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1 Introduction

With the LHC getting started and the first data to be taken soon, precise pre-
dictions of the expected measurements are required. In my task, I will compare
different Monte Carlo event, generators which are supposed to simulate top pair
production and decay with next-to-leading-order precision.

2 Monte Carlo methods in QCD

Monte Carlo (MC) is the general term for various numerical methods using
random number generators, hence the name. These methods are widely in
use to do calculations that would be otherwise intractable or very hard. One
example is to perform an integral numerically not by discretizing it, and risking
problems such as numeric artifacts, but by using a random number generator to
eventually fill the area under the integrand and approximating the result (See
for instance [1]). This is used in particle physics to calculate the complicated
integrals resulting from the Feynman diagrams of perturbation theory.

Once one has calculated the differential probability densities or cross sections
for a given process with regard to all interesting observables, such as angle and
momentum of the final state particles, one can use these to dice random events.
This simulation of particle physics processes is called MC event generation.

2.1 Factorisation of the QCD cross section

Due to the properties of quark confinement and asymptotic freedom in QCD,
it is not possible to calculate a cross section of a hadron-hadron process in
the perturbative framework. However, one can separate the problem into three
parts, which can each be dealt with by special methods:

1. Which partons contribute with which momentum fraction z to the collision
is governed by the parton distribution functions (PDFs) f,(z), where a
can either indicate valence quarks, sea quarks, or gluons. PDFs have been
measured for the proton in detail especially at the HERA electron-proton-
collider.
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2. Hard scattering can be calculated perturbatively due to asymptotic free-
dom in QCD, given that the transferred momentum @Q? is high enough for
as to be in the perturbative regime.

3. Quarks and gluons produced in hard scattering, as well as remnants of
the initial hadron, now undergo the process of showering. Due to radi-
ation of further gluons, decays and hadronisation, the partons form cas-
cades. Given a suitable algorithm, one can identify jets among these
cascades. This lower-energetic phase of the reaction cannot be calculated
using perturbation theory, however there exist phenomenological models
which work quite well, for example the Lund sting model implemented in
PYTHIA [2], or the cluster model used in HERWIG [3].

The differential cross section for the collision of two hadrons H; and Hs with
momenta p; and py respectively can be written as follows:

da(pl,]h) = Z// dl‘ldl‘g . f;h (xl)flf{z (:132) . d&ab(xlpl,xgpg) . (1)
a,b

Here fHi denotes the PDF for the hadron H;, and d&ap(21p1, Tap2) is the par-
tonic cross section with the partons a and b in the initial state. This will be
expanded in a power series in a,. The so called factorisation theorem ensures
that the factored form of the cross section in (1) remains valid for all orders
of a (see for instance [4]).

3 Monte Carlo in next-to-leading order

Until recently, most Monte Carlo generators have performed the “hard” part
of the reaction in leading order (LO), that is just including tree-level diagrams
with two vertices, which give terms of order o?.

One way to consider next-to-leading order (NLO) effects is then to calculate
the total NLO cross section by other means than MC, and then scaling the LO
distributions to the NLO cross section. While this may be a valid approximation
for some processes, it is clear that there are effects which cannot be included
this way.

For example, consider the process gg — tt (gg-fusion). According to the LO
matrix elements, the top and antitop are emitted back-to-back. The inclusion
of final state gluon radiation in NLO allows for a percentage of the momentum
to be carried away, so that the angle between ¢t and ¢ drops below 180°. While
the showering process after LO also handles gluon radiation in the final state,
it doesn’t manage to create the same angular distribution that NLO MC gives.

It is expected that the ¢ cross section will be measureable at LHC with an
uncertainty of about 5% [5]. In this case a comparable accuracy will be needed
for the theoretical predictions. This requires at least NLQO, if not even NNLO
(next-to-next-to leading order) calculations.

