The LHC Project

Klaus Mönig

- Introduction
- The LHC machine
- LHC detectors
- Physics at the LHC
- Conclusions

Fundamental Questions of today's particle physics

- How is the electroweak symmetry broken? Is there a Higgs sector or are masses generated differently?
- What is the matter from which our universe is made off?
 Can we see the dark matter around us, in the cosmos or at colliders?
- Is there a common origin of forces?

 Do couplings/masses unify at some scale?
- Why is there a surplus of matter in the universe? Can we find the missing CP violation?
- How can gravity be quantised?

 Are there superstrings and/or extra space dimensions?
- What does the neutrino sector look like? Is there a new type of matter (Majorana)? Do ν s contribute to baryogenesis?

Most questions are answered best at colliders with maximum possible energy $(m_{\rm H} > 114 \, \text{GeV}, \, m_{\rm SUSY} > 100 \, \text{GeV})$

How to reach the highest possible energy?

To reach the highest possible energies collide high energy particles with high energy particles not to loose energy in a boost as in a fixed target experiment

$$(\sqrt{s_{\text{collider}}} = 2E, \sqrt{s_{\text{fixed target}}} = \sqrt{2Em_t})$$

Most colliders are storage rings — can reuse beams many times

Limitations for colliders:

Magnetic field: $B \propto \frac{p}{r}$ identical for all particles

Synchrotron radiation: $\Delta E \propto \left(\frac{E}{m}\right)^4 \frac{1}{r}$ strongly mass dependent

Practical example: LEP/LHC (l=27 km)

Synchrotron radiation:

- $\Delta E = 2.5 \,\text{GeV/turn}$ for electrons with $E = 100 \,\text{GeV}$
- Same energy loss for protons with $E = 200 \,\text{TeV}$

Magnetic field:

• $B = 9 \,\mathrm{T}$ needed for $E = 7 \,\mathrm{TeV}$

Highest energies can be reached with protons

Proton collider

Protons are composite particles:

- Proton composition
 Low energy: 3 quarks
 High energy: (N+3)
 quarks, N antiquarks, M
 gluons
 - basically no difference between pp and pp collider)
- qq, q\(\bar{q}\), qg, gg interactions

Probability for an i,j collision (i,j=p. \bar{p} , g) at energy $\sqrt{s'}$ given by parton distribution functions:

$$\mathcal{P}_{ij}(x_1, x_2) = f_i(x_1) f_j(x_2), \quad x_k = p_k/p_p, \quad \sqrt{s'} = 2\sqrt{x_1 x_2}$$

PDFs peak at low energy

- Average energy much lower than proton energy
- Many uninteresting interactions at low energy
- Need high luminosity to make use of high energy

The LHC project

- pp-collider in the LEP tunnel at CERN (l=27 km)
- $\sqrt{s} \approx 14 \,\text{TeV}$
- Luminosity up to $\mathcal{L} = 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Detailed layout of the LHC

LHC receives its beams from the CERN accelerator complex

Main challenge: need 9 T magnets to reach desired energy

Solution: superconducting "2 in 1" magnets to save cost

The LHC beams

- Two proton beams of E=7 TeV each
- 2800 bunches/beam
- $1.2 \cdot 10^{11}$ protons per bunch
- The total stored energy is 360 MJ per beam (This corresponds to a British aircraft carrier at 12 knots or a luxury car at 2000 km/h)
 - Beam size at IP: few cm long, 16μ m wide

The LHC timescale

- First discussions on the project: 1984
- Constructed in the LEP tunnel since 2001
- Late 2007: first collisions at $\sqrt{s} = 900 \,\text{GeV}$
- 2008 2009: "Low luminosity" $\mathcal{L} = 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- 2010 \sim 2015: "High luminosity" $\mathcal{L} = 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- ≥ 2015 : luminosity upgrade to $\mathcal{L} \sim 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Experiments at the LHC

Two multi-purpose experiments:

ATLAS: → see film

CMS:

- In general similar to ATLAS
- No specialised muon tracking but better inner tracking
- Christal ECAL for good energy resolution $(H \rightarrow \gamma \gamma)$

Installation of experiments is going well

ATLAS

CMS

Collaborations (e.g. ATLAS) consist of

- ~ 1700 physicists
- from ~ 150 institutes
- from 35 countries

Specialised B-physics experiment: LHCb

- Huge b-cross section, mainly in forward region
- Can be used to study CKM matrix and CP violation
- LHCb optimised for forward region coverage, particle id and lepton trigger

Heavy iron experiment: ALICE

- The LHC can produce gold-gold collisions
- With these collisions one hopes to understand the quark-gluon plasma
- \bullet ALICE is a specialised detector to measure charged particles (\sim 1000/event) and leptons

Physics at the LHC

Generalities about pp collisions

- Protons have strong interactions
 - Very large background from QCD events
 - Large cross section for strongly interacting new physics
 - Weakly interacting new physics can be difficult
- The PDFs fall rapidly with x
 - -Very high luminosity needed to reach high energy
 - -Basically no sensitivity above 4 TeV
- PDFs (especially g) huge at low x
 - $-\mathcal{O}(10)$ minimum bias events per bunch crossing at high luminosity

Signals at the LHC

Challenge: Have to separate new physics from huge QCD background

- Purely hadronic processes are visible only at very high energy (e.g. hopeless to see the dominant Higgs channel $gg \to H \to b\bar{b}$)
- Best signals are leptons (or photons) from weak decays
- Another good signal is invisible particles
 - Energy and momentum are conserved
 - -Since the proton remnants disappear in the beampipe this doesn't help in general
 - -However momentum conservation in the transverse plane is still a powerful tool to tag invisible particles (neutrinos, dark matter...)

