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PITZ is a test facility for the development of high quality electron sources.  One of the most 
important beam characteristics is transversal emittance.  This work investigates the use of 
multi-quadrupole scan technique for emittance measurement.  Experimental results for both 
single and multi-quadrupole scans are presented.  Simulations were performed and the results 
are shown for comparison with experimental results.  Finally, suggestions for further 
investigations for the development of the multi-quadrupole scan technique are overviewed. 
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1. INTRODUCTION 
 
The acronym PITZ stands for Photo Injector Test Facility at DESY Zeuthen.  As the name suggests it is a 
dedicated test facility for research and development of laser driven electron sources for Free Electron Lasers 
and Linear Colliders.  Previous accomplishments include the electron gun for FLASH (Free electron LASer in 
Hamburg).  X-ray Free Electron Lasers (XFELs), such as European XFEL project, require a beam of even 
higher quality.  The work currently in progress is involved with optimising the electron source for these 
applications. 
 
1.1 Free electron lasers 
Free electron lasers (FELs) produce extremely highly brilliant, coherent electromagnetic radiation with a short 
wavelength.  This electromagnetic radiation is generated by the acceleration of charged relativistic particles in 
the presence of magnetic fields.  In a FEL, the radiation is produced by rapidly applying alternating 
accelerating and decelerating forces on the electrons in the plane perpendicular to their propagation direction.  
This is achieved by passing the beam through a periodic magnet called an undulator.  The electrons assume a 
sinusoidal path and emit radiation due to their deceleration.  The quality of the radiation beam produced is 
limited ultimately by the quality of the electron beam with which it was formed; hence the development of 
high quality electron beams is crucial. 
  
Radiation produced in FELs has a number of desirable properties.  Most importantly, it has a very high 
brightness, of the order of hundreds of thousands of times brighter than that from a conventional X-ray tube.  
The radiation is highly polarised and is emitted in pulses less than 1ns, giving extremely high peak power.  If 
the energies of the particles and magnetic fields are large enough, the wavelength of the radiation can be of the 
order of X-rays.  FELs have applications in a wide range of areas including medicine, molecular biology and 
crystallography [1]. 
 
1.3 PITZ set-up 
The PITZ set-up consists of a 1.5 cell normal conducting RF gun with Cs2Te photocathode and its laser 
system, two solenoid magnets, a normal conducting booster cavity, and diagnostic systems upstream and 
downstream of the booster cavity.  The RF gun and the booster cavity are operated with separated L-band  
(1.3 GHz) RF power systems.  The schematic layout of PITZ is shown in Fig. 1. 
 

Fig 1. Schematic layout of the PITZ beam line. 
 
The laser system at PITZ is a frequency quadrupled Nd:YLF laser which produces UV pulses at a wavelength 
of 262 nm with pulse length of about 20 ps and a separation of 1 μs.  When the laser beam is incident on the 
Cs2Te cathode surface, electrons are emitted and are accelerated due to a time-varying electromagnetic field 
inside a standing wave RF gun, resulting in electron beams with energies depending on the input RF power 
level.  Currently, the maximum energy gain from the RF gun at PITZ is around 6.5 MeV.  An electron beam is 
focused by the magnetic field from the main solenoid magnet.  A so-called bucking magnet compensates for 
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the magnetic field at the cathode reducing the residual angular momentum of the electrons.  Downstream of 
the RF gun, the booster cavity is placed for post acceleration and accelerates electrons up to ~15 MeV [2]. 
 
The beam diagnostic section includes extensive devices enabling a comprehensive study of beam parameters.  
Faraday cups and integrating current transformers (ICTs) measure the beam charge.  The beam size, beam 
shape and position can be measured using YAG or OTR view screen stations with CCD cameras or using wire 
scanners.  Three emittance measuring systems (EMSYs) using the slit scan method measure the transverse 
emittance.  Streak cameras allow the longitudinal bunch parameters to be investigated.  Two dipole 
spectrometers allow the momentum and momentum spread of the particles to be determined both before and 
after the booster cavity [3].  Quadrupole magnets are planned to be used for both phase space tomography and 
emittance measurement.  This work focussed on the latter case. 
 