3.1 Difficulties

The NLO Feynman diagrams can be divided into two types, those with addi-
tional virtual particles that form loops or vertex corrections, and those with



extra (n > 2) outgoing particles. In traditional (LO) Monte Carlo, only 2 — 2
hard processes were calculated perturbatively, and 2 — n configurations were
achieved through parton showering. In NLO, we would like to use the same
showering algorithms, but now we have 2 — 3 processes already in the pertur-
bative part. In this case, using the showering algorithms naively would lead
to an overestimation of parton radiation, which is called overcounting. Two
strategies to avoid this shall be mentioned in the following:

e The MCc@NLO algorithm by Frixione and Webber [6] implements all NLO
matrix elements in a straightforward way. To deal with overcounting, sim-
ply speaking, the extra partons from the hard interaction are matched to
partons from showering, and it is determined when there will be overcount-
ing. For these cases, counterevents with negative weights are generated,
which cancel the wrong events out. The number of negative weight events
is about 10%-15% of the total event count. In spite of the negative weights,
for a sufficient number of events all cross sections will be finite and posi-
tive. However, one has to calculate slightly more events to get the same
statistics in the end.

The matching calculations have to be done once for each process and for
a specific showering algorithm. Because of this, at the moment MCc@NLO
can only be used with HERWIG for showering.

e The newer POWHEG approach by Frixione, Nason and Oleari [7] tries to
avoid the problem of overcounting and the negative weights, by doing the
most energetic parton emission first, and letting the showering algorithm
continue from there. POWHEG can be used in principle with any showering
tool which supports the Les Houche interface [8§].

4 Comparing two Distributions

For my task I have to compare various setups of Monte Carlo generators and
find out if their results are equivalent, or if there are significant differences.
The generators produce (after the showering part) a number of events that
contain information about the incoming and outgoing particles, as well as of
intermediate (decayed) states. This data is referred to as MC truth, as opposed
to data which has gone through a detector simulation and reconstruction, and
therefore has uncertainties from measurements and reconstruction algorithms.

From the MC truth, observables of certain particles (e.g. the transverse
momentum p.. of the top quarks) are extracted and filled into histograms. In the
limit of a small bin size and large statistics, these histograms can be interpreted
as differential cross sections (say do/dp,). My task is then to compare two
histograms and decide if they are in agreement.

Statistically speaking: One has two measured distributions z; and y;, where
i = 1...N. The null hypothesis H is the assumption that these datasets
have been drawn randomly from the same underlying distribution do/dz. One
would like to be able to disprove this hypothesis by finding significant differences
between the two empirical distributions. Note that this can only be done on
statistical grounds, and one cannot prove that two given distributions have to
come from a different source. One can just give a statistical measure whether to



reject the assumption of similarity (Hy) or not. It is unavoidable to sometimes
make a mistake here:

e The error of the first kind occurs when one rejects the null hypothesis
(and says the histograms are “different”), although they do come from the
same underlying distribution.

e The error of the second kind on the other hand is not to reject Hy,
although the two datasets have different sources.

When one has a number of histograms drawn statistically from the same the-
oretical distribution, using a certain criterion for rejection, the probability to
make a mistake of the first kind is denoted by «. The confidence level (CL)
is defined as 1 — . A higher CL reduces the chance of an error of the first
kind, at the cost of lowering the rejection power of the test. Typical values for
the confidence level are for example 90%, 95%, 99%. (See also any textbook on
statistical methods, for example [1]).

Note that while it is possible to reject Hy at a certain CL, one can in principle
not prove the null hypothesis. Imagine two theoretical distributions in z € [0, 1],
with their mean values differing just by Az = 107 or less. A tremendous
amount of statistics would be necessary to see this deviation. This also plays
a role in my analysis, as the (theoretical) distributions from two different MC
generators will very likely not be the same, but for all practical purposes they
should be indiscernible, which will be the Hy in the following.

4.1 Kolmogorow-Smirnov-Test

The Kolmogorov-Smirnov-Test (KS) can be either be used to compare a set, of
measurements x; with a given distribution function f(z) or, as in our case, to
compare two measured distributions z; and y;. First, the empirical cumu-
lative distribution function (CDF) F, (x) is constructed from the measure-
ments. This function starts at zero for x < min(z;). It makes a step of height
1/N each time x passes a data point x;, so that it reaches F,(z) = 1 when
x > max(z;) (Figure 1, left). In the same way one constructs G,,(x) from the
y;. When dealing with binned data, the “integral” of the histogram, that is the
sum of all bin contents up to the bin containing z, given by F'(z) = >_, . f(z:),
takes the role of F),(x).

