the theoreti
al distribution � thepseudoexperiments result should approa
h the analyti
al result. For this reason,it is more suited for 
omparing e.g. one large body of Monte Carlo data A withsome small amounts of measured data B, than 
omparing several medium-sizeddatasets as in my task.In general, the pseudoexperiments approa
h has the advantage of its simpleprobabilisti
 interpretation. It 
an be used even in 
ases where the expe
teddistribution of the test quantity is not known analyti
ally.4.2 χ

2-TestAnother widely used test whi
h is to be used on binned data is 
alled the 
hi-square-test. Usually it serves as a goodness-of-�t test, 
omparing a histogramto a �tted 
urve, but it 
an also be used to 
ompare two histograms.The test is simple: For every bin, the squared distan
e between the twohistograms is taken, normalized, and summed up. This gives us the χ2 value:
χ2 :=

N
∑

i=1

(xi − yi)
2

xi + yi

(5)Besides this, we need the number of degrees of freedom, NDF. That is inthis 
ase the number of bins minus the number of 
onstraints applied to thedistributions. As the number of events is �xed, usually NDF = N − 1. In the
ase that for one bin xi and yi are both zero, one 
annot 
ompute the fra
tionand omits it from the sum, while the NDF is redu
ed by one.In the 
ase that H0 is ful�lled (i.e. the histograms 
ome from the samesour
e), the quantity χ2 follows the so 
alled 
hi-square distribution, whi
hdepends on the NDF. Now with the knowledge of the expe
ted distribution, one
an pro
eed as above and 
al
ulate the maximum CL = 1 − α, at whi
h twogiven histograms 
an be said to be di�erent.4.2.1 Improvements to the Chi-Square TestThe a

ura
y of the χ2-test su�ers if many bins are not �lled su�
iently. Thisis for two reasons: On the one hand, the relative error of a bin √
N/N de
reaseswith the �lling N , on the other hand, due to the expression xi + yi in thedenominator in (5), barely �lled bins have a mu
h higher weight. Therefore, itis re
ommended to 
hoose a binning su
h that there are at least 10 entries inea
h bin (see [9℄). This 
an be done by joining adja
ent bins together if one ofthem 
ontains fewer then 10 entries (and redu
ing the NDF by one ea
h time).6



Another improvement is to weight the terms in (5) a

ording to their errors.For the ne
essary modi�
ations, see [9℄. I am using both improvements in myanalysis.4.3 Runs TestWhile the χ2-Test only looks at the absolute di�eren
e |xi−yi| between the twohistograms, it dis
ards the sign. This leads to the idea to 
onstru
t a test basedsolely on the sign instead. Su
h a test should be 
omplementary to the χ2 testin the sense that the former delivers information the latter does not, and vi
eversa.The test works as follows: One takes the di�eren
e xi − yi for ea
h pair ofbins, and notes a +, − or 0, depending on the sign of the di�eren
e. Several
onse
utive pluses or minuses together are 
alled a run. One 
ounts the totalnumber of +, − and the number of runs r. Runs of zeros are thereby not
ounted, a zero only serves to stop a previous run.Under the assumption of H0, r should be normal distributed. Using 
ombi-natori
s it is possible to 
al
ulate, for a given n+ and n−, an expe
tation value
µ and a varian
e σ2 for r. With n = n+ + n− one has:

µ(r) =
2n+n−

n
+ 1 and σ2(r) =

(µ − 1)(µ − 2)

n − 1
. (6)Using r as a test statisti
, one 
an then test H0 as usual, or 
al
ulate a 
riti
alvalue of α for a pair of histograms.5 SetupFor my 
omparisons, I am looking at simulated events of top pair produ
tionfrom proton-proton 
ollisions (pp → tt̄+X) at a 
enter-of-mass energy of 10 TeV.This is the energy planned to be rea
hed during the �rst data taking with theLHC in 2008. The events are presele
ted in a 
ertain way: While the top quarksde
ay almost always into a W+ boson and a bottom quark, the W 
an eitherde
ay leptoni
ally (W+ → ℓ+ + νℓ) or hadroni
ally. The generated samples
ontain no all-hadroni
 events, i.e. at least one W± has to de
ay into leptons.The top mass is assumed to be 172.5 GeV, with a width of Γ = 1.42 GeV.The samples, ea
h 
ontaining 10000 events, are produ
ed by following gen-erators & showering tools:

• m
�nlo v3.1 and v3.31 with herwig
• powheg v1.0 with herwig
• powheg v1.0 with pythia(In the last two 
ases I am using the same output �le of powheg for bothherwig and pythia.) This allows me to do three 
omparisons:1. m
�nlo v3.1 vs. m
�nlo v.3.312. Both MC generators using herwig: m
�nlo vs. powheg3. Both showering algorithms using powheg: herwig vs. pythia7



In the MC truth I am identifying the t/t̄, the W± and b/b̄, and the leptons fromthe W de
ay. I am looking at the following observables:
• For t/t̄, W±, b/b̄ and ℓ±:� Transverse momentum p

T
, Pseudorapidity η, Polar angle φ.

