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Abstract

An investigation of the topological susceptibility, which can be related
to the mass of the η′ meson, is presented. We use two different definitions
of the topological charge and compare the topological susceptibility with
the theoretically predicted value in the continuum limit. We find that our
results correspond reasonably well with the predicted value.

1 Introduction

The η′ meson is a particle of considerable research interest within the high energy
physics community. Calculation and conjecture regarding the generation of its
mass is an area of active inquiry, and, since the generation of the η′ mass is of
a non-perturbative nature, much of this research is done within the framework
of lattice QCD and involves large-scale numerical simulations. Our goal was
to analyze gauge field configurations and, in particular, to take measurements
regarding a quantity known as the topological susceptibility χtopo.

This report is organized as follows: Section 1 discusses the requisite theory.
Section 2 presents our results, including values for χtopo in the continuum limit.
Section 3 offers our conclusions and suggests future work.
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2 Theory

2.1 From Quantum Mechanics to Quantum Field Theory
to QCD to the Schwinger Model

In canonical quantum mechanics, the fundamental objects are wave functions ψ
that are solutions to the Schrödinger equation. Schrödinger’s original formula-
tion involved the Hamiltonian H of the system:

H|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉,

Solutions, then, are of the form |ψ(t)〉 = e−iHt/h̄ |ψ(0)〉.
An equivalent formulation of quantum mechanics, though, is the path in-

tegral version of Richard Feynman, in which the essential objects are paths
between a beginning position xa and an ending position xb, each of which con-
tributes appropriately to the total probability amplitude of a particle traveling
between xa and xb. The quantum theory is expressed in terms of an action
integral which is, in turn, determined from the Lagrangian of the system in
question. In particular, the appropriate weight of a path is given by its corre-
sponding action through e−iS[a,b]/h̄.

A most fundamental object in Feynman’s formulation of quantum mechan-
ics is the kernel, which describes the path taken by a particle in going from xa

to xb. In the formulation of Feynman and Hibbs [1], the essential ingredient
is that all possible paths from xa to xb have to be considered. Each of these
paths is appropriately weighted by e−iS[a,b]/h̄. The fundamental objects, then,
are no longer wave functions that live in Hilbert space, but probability ampli-
tudes expressed in terms of path integrals over a set of functions, which are the
particle’s paths.

For instance, the Lagrangian for the one dimensional harmonic oscillator is

L =
m

2
(ẋ2 − ω2x2)

and the corresponding action is

S =
∫
L(x, ẋ)dt. (1)

If we wish to calculate the kernel of this system of a particle traveling from
xa at time ta to xb at time tb, we note (as Feynman originally did) that the
integral over all the paths of the particle does not require explicit knowledge of
the classical path taken. That is, the kernel is written

K(b, a) =
∫ b

a

exp
[
i

h̄

∫ tb

ta

L(ẋ, x, t)dt
]
Dx(t), (2)

where Dx(t) indicates that the integral is over all possible paths of the particle.
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The classical contribution can be factored out of (2) and the kernel is thus
determined up to some function of tb and ta,

K(b, a) = e
i
h̄ Scl[b,a]F (tb, ta),

where Scl[b, a] is the classical action. It can be shown, although non-trivially
(please ask to see our many pages of hand-calculation), that the kernel for the
harmonic oscillator is

KHO(b, a) =
(

mω

2πih̄ sinωT

) 1
2

exp
[

imω

2h̄ sinωT

[
(xa

2 + xb
2) cosωT − 2xaxb

]]
(3)

where T = tb − ta. Of course, in the standard formulation of quantum me-
chanics, the one dimensional harmonic oscillator can be solved in a much more
straightforward manner via a linear combination of wave functions that are the
direct solutions of the Schrödinger equation. In this case, the path integral
approach is perhaps a bit unwieldly and undesirable.

