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1. Short introduction to the lithium lens as a part of the ILC positron source. 
 

The International Linear Collider (ILC) is a proposed linear particle accelerator for protons 
collisions. It is planned to have a collision energy of 500 GeV. The electron beam is used to get 
circularly polarized photons. The photons go through titanium target and they are transformed into 
electron-positron pairs. These pairs diverge at different angles. In order to collect and to focus 
electrons and positrons different devices can be used. One of them – the lithium lens (LL) – is the 
subject of this report.  

We have an axial-symmetric volume, filled by liquid lithium at temperature , and 
on the top of the lens there are two wires which are supplying this device with electric current in 
order to provide a proper magnetic field. The flow of liquid lithium should prevent this device 
from overheating. The task is to calculate magnetic field to predict trajectory of positrons and to 
get time-dependent field of temperature. 

500K≈

For these tasks we use FLEXPDE [2] and COMSOL Multiphysics [3]. Some estimations and 
properties of LL are taken from [1]. The geometrical dimensions are given below, in fig. 1 and 2. 

 
Nominal parameters for ILC positron source 
Parameter Value Units 
Number of positrons 102 10⋅  1/per bunch 
Number of bunches 2625  
Pulse repetition rate 5 Hz 
Average positron energy 5 MeV 
Average photon energy 10 MeV 
Bunch train length 1 ms 

 
On fig. 1 we can see a thin  Ti target ( ), and after the target on a distance ~ there is 
a short-focusing LL with thin ( ) Beryllium windows astride. The transmitted beam is a 
very intensive, so a very important question is the possibility of overheating the LL. On fig. 2 two 
wires with the great current density can be seen, so one of the aims of this work is to understand 
what will be the dominant overheating factor: Joule heating or heating by transmitted beam. 

0.15cm≈ 0.5 cm
0.05cm�
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Fig.1. Geometrical dimensions of the LL   Fig. 2.   Appearance of  the LL 
 
 
2. Maxwell equations for electric and magnetic field 
 

2.1 Governing equations 
 
Our first task is to calculate magnetic field inside lithium lens in order to know focus 

abilities and to calculate magnetic field between Ti target and LL in order to predict the effect on 
the trajectories of positrons. The equations for describing the electro-magnetic field for closed 
region are: 

                                                                   ( ) 0div J
t
ρ∂

+ =
∂

r
                                                          (2.1) 

                                                                   ( ) Drot H J
t

∂
= +

∂

r
r r

                                                        (2.2) 

Where - current density, J
r

ρ - charge density, H
r

- magnetic flux density, D Eε=
r r

, where ε -
dielectric conductivity, E

r
-electric field.   

In the stationary case we have and( ) 0div J =
r

( )rot H J=
r r

. 
Using the fact, that ( )J grad Vσ= − ⋅

r
 and ( )H rot A=

rr
, where V -electric potential, A

r
- vector 

potential, we can rewrite (2.1) and (2.2) as: 
                                                                      ( )V 0σ∇⋅ ⋅∇ =                                                         (2.3) 

                                                             
0

1( )
r

A Vσ
μ μ

∇ ∇× + ∇ = 0
r

                                                (2.4) 

where∇ - Nabla operator, rμ - relative permeability (for Li 1rμ ≈ ). Two models are simulated. We 
start from a 2D axial symmetric model, and then we go through the 3D model to get the integral 
picture of magnetic field.  
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2.2 2D modeling 

 
Fig. 3. Boundaries for 2D model. 
 

For the boundary 1 , the axis of symmetry, the BC for electric and magnetic field have 
obvious appearance: . For boundaries 2,4,5,6 and 8 BC have this appearance: .This 
means that current near boundary doesn’t have normal component or while for the calculation of 
the magnetic field in the whole volume) the equation of continuity: 

0r = 0n J⋅ =
rr

( )1 2 0n J J⋅ − =
r rr  is used. It 

means that the normal components of current inside and outside the LL have the same value. All in 
all, this two types are similar, because in the outside region we have good vacuum: 0extσ → . Here 
it must be mentioned, that during numerical calculations it is not possible to put 0extσ = , because 
of singularity matrix in equation (3), so, the conductivity should be slightly different from zero. 
For the magnetic field on this boundaries it is possible to represent continuity: . ( )1 2 0n B B× − =

r rr

The most difficult problem is to receive BC on boundaries 3 and 7. Using COMSOL it 
seems impossible to put boundary condition like 

S

JdS I=∫
r

 (as we know only a full inlet current), 

so, according to [1], BC for 3 and 7 will be like BCV V= . Usually, for the 3rd boundary BC 
 will be specified, and for the 7V ground= th boundary 1.5V V= or 7.5V V= . A few words about 

the fact, that current can not appear from nowhere. If we want to calculate a magnetic field along 
the supposed trajectory of positrons, it is better to consider boundaries 3 and 7 like external 
boundaries in order to avoid infinity at that region.  