The maximum distance between the two functions F,(z) and Gy, (z) then
defines the Kolmogorov distance Dy, ,:

Dy = Slip{|Fn(SC) = Gn(z)|}. (2)

In the case of comparison with a function f(x) its integral F'(x) takes the role
of the second CDF, and the Kolmogorov distance is given by:

Dy, = Slip{an(x) — F(x)l} (3)

The important insight by Kolmogorov was that, if the null hypothesis is true,
as the number of data points n approaches infinity, the Kolmogorov distance
D,, approaches zero. Furthermore, the quantity /n - D,, should be distributed



cumulative probability distribution
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Figure 1: Left: Illustration of the empirical cumulative distribution function
(CDF) and the Kolmogorov distance D,,. From: Numerical Recipes in C++
[9]. Right: Sketch of the Kolmogorov distribution, showing the confidence level
1 — « and the critical value K.

according to the so called Kolmogorov distribution K. Likewise, in the case of
comparing two empirical distributions, n is replaced by n’, which is defined as:

, n-m

Cn4m’

Now one would like to use this information to construct a test for Hy. The
idea is to pick a critical value K, so that if \/n - D,, > K,, one rejects the
hypothesis of similarity. To get K, one chooses a confidence level, say 1 —a =
95%, and then finds the position K, in the Kolmogorov distribution, so that
only the fraction « of the area enclosed by the curve lies beyond it (Figure 1,
right). Now the probability for an error of the first kind is a.

While this way one has a test that allows rejection at a given CL, there is
another well known approach which T use for my analysis. Given a certain value
of \/n - D, for a pair of distributions, I'm asking for the highest possible CL
(the lowest «) at which one could still say that they are different. The CDF
(the integral up to K,) of the Kolmogorov distribution is given by:

P(K < Ko)=1-2) (-1))le % =1 —a. (4)
j=1

Plugging in \/n-D,, as the critical value K, this gives the maximum CL 1—a. A
lower value of « signifies more strongly that the two distributions are different.

4.1.1 Pseudoexperiments approach

A different approach to the Kolmogorov test uses so called pseudoexperiments.
Again, we would like to compare two empirical distributions A and B, where
A contains n values. We interpret the histogram of A as a probability density,
and dice n random numbers accordingly. The result is a histogram A;, which
is in form similar to the original one, but with the fillings of its bins Poisson-
distributed around those of A. This is repeated a large number of times, say
N = 1000 times, to create the pseudoexperiment histograms A; to Ay. Then
the Kolmogorov distance between A and each of the A,,, as well as between



A and B is calculated. The question is, how many pseudoexperiments have a
larger (= worse) KS-distance to A than B does? This percentage apseudo is then
a measure of the dissimilarity of A and B.

Note that the pseudoexperiments test is not completely equivalent with the
method shown above. Due to the random nature of the histograms to be tested
it is always possible that A is not a typical representative of the underlying
distribution, but a exceptionally deviant one. It is not tested if A and B could
stem from the same distribution, but rather if B could be a variation of A. If one
equates apscudo to the above a, one underestimates for this reason the error of
the first kind. However, in the case of large statistics (= low relative errors) for
A — the limiting case being the knowledge of the theoretical distribution — the
pseudoexperiments result should approach the analytical result. For this reason,
it is more suited for comparing e.g. one large body of Monte Carlo data A with
some small amounts of measured data B, than comparing several medium-sized
datasets as in my task.

In general, the pseudoexperiments approach has the advantage of its simple
probabilistic interpretation. It can be used even in cases where the expected
distribution of the test quantity is not known analytically.

4.2 Y2%-Test

Another widely used test which is to be used on binned data is called the chi-
square-test. Usually it serves as a goodness-of-fit test, comparing a histogram
to a fitted curve, but it can also be used to compare two histograms.

The test is simple: For every bin, the squared distance between the two
histograms is taken, normalized, and summed up. This gives us the y? value:

2 _ o (2 — yi)?
X Z — (5)

Besides this, we need the number of degrees of freedom, NDF. That is in
this case the number of bins minus the number of constraints applied to the
distributions. As the number of events is fixed, usually NDF = N — 1. In the
case that for one bin x; and y; are both zero, one cannot compute the fraction
and omits it from the sum, while the NDF is reduced by one.