In a field theoretical approach, though, path integrals play an essential role.
A quantum field theory is most properly treated by considering a Lagrangian
rather than Hamiltonian formalism, since Lagrangian dynamics more adequately
respects the natural symmetries (which relate to conserved quantities) inherent
in many field theories. Since path integrals utilize this same Lagrangian for-
malism, they are a natural choice for formulating the theory of and performing
calculations on a quantized field.

As mentioned, Feynman’s kernel K corresponds to a probability amplitude
U of a particle traveling from xa at time ta to xb at time tb. Recall that, using
traditional Hamiltonian formalism, this can be expressed (now using bra-ket
notation) as

U(xa, xb;T ) = 〈xb|e−iHT/h̄|xa〉. (4)

We are interested in the total amplitude of moving from xa to xb, which, as
noted above, amounts in Feynman’s path integral approach to a consideration
of every possible path. Following Peskin and Schroeder [2], for example, we can
write U as

U(xb, xa;T ) =
∑

allpaths

ei·(phase) =
∫
Dx(t)ei·(phase). (5)

If we now incorporate Feynman’s concept of the path integral, this complex
phase can be interpreted as the action, S[x(t)]. We thus have

〈xb|e−iHT/h̄|xa〉 = U(xb, xa;T ) =
∫
Dx(t)eiS[x(t)]/h̄. (6)
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It can be shown ([2], pp 277 - 279), that these two definitions satisfy the same
differential equation with the same initial condition and are therefore equivalent.

To move to a quantum field theory, then, we re-write U in terms of gener-
alized position (the fields themselves) and momentum variables (the conjugate
field momenta), and then re-write that expression in terms of the Lagrangian.
(We present here a brief description of the process. For a complete argument,
please see [2].) To do this, we form the generalized version of (4), which is

U(qa, qb;T ) = 〈qb|e−iHT/h̄|qa〉. (7)

We then break the time interval T into N slices of arbitrarily small duration,
ε. This eventually leads to a functional (path) integral expression for U that
involves N coordinate integrals and N momentum integrals:

U(qa, qb;T ) =
( ∏

j

∫
Dq(t)Dp(t)

)
exp

[
i

h̄

∫ T

0

dt
( ∑

j

pj q̇j −H(q, p)
)]
. (8)

Here, the functional (path) integrals are standard integrals over the entire phase
space. That is, ∏

j

∫
Dq(t)Dp(t) =

∏
j

∫
dqjdpj

2πh̄

at each point in time.
The extension to quantum field theory is achieved by observing that (8)

should hold for any quantum system, including, for instance, a scalar field. To
quantize a real scalar field φ(x), then, we note that in field theory our coordinates
qj are what are known as field amplitudes φ(x). Thus, (7) and (8) become

〈φb(x)|e−iHT/h̄|φa(x)〉 =
∫
Dφ exp

[
i

h̄

∫ T

0

d4xL
]
, (9)

where we have explicitly referenced the four space time coordinates of our field,
and where L is the Lagrangian density, which in this case is

L =
1
2
(∂µφ)2 − V (φ). (10)

We immediately see that (9) looks very similar to a partition function Z in
statistical mechanics, where the functions of our functional are our states, each
of which is appropriately weighted by a Boltzmann weight eiS[xµ]/h̄. We can
thus write

Z =
∫
Dφ exp

[
i

h̄

∫ T

0

d4xL
]

(11)
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Note that we have thus far been determining how to formulate quantum
field theories. The remarkable aspect of using path integral formalism within
such quantum field theories is that only classical fields have to be considered.
To simulate a field theory defined as such on a computer, in order to also cover
non-perturbative effects, we can exploit the continuity of the classical fields.
Computers favor discretized, Euclidean systems. Our field, though, is currently
formulated in Minkowski space. What we need, then, is to perform a Wick
rotation of the time coordinate t → −ix0. This alleviates the need to resort
to contour integration to evaluate the integral in (11), because we now have a
Euclidean 4-vector norm:

x2 = t2 − |x|2 → −(x0)2 − |x|2 = −|xE |2. (12)

After performing the Wick rotation we obtain the partition function in Eu-
clidean time,

Z =
∫
Dφ exp

[
− 1
h̄

∫
d4xELE

]
≡

∫
Dφe−S . (13)

We note that by adding source field terms Z can be made into a “generating
functional of correlation functions” ([2], p292)). From this generating func-
tional, the physically relevant correlation functions can be determined which
correspond to the Green’s functions in Minkowski space. We now have a path
integral formulation of a Euclidean partition function that can in principle be
used to describe any field theoretical system.