According to [1], a typical length of a lens is 0.5 1cm−  and a radius is 0.5 , so, two 
types of geometry are used. The first type is 

1cm−
0.5r cm= , 1L cm= , the second one is 

, . The applied electrical voltage is 1.5 , Lithium electric conductivity is 0.7r cm= 0.5L cm= V
80.108 10 S

m
σ = ⋅ . 
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Fig 4. Magnetic flux density, norm, T                      Fig 5. Magnetic flux density, cut along  direction at ,  r z = 0 T
 
The type of the lens with greater radius has more non-linear dependence of the magnetic flux 
density on radius, which hamper to focus positrons. 
 

2.3 3D modeling 
 

In 3D case solving system has the same appearance like (2.3) and (2.4): 
                                                              ( ( ))V 0σ∇⋅ ⋅∇ =  

                                                          
0

1( )
r

A Vσ
μ μ

∇ ∇× + ∇ = 0
r

 

where rμ -relative  permeability, σ - electric conductivity. 
In order to simulate the realistic magnetic field around lithium lens, 3D model is used. The 

3D lens model is simulated in two types which are different with their dimensions. First model: 
radius of lens 1R cm= , length of lens 0.5L cm= , diameter of wires 0.1d cm= . Second model: 
radius of lens 0.7R cm= , length of lens 1L cm= , diameter of wires 0.1d cm= .These geometrical 
properties is taken from [1]. 

 
Fig. 6. First model                                                             Fig.  7. Second model    
 

For outside boundary BCs are: for magnetic field: 0n A× =
rr , for electric field: 0n J⋅ =

rr , 
where  is outer unit normal vector. For the internal boundary the BCs of continuity are: 

 and 
nr

1 2( )n H H× − =
r rr 0 01 2( )n J J⋅ − =

r rr . For the boundaries which have definite potential, BCs are: 

or , where given values, and 1V V= 2V V= 1 2,V V − 0n A× =
rr . Result of numerical simulation for first 

model are presented in fig. 8 -11.  
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Fig 8. Cut of magnetic flux density along Y axes, norm.    Fig. 9. Magnetic flux density, ZX plane. 
             

It may be noticed, that in the ideal case i.e. without wires on the top of the LL and rather 
big length of LL, (at least L R≥ ) magnetic flux distribution along Y axes must be linear, but we 
have strongly non-linear dependence of magnetic flux because of two reasons: there are two wires 
with great current density, which makes our task non-axial symmetric, and because of the 
shortness of the LL. That is why the second model is simulated. 

For the second model, in order to make current distribution more homogeneous inside the 
lens, a copper ring is implied on the side face of the lens. In this case, the potential along the flanks 
decreases with the coordinate not as fast as without copper, since copper is a good conductor.  

       
Fig. 10. Cut of magnetic flux density distribution              Fig. 11. Magnetic flux density distribution, cut along X axes. 
along y, norm. 
   

Now, it is possible to see on fig. 10 there is enough linear distribution of magnetic flux 
comparing with fig. 8. 
 
3. Problem of cooling lithium lens 
 

According to [1], a full current 166 kA is needed in order to supply a proper magnetic field 
in lithium lens (~ 1 T). After each pulse inside the lens a energy Q = 1000 Joules is released, so the 
approximate gain of temperature is 170 K. The melting point of Beryllium is near 1560 K, so, 
starting from initial temperature 500 K (453 K is the point of melting Li), we need only six pulses 
to melt the lens. Using fact, that frequency of pulses is 5 Hz, the working time is 1-2 sec. It is a 
very rough estimation, because here the cooling period is neglected, for a more precise estimation 
we need to built a two dimensional axial-symmetric model. 