2. BASIC BEAM DYNAMICS CONCEPTS 
 
2.1 Beam Ellipse 
A beam of N particles can be described by a set of N points in the 6 dimensional phase space,  
{x, y, z, p , px y, pz}.  Neglecting any coupling forces, this phase space can be split into two 2-dimensional 
transverse phase spaces {x, px}, {y, py}, and one longitudinal phase space {z, pz}.  The particles of interest in 
the phase space distribution can be considered to be bounded by an ellipse in phase space.  This ellipse is 
defined by a symmetric, positive-definite matrix called the beam matrix, σ(z) [6];  
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Physical components of the beam matrix are illustrated 
in Fig. 2.  As the beam propagates, the shape and 
orientation of the beam ellipse changes but the ellipse 
area is invariant along propagation as assured by 
Liouville’s theorem in Hamiltonian mechanics: “the 
phase-space distribution function is constant along the 
trajectories of a system”.  Therefore this ellipse area is 
a very useful parameter for characterising the beam.  
 
2.2 Emittance    
The emittance is a figure of merit used to characterise 
and compare the quality of different beams.  There are 
a number of alternate definitions but they are all 
functions of the beam ellipse area.   
 
 
Assuming that the distribution is bounded by an ellipse as described above, the emittance, ε, can be expressed 
as 

σπε det== Area  (2) 
 
The quoted emittance is usually normalised with the beam energy in order to compare the beams’ quality 
independently of acceleration effect.  Hence, the normalised emittance becomes 

σβγε det=n  (3) 

where β and γ are the relativistic factors 
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Fig 2. The beam ellipse and physical interpretation 
of the beam matrix compnonents. 
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However, the shape of the phase space area can be distorted due to space charge forces or nonlinear forces in 
the focussing systems.  Then the transverse beam properties differ from the above definition, hence the 
emittance should not be conserved. 
 
An alternative definition of the emittance, the root mean square (rms) emittance, gives a more complete 
description [4].  In this case, the moments of the particle distribution in transverse phase space are used and the 
moments are related to the beam matrix elements as: 
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The beam matrix components have the following interpretations.  The first component (σ11) is the square of the 
rms size of the beam, the second component (σ12) is the cross correlation term and the final component (σ22)  is 
the square of the beam divergence.  Therefore, the normalised rms emittance can be expressed simply as  

(5) 222
, '' xxxxrmsn −= βγε . 

In principle, the normalised rms emittance is conserved along the beam line.  In practice, however, space 
charge forces and some non-linear 
electromagnetic forces cause it to increase. 
 
The space-charge force is the repulsive 
Coulomb force due to the high density of 
charged particles in the bunch.  This distorts 
the phase space ellipse, increasing the rms 
emittance as shown in Fig 3.  Accelerating the 
beam to higher energies reduces the ratio of 
transverse to longitudinal velocities, hence the 
divergence, thus reducing the growth of 
emittance due to space-charge forces. 

 
(a) (b) 

Fig. 3. ASTRA simulations illustrating the phase space 
distortion due to space charge forces [2]. The plots show the 
phase space distribution not including (a) and including (b) 
space charge interactions. 

 
 
2.3 Matrix Formalism 
The motion of particles in the beam can be described by a system of coupled, second order, inhomogeneous 
differential equations.  The solutions to these equations determine the components in matrices called 
transformation matrices [5].  The beam matrix at some distance z is related to the beam matrix at z0 by  

(6) )()()()( 0 zRzzRz Tσσ =  
where R(z) is the transformation matrix from z  to z.  The matrices σ(z0 0) and σ(z) are the beam matrices in  
Eq. (1),  with the components defined as shown in eq’n (4), with x = z0 or z.  Thus if the transformation 
matrices of all components are known, it is possible to describe the trajectory of the beam along the beam 
transport line. 
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3. QUADRUPOLE SCAN TECHNIQUE 
 
3.1 Quadrupole magnet and transformation matrices 
A quadrupole magnet consists of four iron pole shoes with hyperbolic contour 
producing magnet field as shown in Fig 4.  In the magnetic field of the 
quadrupole magnet, the transverse motions in the x and y planes uncouple, thus 
two linearly independent solutions exist to the differential equation and 
matrices can be found to describe each plane separately [4]. 

  Fig 4. Image of a 
quadrupole magnet with the 
field lines superposed. 