Recall from statistical mechanics that the partition function is used to com-
pute the expectation value of an rbitrary observable (or operator corresponding
to any physically observable states of a quantum system) 〈O[φ]〉 as follows:

〈O[φ]〉 =
∫
Dφ O[φ] e−S[φ]∫
Dφ e−S[φ]

. (14)

Instead of talking about a path as we did in the quantum mechanical case, we
now use the notation of configurations of fields, over which we integrate in our
path integral. In the discretized version, each possible configuration is, as men-
tioned, weighted by the appropriate Boltzmann factor and so, for our purposes,
(14) becomes simply a summation of the values of our observable determined
over all configurations generated according to the probability distribution e−S

of our lattice, divided by the total number of configurations:

〈O[φ]〉 =
∑

O[φ] e−S[φ]∑
e−S[φ]

=
1

Nconf

∑
conf

O[φ]. (15)

(The actual calculation in (15) is accomplished via numerical simulations
using the concept of importance sampling. In this report we cannot provide a
comprehensive discussion of the simulation techniques and refer to [3] for more
details.)
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2.2 Topological Susceptibility

2.2.1 Topological charge

The topological charge Q of a lattice configuration is a concept that arises natu-
rally in the treatment of gauge field theories. The topological charge character-
izes purely topological properties of the gauge fields and can be interpreted as
a winding number. The topological charge plays an important role in quantum
chromodynamics (QCD), which is the field theoretic description of the strong
force interactions between gluons and quarks inside hadrons. Investigating QCD
upon a lattice involves discretizing otherwise continuous fields and then recov-
ering the continuum limit by allowing the spacing between lattice points, a,
to approach zero and the number of points upon the lattice, N , to approach
infinity such that the physical extent L of our lattice remains constant, i.e., L
= Na = const. A complete description of lattice QCD is beyond the scope of
this paper, so we instead present here only a motivation for our project.

Although we are ultimately interested in a full treatment of QCD itself, this
theory is rather complex and very demanding to simulate. Fortunately, there
is a lower, namely 2-dimensional, model, the Schwinger model, which exhibits
a number of properties it shares with QCD, most notably the confinement of
quarks. What is of interest for us here is that also in the Schwinger model
the concept of topological charge can be introduced and, hence, topological
properties can be studied. In fact, since the Schwinger model is much simpler
to simulate than QCD, it provides an ideal arena in which to address such
questions.

The particular problem we want to investigate in this work is the behavior
of the topological charge and the so-called topological susceptibility towards
the continuum limit. We will compare two definitions of the topological charge.
One of them originates from the purely fermionic sector of the theory while the
other stems from the gauge field part only. The main motivation for studying
the topological susceptibility is that it determines the mass of the η′ meson
which is hence – and quite intriguingly – of a purely topological nature. The
continuum action for the Schwinger model can be written [4] [5] as

SSchw,ferm =
∫
d2x

[
1
4
FµνFµν + ψ̄ (γµ Dµ +m) ψ,

]
(16)

where Fµν is the electromagnetic field strength tensor,

Fµν = ∂µAν − ∂νAµ,

the ψ fields represent the fermions on the lattice, the γµ correspond to an
appropriate representation of the Pauli spin matrices, and Dµ is the so-called
Dirac operator which depends on the gauge fields Aµ as

Dµ = ∂µ + ieAµ, (17)
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with e the physical charge of the fermions. We will not provide a detailed
description of how to discretize this model on a lattice but just mention that
instead of the charge e a dimensionless coupling β ≡ 1/e2a2 is considered on the
lattice. Note that β ∝ 1/a2 and hence, the continuum limit a → 0 is reached
by sending β →∞.