≈

Short describing of input data: there is a Li lens with dimensions, which are taken from [1]. 
On entrance boundary there is a Li flux at the speed approximately 10 , [1], Li lens is /m s
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restricted by Beryllium windows with thickness 0.5mm≈ (melting temperature ) from 
both sides. Also there is a pulsed beam of positrons with known function of dissipated energy. The 
pulse duration is1 , the repetition rate is . Our task is to calculate the temperature field and 
to prevent melting of Be windows. 

1500T = K

ms 5Hz

Lithium lens has of radius and of the length, so if the liquid lithium has 
the flowing speed ~10 m/s, during each pulse (~ 1ms) the lithium inside the lens can be renewed 
approximately 4 times, and the gain temperature is 4 times smaller then in the case without flow of 
lithium. 

~ 0.5 cm ~ 1 cm

In order to simulate this problem we need to solve heat transfer equation, Navier – Stokes 
equation and continuity equation in order to define Joule heating for heat transfer equation. For the 
heat transfer equation we need to find the temperature field. This transfer equation has the form: 

                                                 ( )p
TC k T Q C
t

ρ ∂
+∇ − ⋅∇ = − ∇ ⋅

∂ p T Uρ ,                                      (3.1)                      

where:  
T − temperature, [ ] K
k − heat conduction coefficient, [ /  ]J kg K⋅
Q − heat source,  3[ / ]W m
ρ −density,  3[ /kg m ]
U − velocity vector, [ /  ]m s

pC − heat capacity at constant pressure, [ / ]J kg K⋅  
In order to find the heat source function, we need to know the current distribution inside the 

lens. Thus we need to solve the continuity equation  
                                                                           ( )V 0σ∇ ∇ = ,                                                      (3.2)                       
where  
σ − is conductivity, [ /  ]S m
V − electric potential, [ ]  V

And, at lastly, we need the Navier-Stokes equation in order to solve heat transfer equation 
in the assumption of a flow of lithium. It is better to start from the case of laminar flow of Navier-
Stokes equation. On low mach’s numbers steady-state Navier-Stokes equation reads 
                                           ( ( )) ( ) (div grad U grad P U grad U )ν ρ⋅ − = ⋅ ⋅                                     (3.3)          
Where 
P −pressure, [ ]  Pa
ν − dynamic viscosity, [ ]  Pa s⋅
and the continuity equation 

   0U∇ =                                                  (3.4) 
if there is no external sources of liquid lithium except inlet boundary 
Or, in the assumption of low-compressible media, the following equation is correct   

                           2( ( )) ( ) ( ) (( ) ( ))
3 dvdiv grad U grad P U grad U div k grad Uν ρ η⋅ − = ⋅ ⋅ + − , 

where -dilatational viscosity, but then only equation 3.3 will be used. Also we need an equation 
for pressure. Here we will use a “slightly-compressible” model of lithium: 

dvk

                                                               0( ) ( )P P L 0ρ ρ ρ= + ⋅ − ,                                                 (3.5) 
where 0ρ - is the density at room temperature, is the pressure at density 0P 0ρ , L characterize the 
coefficient of compressibility. L  is chosen large enough to enforce the near-incompressibility of 
the fluid, but not large enough to erase the other terms of the equation in the finite precision of the 
computer arithmetic. 
The continuity equation: 
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                                                                   ( )div U
t

0ρ ρ∂
+ =

∂
,                                                      

(3.6) 
Using 3.5 and 3.6 we can write  

                                                                  0 ( )P L div U
t

ρ∂
= − ⋅

∂
. 

( (P div grad PIn steady state ))∂
= − , according to smoothing operators in PDE’s, so  

                                                            )
t∂

( ( )) (div grad P M div U= ⋅ ,                                              (3.7) 

where has dimension 2

Pa s
r
⋅M . In 2D axial-symmetric case equation 3.7 looks 

like (1( ( )) ( z rU r Udiv grad P M
z r r

∂ ∂ ⋅
= ⋅ +

∂ ∂
)) , where - are the velocity components in 

cylindrical system of coordinates,

,z rU U

M is chosen as 6
2

1x 1
cos5 10 vis ity

⋅ ⋅ , where x -characteristic 

imension of LL. Thus, equations 3.1-3.3 and 3.7 completely describe current task.  