 
The magnetic field of a quadrupole magnet is linear in the deviation from the 
axis with  

(7) ygBx ⋅−= xgBy ⋅−= and  
where g is the gradient of the magnetic field.  The resultant forces are focussing in one transverse plane and 
defocusing in the other, depending on the relative direction between particle velocity and magnetic field, and 
on the sign of the charge of the particles.  The transformation matrices [6] describing the evolution of the beam 
through the quadrupoles are 
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where the phase angle is  
(10) 

efflk=φ  
and k is the focussing strength of the quadrupole which is given by [6] 
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where g  is the gradient of the magnetic field at the pole tip. max
 
In the transformation matrix model described above, the quadrupole magnets are assumed to have constant 
field strength over their effective length, and zero field strength elsewhere.  This is the so called hard-edge 
model.  In the drift space region, there is no existing force and the transformation matrix is represented by 
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where d is the length of drift space.  To obtain the transformation matrix for the whole path, the sequence of 
incremental matrices must be multiplied together.  
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3.2 Quadrupole scan technique 
If the transformation matrix of the whole path of beam transportation is known, the beam matrix components 
in Eq. (4) can be defined and hence the emittance can be calculated.  Utilising the correlation between beam 
size and quadrupole magnetic field in the transformation matrix model, the emittance value can be obtained.  
This method is well known as the “quadrupole scan technique”.  In the quadrupole scan technique, Eq. (6) is 
paramount.  Quadrupole magnets with known transformation matrices are used, thus from measurements of 
the beam size at a distance z after the magnets, the beam matrix at z0 can be calculated. 
 
Let R be the total transformation matrix for the system of quadrupoles and drift spaces from distance z  to z: 0

 
⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

RR
RR

R . (14) 

 
Thus from Eq. (6), the first term in the resultant matrix is  
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A quadrupole scan consists of a set of N beam size measurements at a fixed distance from the quadrupole 
magnet, as the quadrupole field strength is scanned over a range of values.  This produces a distribution as, for 
example, shown for a single quadrupole scan in Fig. 5.  The coefficients of the beam matrix σ(z0) are 
determined by minimising Eq. (16).   

 

The emittance is then calculated using Eq. (3). 

( )( )∑ −
N

i
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11σThe quantity  is the measured rms beam size after the quadrupole system.  The parameter g is the 
gradient in the quadrupole magnet. 
 
The basic single quadrupole scan technique is a well 
established method of emittance determination [6]. 
However, for some quadrupole gradients around the 
focus the beam is very small and the particle density 
is comparatively high, thus the effects of space 
charge are larger.  Space charge is more difficult to 
account for in the matrix method, so it is desirable 
to modify the method to minimise space charge 
effects by using a multi quadrupole system to 
maintain a large beam size at the focus due to 
interplay between focussing and defocusing 
magnets. 
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In our consideration, a quadrupole triplet is used.  
The quadrupole triplet at PITZ consists of three 
magnets, of which the first and third are identical, each separated by a drift space of length d.  For the triplet 
quadrupole scan, function f(g) becomes f(g1, g2) where g1 is the magnetic field gradient of quadrupoles 1 and 3 
(corresponding to current I1 in Fig. 6), and g2 is the magnetic field gradient of quadrupole 2 (corresponding to 
current I2 in Fig. 6). 

 
Fig 5. Typical distribution from ASTRA simulation of 
beam sizes, as measured at some distance z after the 
single quadrupole magnet, as a function of quadrupole 
field gradient. 
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For triplet-quadrupole scan, it is useful to find the optimum 
data points to take to reconstruct the rms size surface for 
emittance determination as shown in Fig. 6.  There are 
three types of possible scan: 1) scan across the minimum of 
the surface varying the field gradient of either quadrupoles 
1 and 3, or only 2, but keeping the others constant; 2) scan 
across the minimum of the surface varying the field 
gradient of all quadrupoles; 3) scan across some local 
minimum but not across the global minimum, thus 
maintaining larger beam sizes.  It is necessary to 
investigate how the emittance calculation depends on 
which regime is followed. 
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Fig. 6. Rms size surface for triplet-quadscan.  
I

 
4. EXPERIMENT 
 
4.1 Experimental set-up 
The quadrupole arrangement used in the PITZ beam line is situated at z=7.851m (entrance) and has parameters 
as indicated in Table 1 and Fig. 7.  The first (Q1) and third (Q3) magnets are identical and have the same 
current supply, but the second (Q2) has double the length and opposite field direction.  
 

Parameter Quadrupoles 1, 3 Quadrupole 2 
Geometrical length 60 mm 120 mm 
Effective length 77 mm 139 mm 
Geometrical drift space between quadrupoles 80 mm 
Effective drift space between quadrupoles 62 mm 
Bore radius 20 mm 20 mm 
Maximum current 5 A 5 A 
Gradient at I=5A 2.55 T/m 2.55 T/m  

Table 1. Parameters of the Triplet Quadrupole Magnets used in the experiments. 
 