We must first provide the two definitions of the topological charge we have
used. The pure gauge field definition of topological charge is given by

Qgauge(A) ≡ e

4π

∫
d2x εµν Fµν(x), (18)

where εµν is a two-index ε tensor. It can be shown that this integral gives only
integer numbers (which, incidentally, represent the winding number of the gauge
field).

The second definition of the Dirac operator describes the interaction of the
fermion fields. In order to arrive at the fermionic definition of the topological
charge, we have to define an overlap operator Dov in terms of our original Dirac
operator D:

Dov ≡ 1− D√
D†D

. (19)

(For the full derivation of Dov we refer to reader to the literature, e.g., [6] [7].)
The important property of the overlap operator is the following: If we con-

sider an eigenvalue problem

Dovφov = λovφov (20)

and we are looking for only the zero mode solutions with the additional property
that these zero modes are chiral, i.e. they obey

σ3φov = ±φov. (21)

then the overlap operator indeed admits such solutions even on the lattice. This
is completely different from other choices of lattice Dirac operators which do
not have such solutions.

The zero modes of the overlap operator allow us to define the index of the
Dirac operator and, hence, the index of our configuration: The index is the
number of zero modes n+ with positive chirality minus the number of zero
modes n− with negative chirality. The key point is that the index provides an
alternative definition of the topological charge Qferm which is now obtained
from the fermions only:

index(D) ≡ n+ − n− = Qferm. (22)

The remarkable connection between the topological charge originating from the
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pure gauge fields and pure fermions is given in the Atiyah-Singer Index Theorem,
which states that these two definitions are equivalent [5]:

Qgauge ≡
e

4π

∫
d2x εµν Fµν(x) = index(A) ≡ Qferm. (23)

2.2.2 Topological susceptibility

Although the topological charge characterizes the topological properties of a
gauge field configuration, it is the topological susceptibility which is of direct
physical relevance.

The topological susceptibility χtopo in the 2-dimensional abelian Schwinger
model in Euclidean space is defined as

χtopo =
∫
〈Q(x)Q(0)〉d2x (24)

where the Q(x) is the topological charge density which is given from the pure
gauge definition as:

Q(x) =
e

2π
F12(x) =

e

2π

(
∂1A2(x)− ∂2A1(x)

)
. (25)

What can be seen from these formulae is that the topological susceptibility is
a measure of the fluctuations of the topological charge. Hence, it can also be
determined from the fermionic definition of the topological charge. To be more
precise, the topological susceptibility using the Ginsparg-Wilson Dirac operator
can be computed as follows:

χ = lim
V→∞

〈(nR − nL)2〉
V

(26)

where 〈(nR − nL)2〉 is the expectation value of the square of the index of the
Ginsparg-Wilson fermion Dirac operator, and V is the physical volume of the
lattice. This allows us to compare the topological susceptibility from both def-
initions of the topological charge.

The physical relevance of the topological charge susceptibility is encoded in
the famous Witten-Veneziano formula [8] which relates it to the η′ meson:

m2
η′ =

2Nf

F 2
π

χtopo (27)

This formula represents a second most remarkable example that fermionic quan-
tities (here the η′ mass) can be directly computed from pure gauge observables.
The other example we presented in this report has been the Atiyah-Singer index
theorem.

In terms of [9], the theory predicts that the value of the topological charge
susceptibility in the continuum limit equals 1

4π2 = 0.02533.
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Our aim was to investigate the topological susceptibility χtopo using the
aforementioned two different definitions of Q and to both verify the predicted
value in the continuum limit for the quenched model and determine the extent
to which the two definitions agreed. The program we used to perform these
simulations utilizes the Metropolis and Hybrid Monte Carlo algorithms. For
details, please see the 2006 summer student report by Marinkovic and Nube [10].