In the case that Hj is fulfilled (i.e. the histograms come from the same
source), the quantity x? follows the so called chi-square distribution, which
depends on the NDF. Now with the knowledge of the expected distribution, one
can proceed as above and calculate the maximum CL = 1 — «, at which two

given histograms can be said to be different.

4.2.1 Improvements to the Chi-Square Test

The accuracy of the y?-test suffers if many bins are not filled sufficiently. This
is for two reasons: On the one hand, the relative error of a bin v/N /N decreases
with the filling N, on the other hand, due to the expression z; + y; in the
denominator in (5), barely filled bins have a much higher weight. Therefore, it
is recommended to choose a binning such that there are at least 10 entries in
each bin (see [9]). This can be done by joining adjacent bins together if one of
them contains fewer then 10 entries (and reducing the NDF by one each time).



Another improvement is to weight the terms in (5) according to their errors.
For the necessary modifications, see [9]. I am using both improvements in my
analysis.

4.3 Runs Test

While the x2-Test only looks at the absolute difference |z; — y;| between the two
histograms, it discards the sign. This leads to the idea to construct a test based
solely on the sign instead. Such a test should be complementary to the x? test
in the sense that the former delivers information the latter does not, and vice
versa.

The test works as follows: One takes the difference x; — y; for each pair of
bins, and notes a +, — or 0, depending on the sign of the difference. Several
consecutive pluses or minuses together are called a run. One counts the total
number of 4+, — and the number of runs r. Runs of zeros are thereby not
counted, a zero only serves to stop a previous run.

Under the assumption of Hy, r should be normal distributed. Using combi-
natorics it is possible to calculate, for a given ny and n_, an expectation value
w and a variance o2 for r. With n = ny + n_ one has:

2nyn_

wu(r) = — +1 and o?(r) = (M?#

(6)

Using r as a test statistic, one can then test Hy as usual, or calculate a critical
value of « for a pair of histograms.

5 Setup

For my comparisons, I am looking at simulated events of top pair production
from proton-proton collisions (pp — tt+X) at a center-of-mass energy of 10 TeV.
This is the energy planned to be reached during the first data taking with the
LHC in 2008. The events are preselected in a certain way: While the top quarks
decay almost always into a W7 boson and a bottom quark, the W can either
decay leptonically (WT — £+ + 1) or hadronically. The generated samples
contain no all-hadronic events, i.e. at least one W= has to decay into leptons.
The top mass is assumed to be 172.5 GeV, with a width of I' = 1.42 GeV.

The samples, each containing 10000 events, are produced by following gen-
erators & showering tools:

e MC@NLO v3.1 and v3.31 with HERWIG
e POWHEG v1.0 with HERWIG
e POWHEG v1.0 with PYTHIA

(In the last two cases I am using the same output file of POWHEG for both
HERWIG and PYTHIA.) This allows me to do three comparisons:

1. MC@NLO v3.1 vs. MC@NLO v.3.31
2. Both MC generators using HERWIG: MC@NLO vs. POWHEG

3. Both showering algorithms using POWHEG: HERWIG vs. PYTHIA



In the MC truth I am identifying the ¢/f, the W* and b/b, and the leptons from
the W decay. I am looking at the following observables:

e For t/t, W%, b/b and (*:

— Transverse momentum p,., Pseudorapidity n, Polar angle ¢.

e For W# additionally:

— cos(0*), defined as the angle between the lepton and the (parent) top,
in the rest frame of the W. This gives information on the helicity
of the W boson in top decays [10]. One expects a mixture of about
70% left-polarized and 30% longitudinal polarized W-bosons.

e For t & t together:

— Combined p,. (vectorial as well as scalar sum |p,.(¢)| + |p, ()]),
— The angle between their momentum vectors,

— AR = /An? + A¢? as a measure of distance in n-¢-space,
Rapidity difference Ay.

Each observable is filled into histograms, which are then compared using the
KS, the x? and the runs test, as well as visually.

6 Results

While there have been no obvious, large differences in any of the histograms
T've compared, I did find some statistical relevant deviations. My results are
summarized in Table 1.

e In the comparison of MC@NLO v3.1 with v3.31, there are only small devia-

6.1

tions in the top p,. distributions (Figure 2). It is quite possible that these
are just the statistical error of the first kind. One would have to repeat
the comparison with more data to exclude that possibility.