• For W± additionally:� cos(θ∗), de�ned as the angle between the lepton and the (parent) top,in the rest frame of the W . This gives information on the heli
ityof the W boson in top de
ays [10℄. One expe
ts a mixture of about70% left-polarized and 30% longitudinal polarized W -bosons.
• For t & t̄ together:� Combined p

T
(ve
torial as well as s
alar sum |p

T
(t)| + |p

T
(t̄)|),� The angle between their momentum ve
tors,� ∆R =

√

∆η2 + ∆φ2 as a measure of distan
e in η-φ-spa
e,� Rapidity di�eren
e ∆y.Ea
h observable is �lled into histograms, whi
h are then 
ompared using theKS, the χ2 and the runs test, as well as visually.6 ResultsWhile there have been no obvious, large di�eren
es in any of the histogramsI've 
ompared, I did �nd some statisti
al relevant deviations. My results aresummarized in Table 1.
• In the 
omparison of m
�nlo v3.1 with v3.31, there are only small devia-tions in the top p

T
distributions (Figure 2). It is quite possible that theseare just the statisti
al error of the �rst kind. One would have to repeatthe 
omparison with more data to ex
lude that possibility.

• In the se
ond 
omparison, m
�nlo vs. powheg, the top p
T
distributionsshow di�eren
es as well, however also the p

T
of the b-quarks and leptons isa�e
ted. One also sees di�eren
es in the angular distributions (Figure 3).

• The results of 
omparing herwig vs. pythia look similar (Figure 5),however in this 
ase there are no big deviations in the angular observables(
onsidering a failed runs test alone not signi�
ant). This is expe
ted,sin
e the events generated by powheg in the MC step were reused for bothshowering tools, and the main 
ontribution to the shape of the angulardistributions 
omes from the simulation of the hard pro
ess.6.1 Con
lusions about the tests usedI have tried several variations of ea
h test mentioned above. This lead to tefollowing results: 8



Table 1: Results of all the tests. In the �rst 
olumn, m
�nlo version 3.1 is
ompared with 3.31, in the se
ond 
olumn m
�nlo and powheg, both usingherwig for showering, are 
ompared. The third 
olumn shows the 
omparisonof herwig vs. pythia using the same powheg events.
• The Kolmogorov-Smirnov test provided by TH1::KolmogorovTest() inroot behaves for my purposes identi
al to the algorithm listed in Numer-i
al Re
ipes [9℄.
• Simple tests suggest that the KS test with pseudoexperiments works asexpe
ted. I 
ompared a large number of histograms whi
h were drawnfrom the same random distribution (top p

T
data generated by m
�nlo).The Kolmogorov distan
es of the random histograms to the original werefollowing approximately a Kolmogorov distribution.

• The runs rest is as expe
ted not very powerful. Also I suspe
t some errorin my implementation, as it sometimes gives an ex
eptionally low α whenthe two histograms are 
learly in agreement. (See Table 1, se
ond 
olumn,lepton p
T
, and third 
olumn, b/b̄ η and phi, and cos θ∗.)

• However, the run test 
an give information when the χ2 test is insensitive.An example is in Table 1, third 
olumn, the �rst two rows (p
T
and p

Ts
alar sum). The 
orresponding histograms are shown in Figure 5.A
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Figure 2: Comparison 1 (m
�nlo v3.1 vs. v3.31). Left: Transverse momentumof t/t̄. Right: Absolute value of the ve
torial sum of p
T
(t) and p

T
(t̄).

 mcatnlo31.105281.ttbar.172.5GeV.out.root----
 powheg10.105281.ttbar.herwig.172.5GeV.out.root----

0.%, KS with pseudoexperiments: 3.49%KS Test: 
/ndf: 1.3293342χ, 15.22% prob: 2χ

Run test: 100.%
 

-1 0 1 2 3 4 5 6 7 80

500

1000

1500

2000

2500

h_ttbar_deltaR
Entries  10001
Mean    3.199
RMS    0.8697

h_ttbar_deltaR
Entries  10850
Mean    3.169
RMS    0.8731

0

500

1000

1500

2000

2500

h_ttbar_deltaR

Entries  10001
Mean    3.199
RMS    0.8697

h_ttbar_deltaR

Entries  10850

Mean    3.169

RMS    0.8731

tR between t and ∆

-1 0 1 2 3 4 5 6 7 8R
at

io
 o

f 
H

is
to

g
ra

m
s

0

0.5

1

1.5

2

 mcatnlo31.105281.ttbar.172.5GeV.out.root----
 powheg10.105281.ttbar.herwig.172.5GeV.out.root----

0.%, KS with pseudoexperiments: 1.19%KS Test: 
/ndf: 1.9828972χ, 0.33% prob: 2χ

Run test: 50.85%
 

0 0.5 1 1.5 2 2.5 30

50

100

150

200

250

300

350

400

450
h_ttbar_angle
Entries  10001
Mean    1.535
RMS    0.9085

h_ttbar_angle
Entries  10850
Mean    1.496
RMS    0.9146

0

50

100

150

200

250

300

350

400

450 h_ttbar_angle
Entries  10001
Mean    1.535
RMS    0.9085

h_ttbar_angle
Entries  10850

Mean    1.496

RMS    0.9146

tAngle between t and 

0 0.5 1 1.5 2 2.5 3R
at

io
 o

f 
H

is
to

g
ra

m
s

0

0.5

1

1.5

2

Figure 3: Comparison 2 (m
�nlo vs. powheg). Left: ∆R =
√

∆η2 + ∆φ. Thedistribution from powheg is 
learly shifted to the left. Right: Angle betweenthe momentum ve
tors of t and t̄. 10
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Figure 4: Comparison 2 (m
�nlo vs. powheg). Pseudorapidity η (left) andpolar angle φ (right) of the W± bosons.
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Figure 5: Comparison 3 (herwig vs. pythia), showing the transverse momen-tum p
T
of the t and t̄ ea
h (left) and their s
alar sum (right).11
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