3 Results

0 1 0 2 0 3 0 4 0 5 0
- 1 0

- 5

0
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1 0  Q g a u g e
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M o n t e  C a r l o  T i m e

Figure 1. Dependence of topological charge on the Monte Carlo Time.

To test the extent to which the two definitions of topological charge dif-
fered, we simply plotted the value of Q as a function of Monte Carlo time for
the two definitions upon the same lattice. An example is presented in Figure 1,
for β = 3.375 (Recall that β ≡ 1/a2. It can be seen that in most of the cases the
topological charge agrees but that there are some occasions where we observe a
difference. We will make this statement more quantitative below. To make our
measurements more precise and to be sure that successive lattice configurations
were independent from each other, we calculated an autocorrelation value for
each lattice size and found that it was not always equal to one. To correct for
this, we instructed our simulation to generate and then discard the appropri-
ate number such that the measured autocorrelation time τQ has been τQ ≈ 1.
We remark that for larger values of β the number of discarded configurations
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increased. From the plot it is indicative that the values of topological charge
are independent and they change rapidly. Note that there are a lot of fluctua-
tions around the mean value of zero such that we can be sure to really sample
sufficiently many sectors of the topological charge.

- 1 5 - 1 0 - 5 0 5 1 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0
N  =  4 0N  =  3 2

N  =  2 4
N  =  1 6
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uti
on

 of
  to
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log

ica
l ch

arg
e

t o p o l o g i c a l  c h a r g e

N  =  4 8

Figure 2. Distribution of topological charge.

On Figure 2 is presented the distribution of the topological charge of a fixed
physical volume lattice for different numbers of lattice points N = 16, 24, 32,
40, 48. A fixed physical volume means that V = L2 = (Na)2 = N2

β = constant.
The constant has been determined such that we have chosen N = 48 for β = 6.
Corresponding β values for the different values of N given above were calculated
for this fixed lattice volume constraint. As expected, the distribution is uniform
and with a mean value equal to zero.
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Figure 3. Change in 〈|Qgauge −Qindex|〉 vs. 1
β .

From the arguments above one can expect that the two values of the topo-
logical charge from our two definitions should coincide in the continuum limit.
At a non-vanishing lattice spacing, the values for the topological charge can dif-
fer. The most interesting thing here is therefore to investigate how the difference
between the topological charges changes as we vary the number of lattice points
and hence, since we work in a fixed physical volume, the lattice spacing. Figure
3 is a plot of log(〈|Qgauge − Qindex|〉) versus 1

β ∝ a2. Here one can observe
a linear behavior of the expectation value of the topological charge difference
from the two definitions versus a2. In the continuum limit when a2 ∝ 1

β → 0,
these two definitions should give the same value according to the Atiyah-Singer
Index Theorem. That means that in the continuum limit as a2 → 0 the mean
of the absolute value of the difference between these two topological charges
should go to zero. As one can see on this plot, the logarithm of the difference
decreases linearly indicating that the difference of the topological charge from
both definitions vanishes exponentially fast. The linear regression yields the
following : y = - 3.9 + 8.8 a2. This indicates that the difference approaches
zero in a very rapid way; it behaves like

(const) e−8.8a2
.

It is unclear why there should be this exponential behavior, but we present
a possible argument here. As will be shown below, from the comparison of the
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topological charge susceptibility from two definitions, one can consider χtopo

versus the value a2 < 0.4 in the following way:

χgauge = χcont + (const) a2 + . . . (28)

χindex = χcont + (const)′ a2 + . . . (29)

For a2 < 0.4 we see that (const) ≈ (const)′ and if one calculates the difference
of the topological charge 〈|Qgauge − Qindex|〉, it becomes apparent that a2 de-
pendence for the difference is canceled out. It is possible, of course, that many
of the higher-order corrections in a might cancel, too. This suggests an expla-
nation for the exponentially fast decrease of the difference of topological charge
which is an even better result than we expected.