In the second comparison, MC@NLO vs. POWHEG, the top p,. distributions
show differences as well, however also the p,. of the b-quarks and leptons is
affected. One also sees differences in the angular distributions (Figure 3).

The results of comparing HERWIG vs. PYTHIA look similar (Figure 5),
however in this case there are no big deviations in the angular observables
(considering a failed runs test alone not significant). This is expected,
since the events generated by POWHEG in the MC step were reused for both
showering tools, and the main contribution to the shape of the angular
distributions comes from the simulation of the hard process.

Conclusions about the tests used

I have tried several variations of each test mentioned above. This lead to te
following results:



MC@NLO 3.1/3.31 MC@NLO / POWHEG HERWIG vs. PYTHIA
Measurement, o — KS x Run KS Ve Run KS b Run
t/tbar pT 0,14 | 0,01 1,00 0,01 0,05 046 0,00 0,01 0,41
t/tbar pT sum (scalar) 0,57 0,45 0,12 0,15 040 0,57 0,00 033 0,00
t/tbar pT sum (log x) 0,17 = 0,03 0,71 0,06 0,19 0,69 0,11 032 0,19
t/tbar pT sum 0,63 0,06 0,13 0,18 | 0,01 0,06 0,14 | 0,01 0,73
t/tbar Ay 0,70 0,50 1,00 0,31 0,39 1,00 0,91 1,00 1,00
t/tbar AR 0,92 0,52 0,53 0,03 0,15 1,00 0,99 0,56 1,00
t/tbar angle 0,71 0,10 0,68 0,01 0,00 0,51 047 092 0,13
WpT 0,91 0,89 0,09 030 0,85 0,25 0,00 0,07 | 0,00
W eta 0,83 036 0,52 0,87 0,91 0,83 1,00 1,00 ~ 0,03
W phi 0,54 097 0,46 0,31 0,82 041 1,00 1,00 031
b/bbar pT 0,70 0,17 0,35 0,08 | 0,01 0,88 0,00 028 0,14
b/bbar eta 0,37 0,89 0,55 0,86 048 0,33 1,00 1,00 = 0,03
b/bbar phi 045 092 0,27 044 091 0,65 1,00 1,00 = 0,03
lepton pT 0,24 0,55 0,18 0,94 0,83 0,02 0,18 0,83 0,77
cos 0% 0,62 0,55 0,24 0,55 0,09 0,63 1,00 1,00 |~ 0,00

Table 1: Results of all the tests. In the first column, MC@NLO version 3.1 is
compared with 3.31, in the second column MC@NLO and POWHEG, both using
HERWIG for showering, are compared. The third column shows the comparison
of HERWIG vs. PYTHIA using the same POWHEG events.

The Kolmogorov-Smirnov test provided by TH1::KolmogorovTest() in
ROOT behaves for my purposes identical to the algorithm listed in Numer-
ical Recipes [9].

Simple tests suggest that the KS test with pseudoexperiments works as
expected. I compared a large number of histograms which were drawn
from the same random distribution (top p, data generated by MC@NLO).
The Kolmogorov distances of the random histograms to the original were
following approximately a Kolmogorov distribution.

The runs rest is as expected not very powerful. Also I suspect some error
in my implementation, as it sometimes gives an exceptionally low a when
the two histograms are clearly in agreement. (See Table 1, second column,
lepton p,., and third column, b/b 1 and phi, and cos §*.)

However, the run test can give information when the x? test is insensitive.
An example is in Table 1, third column, the first two rows (p, and p,
scalar sum). The corresponding histograms are shown in Figure 5.
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~~~~ mcatnlo31.105281.ttbar.172.5GeV.out.root

mcatnlo331.105281.tthar.172.5GeV.out.root
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AR between tand T

Figure 3: Comparison 2 (MC@NLO vs. POWHEG). Left: AR = y/An? + A¢. The
distribution from POWHEG is clearly shifted to the left. Right: Angle between
the momentum vectors of ¢ and £.
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Figure 5: Comparison 3 (HERWIG vs. PYTHIA), showing the transverse momen-
tum p,. of the ¢ and # each (left) and their scalar sum (right).
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