 
Fig. 7. Schematic depiction of the Triplet Quadrupole Magnets used in the experiments. 

 
4.2 Experimental Procedure 
To begin with, the equipment had to be set up to provide a suitable beam for the experiment.  Firstly, a suitable 
laser profile was obtained.  The nominal longitudinal profile was a flat top pulse with ~20 ps FWHM and  
~ 6-7 ps rise/fall time.  The transverse laser rms size ranged from ~ 0.3 - 0.6 mm.  Next, the optimum phase of 
the rf gun was determined so as to give maximum mean momentum which is about 6.4 MeV/c.  The bunch 
charge was measured.  A phase scan of the booster cavity was performed to determine the optimum phase for 
maximum acceleration and the energy after the booster cavity was measured.  Further, the solenoid field was 
scanned over a range which produces the minimum rms size at a certain z position.  Screens chosen for this 
scan were High1.Scr1. (z=4.287m). and High2.Scr1. (z=9.850m).  The optimised beam was then aligned 

1 is the current in Q  and Q , and I1 3 2 is the 
current in Q2. 

Q1 Q2 Q3

60 mm 60 mm120 mm 
80 mm80 mm 

screen 

1599 mm 

z=7851 mm 
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through the quadrupoles onto the observation screen being used for measurements (either High1.Scr5. or 
High2.Scr1.).  The region of measurement was determined by varying quadrupole fields and observing the 
location of the minimum rms beam size.  Finally, both single (to develop the method and enable comparison) 
and multi- quadscans were performed.  The emittance was calculated using the algorithm described in section 
3.2. 
 
4.3 Results and Discussion 
The calculated values of emittance from the measurements are presented in Tables 2 and 3 with the measured 
minimum emittance from single slit scan method at High1.Scr1. (or EMSY1) screen [7].  εx and εy are the 
emittances in the x and y planes respectively, and ε is the geometrical average.  The errors quoted are 
statistical errors.  Imain is the main solenoid current.  X pos. jitter and Y pos. jitter are the standard deviation 
from the mean position values on the screen in x and y planes for different quadrupole field strengths. 
  

 Measured with quads Measured at EMSY 
# ε ε ε ε ε εE 

(MeV) 
Charge 
(nC) 

I X 
pos. 
jitter 

Y 
pos. 
jitter 
(mm) 

main x y x y
(A) (mm mrad) (mm mrad) (mm mrad) (mm 

mrad)

(mm 

mrad)

(mm 

mrad)
(mm) 

1 12.94 1.002 350 2.50±0.41 2.06±0.13 2.27±0.24 1.47 0.08 2.88 2.20 2.59 
2 12.94 1.002 370 2.49±0.24 1.88±0.18 2.16±0.20 1.77 0.29 2.88 2.20 2.59 
3 10.46 0.005 190 0.75±0.05 1.7±0.14 1.13±0.13 0.72 0.20 0.50 0.47 0.49 
4 10.49 1.003 352 2.14±0.05 1.29±0.5 1.66±0.34 0.66 0.59 0.83 1.06 0.94 
5 10.47 1.009 352 2.63±0.08 3.86±0.1 3.19±0.23 0.84 1.52 1.25 1.26 1.26 

Table 2. Comparison of experimental results for single quadscans at the entrance of quadrupole 
(z=7.851 m) and measured emittance values at EMSY1 (z=4.287 m). 

  
 Measured with quads Measured at EMSY 
# ε ε ε ε ε ε E 

(MeV) 
Charge 

(nC) 
I X pos. 

jitter 
(mm) 

Y pos. 
jitter 
(mm) 

main x y x y
(A) (mm mrad) (mm mrad) (mm mrad) (mm 

mrad)

(mm 

mrad)

(mm 

mrad) 
6 9.51 0.199 335 0.65±0.27 - - 0.98 0.81 - - - 
7 13.03 0.193 340 3.35±0.05 2.60±0.02 2.95±0.03 1.98 0.41 0.92 1.05 0.98 
8 14.47 1.009 352 3.17±0.08 4.92±0.09 3.95±0.09 1.28 1.28 1.25 1.26 1.26 
9 14.47 1.009 352 2.55±0.07 3.41±0.05 2.95±0.06 1.50 0.58 1.25 1.26 1.26 

10 14.47 1.009 370 4.96±0.45 2.18±0.08 3.29±0.21 0.13 0.49 1.25 1.26 1.26 
11 14.47 1.009 352 1.86±1.08 2.23±0.23 2.04±0.69 0.99 0.78 1.25 1.26 1.26 

Table 3. Comparison of experimental results for multi-quadscans at the entrance of quadrupole 
(z=7.851 m) and measured emittance values at EMSY1 (z=4.287 m). 