1 5 2 0 2 5 3 0 3 5 4 0
2 5

2 6

2 7

2 8

2 9

3 0
 s i m u l a t i o n  d a t a
 l i n e a r  r e g r e s s i o n

N

<Q
2 >/N

2  *1
00

0

Figure 4. Dependence of topological charge susceptibility on the number of
lattice points.

Figure 4 shows the dependence of topological charge susceptibility versus
the lattice size. This is a check to see if the lattices we use in our simulations
are large enough to be considered comparable to the one with infinite volume.
This investigation will ensure us that lattice size doesn’t influence the value of
topological charge susceptibility. To perform the check, we fixed one of the β
values (here β = 1.5) and varied the number of lattice points over N = 16, 20,
24, 32, 36, 40. From the plot it is clear that the value of topological charge
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susceptibility χtopo changes very lightly and within the limits of error it is a
constant value. This means that the volume was chosen large enough.
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Figure 5. Dependence of topological charge susceptibility on 1/β, from two
definitions. The black point at zero represents the theoretically expected value

of 1/4π2.

On Figure 5 one can observe how the topological charge susceptibility
changes as 1/β. Here we perform a linear fit in a2 to our data of topological
charge susceptibility χtopo for both of our definitions, that of the pure gauge
theory and that of the fermionic definition using the overlap operator. Graph
(a) shows the fit for 5 lattice sizes (N = 32, 36, 40, 44, and 48) and (b) for the
linear fit with the inclusion of 6 lattice sizes (the same as before, adding N =
28). These plots suggest that in the continuum limit and within one or two stan-
dard deviations, both definitions provide the same value of topological charge
susceptibility. Although this has been expected, it is a highly non-trivial check.
The theoretical prediction of 1/4π2 [9] was also made with some assumptions
and is thus expected to be only approximately true, itself. Therefore, our simu-
lations provide a check on this theoretical prediction and check the underlying
assumptions that led to the theoretical value.

Below the table of topological charge susceptibility values is presented, along
with χ2 goodness-of-fit values.

Number of Gauge Index
points 〈Q2

(continuum)〉/V 〈Q2
(continuum)〉/V χ2

gauge χ2
index

5 0.0224 ± 0.0008 0.0230 ± 0.0008 5.6 5.3
6 0.0230 ± 0.0005 0.0244 ± 0.0005 6.7 11.6

It can be seen that all the values agree within the errors. Further, whether or
not we find a deviation from the theoretically expected value is hard to judge
given our present error bars. It is, however, interesting to note that we see
indications that the theoretical value overshoots the simulation data.
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We finish this section with two comments. The first is that, very remark-
ably, the continuum limit of the topological susceptibility is reached in a non-
monotonous way. Second, even if we are in a regime of the data where the data
scale with an a2 behavior to zero, the effects of the lattice spacing can be very
large and the value of the topological susceptibility on the lattice can be almost
twice as large as the continuum value. This is a surprisingly large effect for the
Schwinger model.
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4 Conclusions and Future Work

During our work we made calculations on a fixed volume lattice at various
β values. We computed the topological charge and the topological susceptibility
by performing measurements on lattice, properly taking autocorrelation times
into account. To compute the topological charge we used two definitions, one
pure gauge one and a fermionic one defined through the index of the overlap
operator. It was shown that the expectation value of the topological charge
difference from two definitions versus lattice spacing a2 has a very steep de-
pendence and approaches zero exponentially fast and hence more rapidly than
expected. We also demonstrated that our chosen fixed volume size has been
chosen large enough to not influence our results. We found that in the con-
tinuum limit, within the errors, the two definitions of the topological charge
susceptibility coincide. The result of our simulations could not finally clarify
whether the theoretical prediction is indeed correct or not.

However, as all our investigations show, we need much better statistics,
especially for large values of β. These simulations are, in fact, currently running.
These measurements will allow us to more confidently assert the agreement or
disagreement with the value predicted in [9], and will pave the way for a rigorous
calculation of the mass of the η′ meson predicted by the Witten-Veneziano
formula [8].
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