.2 Boundary conditions 

.2.1 Navier – Stokes equation 
 

d
 
3
 
3

As usual, for boundary 1 BC is performed as 0r = . For boundaries 2, 4, 5, 6, 8 condition 
0U =  is used. It is worth to mention that in the case of the Navier-Stokes equation the boundary 

condition “wall, no slip” is only correct for laminar flow. In turbulent flow there is no liquid 

r

sticking to the wall. For the inlet boundary 7 and for the outlet boundary 3 the BCs are: 0zU =
r

and 

0rU
z∂

∂
=

r

. Other words it’s possible to consider no viscose stress on the boundary: ( ) 0grad U n⋅ =
r . 

Generally speaking, it is not necessary to put exact value of speed on boundaries 3 and 7, we can 
select such difference in pressure on that boundaries which supply the speed in the middle of the 

lens as we need. It is possible to calculate Reynolds number like Re VLρ
ν

= , where ν − is the 

dynamic viscosity. For lithium the pr peratoperties are (at tem ure 520K): 510 /kg mρ = , 3

45 10 Pa sν −⋅ ⋅ s
find cr s

e model 
ing speed to

= , 10V m≈ , 10L mm≈  and resulting 5Re 10≈ . From table we can 
1000≈ , where Recr  crucial number for transition “laminarity - turbulence”, so 

5Re 10≈ is much bigger than crR and it’s a turbulenc r case. In order to make laminar 
flow, it is better to decrease the infl

/
Re i

in ou
ow 0.05 0.1 /m s− , but, probably, cooling process 

Because of high turbulence model and relatively low kinematic viscosity of lithium 
would not be efficient at this speed. 

(
2

60.98 10 m
s

−⋅ , comparing with water viscosity  the numerical calculation at real 

viscosity does not converge. The minimal viscosity, at which calculation has stable convergence, 

was

6 21.01 10 /m s−⋅ ),

2
21 10 m

s
−⋅ . This viscosity is used for numerical calculations. 
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Fig. 12. Field of velocity, viscosity 
2

21 10 m
s

−⋅               

On boundary 3 we put pressure equal to , on boundary 7 - . For this 

difference of pressure we have speed 

510 Pa 61.45 10 Pa⋅

10 m
s

at the entrance to the LL. Field of velocity depicted on 

fig. 12 is used for cooling the LL. Average speed in the middle cross-section of the LL is . 2 /m s
 
 
 

3.2.2 Heat transfer equation 
 

For the boundaries 2, 4, 5, 6, 8 it is possible to put the condition of thermal isolation 
 because the adjacent media is vacuum. For boundary 7 the best suitable condition 

is constant temperature  , because inflowing lithium is coming from big capacity with 
constant temperature. For boundary 3 it is possible to put convective flux 

( )n k T− ⋅ − ∇ =
r 0

0
0T T=

( )n k T⋅ − ∇ =
r  but also 

(as boundary 3 adjoin to big capacity of Li) it’s possible to put inf( ) (n k T k T T )⋅ − ∇ = − ⋅ −
r , where 

- is thermal-conductivity coefficient,k inf 0T T= . 
 

3.2.3 Results of simulation 
 

Heat transfer equation in cylindrical system of coordinates has the form: 

                                     p p z rdiv(k grad(T)) + Q = C + C (U +U )T T
t z

ρ ρ T
r

∂ ∂ ∂
⋅ ⋅ ⋅ ⋅ ⋅

∂ ∂ ∂
, 

where the summand p z rC (U +U )T
z r

ρ ∂ ∂
⋅ ⋅ ⋅

∂ ∂
T  presents a convective flux. The function of sources 

 is the sum of two components: Q joule beamQ Q Q= +  ,
2

joule
JQ
σ

= , where  current 

density,

J −

σ − electrical conductivity. 
2

0 exp( )
/ 2beam

AQ Q
ww π

= +
r - Gaussian function, this is a 

fixed data. Firstly, heat transfer equation is solved without convective flux summand in order to 
compare lens cooling by flowing lithium. 
All numerical simulations are made for two values of voltage: 1.5 and just to compare the 
influence of joule heating on general heating. The initial temperature is (liquid state 
lithium). Numerical calculation under the assumption that the applied voltage is are shown in 
fig.13 -16. 