 
The emittance values measured using the quadrupole scan method differ from those measured at EMSY1 
using the single slit scan method.  This is mainly due to the fact that the measured emittance is dependent on 
the solenoid field and varies along the beam line.  During experiments, the beam was focussed either at 
High2.Scr1. or at EMSY1, and not at the quadrupole entrance.  Hence the emittance measured at the 
quadrupole entrance is greater than that at EMSY1 (High1.Scr1.).  Secondly, the simple approximation used to 
describe the field in the quadrupoles in the algorithm is too far from the physical field distribution.  For better 
accuracy, magnetic field fringe effects should be considered. 
 
It is important to note here that it was not possible to fit the data for quadscans which did not cross the global 
minimum of the rms size surface.  More theoretical study is required in this area.  It is also necessary to 
develop some criteria for beam alignment through the quadrupole magnets. 
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5. SIMULATIONS 
 
5.1 Procedure 
Beam dynamic simulations were performed using the code ASTRA (A Space Charge Tracking Algorithm) [8] 
to compare with experimental results.  All the main beam line components were included and were matched to 
the corresponding values used in the experiments, i.e. longitudinal and transverse laser beam profiles, bunch 
charge, field gradient for rf gun and booster cavities, magnetic field for solenoid magnets and field gradient for 
quadrupole magnets.   
 
Scans of the main solenoid field producing different rms beam sizes were performed at various distances along 
the beam line in order to enable comparison with experimental results.  Quadrupole scans were also simulated 
and the resultant data was fitted using the same algorithm as for the experiments. 
 
5.2 Results and Discussion 
 
5.2.1 Solenoid scan 
The main solenoid field was scanned for various locations matched to experimental locations; EMSY1 screen 
(z=4.3 m), entrance to quadrupole magnets (z=7.8 m), High1.Scr5. (z=8.6 m) and High2.Scr1. (z=9.85 m).  
The simulation results (see Fig. 8) show that the minimum emittance is around the point of minimum rms 
beam size.  Therefore, the main solenoid current was chosen to be that which produces minimum rms size at 
the chosen z position.  The difference between the solenoid field producing minimum rms size and the field 
producing minimum emittance was 2.954x10-4 T or 0.13% of the focussing field. 
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quadrupole entrance when beam is focussed at EMSY1 screen and at High2.Scr1. are 
3.85 mm mrad and 1.64 mm mrad, respectively.    
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In ASTRA simulations, when the beam was focussed at the entrance to the quadrupole magnets, the minimum 
emittance was 1.36 mm mrad.  However, in the experiments, it was not possible to observe the beam at the 
entrance to the quadrupole magnets due to the lack of a screen at that location.  The beam was focussed either 
at High1.Scr1. (EMSY1) or at High2.Scr1.  The simulation results in Fig. 8(d) show that  the emittance 
calculated using this method is greater than the minimum value and the difference in emittance values when 
the beam is focussed at EMSY1 and High2.Scr1. are +0.7 mm mrad and +0.3 mm mrad, respectively.  To 
match the experimental results, it is necessary to have an observation screen at the quadrupole entrance for the 
solenoid scan. 
 
The evolution of the rms beam size and the beam emittance along the propagation direction for solenoid fields 
focussing at EMSY1 and High2.Scr1. were plotted in Fig. 9 to show the influence of the focussing distance on 
these quantities.  For large focussing distances, the emittance is smaller at the distance of the quadrupole 
magnets.   
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Fig. 9. Emittance and rms beam size evolution for beam focussed at (a) EMSY1 (B = -0.2353 T) 
and (b) High2.Scr1. (B = -0.2252 T) 

 
5.2.2 Quadrupole scan 
ASTRA simulations of a single quadrupole scan for rms beam size without and with space charge calculation 
were performed and the results are presented in Fig. 10(a) and 10(b), respectively.  The fitting values from 
these simulations were used in the transformation matrix calculation (described in section 3) and the results are 
shown in Table 4, compared to the results extracted from ASTRA.  
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Fig. 10.  ASTRA simulations of quadrupole scans without (a) and with (b) space charge. 
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Without space charge With space charge  

 ASTRA Matrix Algorithm ASTRA Matrix Algorithm 
ε 1.542 1.404 1.540 1.609 x (mm mrad)
ε 1.538 1.396 1.538 1.605 y (mm mrad)
ε 1.540 1.400 1.539 1.607 (mm mrad) 

Table 4.  Comparison of calculated emittance with transformation matrix algorithm and those 
given by ASTRA. 

 
In Fig. 10, one can see that the minimum rms beam size is smaller in the simulations than in the experimental 
values, probably due to the systematic error in measurement.  In the experiment, the minimum rms size was 
0.32 mm corresponding to a quadrupole field gradient of -0.20 T/m while the minimum rms size in the 
simulations was 0.215 mm at a quadrupole field gradient of 0.22 T/m. 
 
When space-charge is not included in the simulation, the fitting algorithm (which also does not consider 
space-charge effects) underestimates the emittance.  However, when space charge is included in the simulation 
and the same fitting algorithm is used, the algorithm overestimates the emittance.  The difference in values 
between when space charge is included and when it is not, obtained in each case is around 15 %.  To 
determine the effects of space charge on the fitting precision it is necessary to refine the fitting algorithm 
further to obtain more accurate results. 
 
In addition, the ASTRA simulation included a cylindrical space-charge algorithm.  For the quadrupole scan it 
is necessary to use a 3-dimensional space-charge algorithm since for highly focussed beams in one direction, 
the cylindrical algorithm will not give accurate results due to the difference in particle density in the 
perpendicular planes.  The 3-dimensional algorithm was not used since it is more time-consuming, but it 
should be investigated further. 
 

 
(b) Schematic depiction of the field 
distribution of the hard-edged model 
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(a)  Emittances calculated for different values of drift 
space between the quadrupoles and the observation 
point.  

 
(c) Schematic depiction of the field 
distribution of the sloped-edged model 
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Fig. 11.  Comparison of emittance values calculated using the basic hard-edged model, the sloped 
edged model, and the emittance value predicted by ASTRA. 

 
The length of drift space after the quadrupoles was varied to investigate the dependency of the calculated 
emittance value on the drift space.  At no distance did the calculated value match the value given by the 
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simulation program.  This is because the algorithm used for fitting the data follows the hard-edge 
approximation as shown in Fig. 11(b).  The matrix product should be modified to include fringe field effects.  
The model was altered to one similar to that shown in Fig. 11(c).  This was chosen such that the rms sizes and 
beam divergence were matched to the corresponding values given by the ASTRA simulation. 
 
The sloped edged model improved the fitted 
values to some degree as illustrated in  
Fig. 11(a).  However, the model still needs to 
be improved further.  The most promising 
way to do this is to approximate the real 
smooth field distribution to a trapezoid such 
that is the same for both cases [6]. The 

trapezoidal approximation is defined by a 
fringe field extending over a length equal to 
the bore radius R.  This profile can then be 
included in the matrix algorithm by 
decomposing the edges of the field profile 
into segments of hard edge quadrupoles, each 
with different field strengths.  

∫ gdz

 

geometrical length 
field 

z 

bore radius 

measured field 

trapezoidal field 
approximation 

effective length 

Fig. 12. Trapezoidal approximation to a real smooth field 
distribution. 

 
This approximation should be possible to implement for the algorithm to fit the experimental data, since the 
magnetic field is known [9]. However, it is difficult to verify, since ASTRA uses a different algorithm which 
is not stated in the literature.  Without this knowledge, it is impossible to match the fitting algorithm to the 
algorithm used in ASTRA simulations. 
 
6. SUMMARY AND OUTLOOK 
 
The quadscan method for application at PITZ was investigated.  Preliminary measurements at the quadrupole 
triplet were performed for single- and multi- quadrupole scans.  The measurements were compared with 
ASTRA simulations.  The simulations are useful for the development of a protocol for this technique at PITZ.  
However, there are still a number of improvements to be made to the method before this technique can be 
implemented as a reliable and accurate measurement procedure.  Further work should include the following: 
 
1) Since the solenoid current affects the emittance, a screen at or near the entrance to the quadrupole magnets 
should be inserted if possible.  This would enable the minimum emittance to be measured, rather than some 
larger value. 
 
2) The step function, or hard-edged model, used to describe the field in the quadrupoles does not give 
sufficiently accurate results.  A trapezoidal approximation to the field in the quadrupoles should be 
implemented in the fitting algorithm by including a number of smaller matrices of different field strength 
along the edges of the field. 
 
3) It is necessary to check the influence of the beam alignment through the quads on the emittance 
measurements. 
 
4) It should be verified theoretically whether it is possible to fit data on the slope of the rms size surface shown 
in Fig. 6. 
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