V 8V
520K

8V
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Fig. 13. Heating by current, voltage , 3                Fig. 14 Heating by transmitted beam,  8V /W m 3/W m

         
Fig. 15. Temperature after first pulse, 1 ,                            Fig. 16. Gaussian heating function of transmitted beam. ms
heating by transmitted beam and current  

It can be seen, that maximal temperature is 1850 and lies in the region, where the current 
density is maximal. It is worth to notice that almost in the whole area

K
joule beamQ Q≥ . Comparing 

figures 13 and 14, it is safe to say that maximal value of Joule heating ( 12
37.5 10 W

m
⋅ ) is three times 

more than source beam ( 12
31.2 10 W

m
⋅ ). Results of calculation under the assumption that applied 

voltage is 1 . are presented on fig. 17 -18. 5V

            
Fig. 17. Temperature after first pulse, 1 .                              Fig. 18. Heating by current, voltage, .  ms 3/W m 1.5V
                   

Heating by current, shown on fig. 18 corresponds to full current , heating by current, 
shown on figure 13 corresponds to full current10 . 

25kA
5kA
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Now, we can see that at voltage 1.5 the maximal temperate is V 1200K≈ in the area of maximal 
beam intensity. Meanwhile, in this case the heating by transmitted beam is five times more than 
heating by current. 
But before the second bunch train, after after first bunch train, the temperature field inside LL 
becomes the same, as it was before the first bunch. 

0.2s

To present a more realistic model, we put beryllium windows on the left and right side of the LL. 

            
Fig. 19. Boundaries for Be windows                                      Fig. 20. Dissipated energy in left Be window. 
 
The thickness of Be windows is . The properties of Be at that conditions we have are: 

thermal conductivity

0.5mm

k = 201 W
m K⋅

, density 31848 kg
m

ρ = , thermal capacity 1820 JCp
kg K

=
⋅

, 

electric conductivity 80.313 10 S
m

σ = ⋅ . 

On boundaries 1-4 and 5-8 for Navier – Stokes equation no slip condition was supposed 
( ), this provides zero speed in solid state Be. According to equation 3.2, one should 
mention that Be has even more electric conductivity then Li, Boundary conditions were performed 
like continuity of current: 

0, 0r zU U= =

( )1 2 0n J J⋅ − =
r rr . 

At last, for the heat-transfer equation the BCs was supposed like convective flux . ( )n k T⋅ − ∇ =
r 0

Results for applied potential 1.5 are presented on figures 21 - 22: V

                
Fig. 21. Temperature after first pulse,1 .                        Fig. 22 Heating by transmitted beam, .          ms 3/W m
 
Now the left beryllium window is the hottest part. It happens because at 0r = dissipated energy in 

beryllium material (left window) is equal to 36 kW
cm

 (see fig. 20), comparing with dissipated energy 

in Li material (only 31.2 kW
cm

) it becomes a significant value. Even inside right window this value 
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( 34.5 kW
cm

) is higher, and, of course, there is no way for cooling mechanism inside the window 

( except radiation one. 0U =
r

) 

 
0.2s   Fig. 23. Temperature field before second pulse, 

 
But after 0.2s of cooling (remember, tha twt be een first and second bunches there is no nor heating 

y transmitted beam neither by current, because we do not need to supply proper magnetic field 
 tim

has a more linear magnetic field dependence than the lens with the length

gneti

itt  w

The m
ter inside the LL. 

 under responsive guidance of Dr. Andriy Ushakov and Dr. Andreas 

 lens for ILC positron source”, A. Mikhailichenko, Cornell University, Ithaca, NY 

b
during the e between bunches) temperature field becomes similar to initial one. 
 
4. Summary 

In this work the magnetic field inside a LL was calculated. It has been found that a LL with 
the length 1cm
and as 

0.5cm , 
the result, better positron focusing abilities. The magnetic field outside the LL is not very 

big comparing with the field inside the LL. It is the positive feature of the LL. To get a ma c 
field of 1T� we need 105kA of current. It is similar to applied potential 8V . 

It has been found that at the current of 105kA  overheating factor is Joule heating but not 
the transm ed beam: the temperature gain after one pulse in the regions ith great current density 
is 1300K , while in the region with great intensity of dissipated energy of transmitted beam it is 
only 700K� . This temperature gain is more than the melting temperature of Be, although between 
first and second pulse liquid lithium inside the lens returns to initial temperature (500K ). 

aximal temperature gain is inside Be windows, not inside the lens. It happens 
because of a greater value of dissipated energy, comparing with the same parame
There i

�

s no efficient cooling of Be windows, except radiation flux from the surface of Be window. 
A feasible solution is to increase cross-section of transmitted beam. 
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