Event rates at the LHC (at $\mathcal{L} = 10^{34} \text{cm}^{-2} \text{s}^{-1}$)

Reaction	events/year
$W \to e\nu$	10^9
$Z \to ee$	10^{8}
${f t} \overline{f t}$	10^{8}
$\mathrm{b}ar{\mathrm{b}}$	10^{14}
$\tilde{g}\tilde{g} m=1\text{TeV}$	10^{5}
$H \to \gamma \gamma m_{\rm H} = 120 {\rm GeV}$	10^{3}

- LHCb runs with factor 100 reduced luminosity
- Also other Standard Model rates are huge
- But even rates for new physics processes can be large

We know that the Standard Model of weak interactions is incomplete

- At least the Higgs is missing
- But even with the Higgs there are serious problems remaining (dark matter, hierarchy problem, inclusion of gravity)

The main task of the LHC is to find and identify new physics

- Of course we don't know what the new physics will be
- One can only take some reasonable examples and see what the LHC is able to do
- However for nearly all studied examples where signals are in the visible range, something will be seen

Higgs production at the LHC

Dominant process gg \to H \to bb completely hidden in QCD background

Discovery channels $H \to \gamma \gamma$ and $H \to ZZ \to 4\ell$

 $H \to b\bar{b}$ and $H \to \tau^+\tau^-$ may be seen is association with W,Z,t

For a light Higgs $H \to \gamma \gamma$ is very demanding on detector resolution

For a heavier Higgs $H \to ZZ \to 4\ell$ is relatively easy

Higgs discovery range

Higgs sensitivity for one year at high luminosity

The LHC can discover a SM Higgs over the full mass range!

Other Higgs measurements at the LHC

• Since most Higgs decays are invisible at the LHC unbiased decay are impossible

• If the same production mechanism can be identified, decay rate ratios are directly ratios of partial widths (e.g. VV fusion can be identified by two tagging jets in the forward region)

q W,Z H

• With some theory assumptions these can be transformed into partial widths (=couplings)

- With this method $\sim 20\%$ measurements are possible
- However this includes some theoretical biases
- Way out Linear collider (S. Riemann)

Other Higgs properties

- The total width can only be measured for masses above a few hundred GeV
- \bullet Other properties (spin, CP) can be measured from spin correlations when $H \to ZZ$ is large enough

Supersymmetry at the LHC

What do we know about SUSY?

Most studies require R-parity conservation, however LEP limits also valid without

Most work in mSUGRA, different parameter constraints can change the picture

- Naturalness requires $m_{\rm SUSY} < 1 \, {\rm TeV}$
- LEP limits around 100 GeV for all visible particles
- TEVATRON limits sometimes better, however with stronger requirement on particle-LSP mass difference
- If SUSY is realised in nature it will most probably be seen at the LHC

SUSY and dark matter

- The universe consists largely of dark matter
- The dark matter particle should be weakly interacting with $m = \mathcal{O}(100 \,\text{GeV})$
- Its properties are largely constrained by the requirement to Ω_{Λ} get the tight density

- The dark matter density has been accurately determined by WMAP
- If the LSP (χ_1^0) is stable its density has to be equal (or smaller) than the dark matter density
- This requirement constrains the SUSY parameter range
- Favoured regions are with small masses or small mass difference $\tilde{\tau} \chi_1^0$

SUSY signatures at the LHC

- Squarks and gluinos have strong interaction huge production cross section
- Gauginos and sleptons can be produced in cascade decays like $\tilde{q} \to q\chi_2^0 \to q\ell\tilde{\ell} \to q\ell\ell\chi_1^0$ (or longer)
- Details of the cascades depend strongly on the SUSY parameters
- If mass differences are too small particles can be missed
- if R-parity is conserved SUSY events have a large missing (transverse) momentum
- This ensures a fast discovery of SUSY and a crude measurement of the mass scale

Measurement of masses

- - The mass of the LSP (χ_1^0) is very difficult to measure in a model independent way

Reconstruction of dark matter

- A stringent test of cosmology has to compare the CMB measurements with density calculations using the particle physics model
- To calculate the dark matter density the masses and properties of all involved particles are needed.
- In scenarios with light superpartners the LHC can do fairly well
- However in more difficult regions like the $\tilde{\tau} \tilde{\chi}_1^0$ coannihilation region the LHC has difficulties
- For the ultimate answer ILC will be needed.

$\tilde{\tau} - \tilde{\chi}_1^0$ coannihilation region

Other new physics at the LHC

- Supersymmetry is the best studied example for new physics at the LHC
- However the LHC is sensitive to other models as well
- Many models contain a Z' decaying into leptons
- Such particles can be seen $^{10^4}$ up to $m \sim 5 \, \text{TeV}$
- A large class of models contains extra space dimensions
- Also these models usually 10° give visible signals

Example: Large extra dimensions

- Our universe contains (4+n) dimensions
- The n dimensions are compactified with radius $R \leq 10 \mu \text{m}$
- Only gravity lives in the extra dimensions

• Advantage: gravity as strong as the other forces $(F \propto 1/r^{2+n})$ for

r < R) \longrightarrow no hierarchy

• Particle physics signature: Huge number of KK graviton resonances as invisible particles

- LHC signal: Events with missing p_T for jets recoiling against a KK graviton
- LHC is sensitive to scales of few TeV

Conclusions

- A $\sqrt{s} = 14 \,\text{TeV}$ pp collider (LHC) is being built at CERN
- The LHC will start (high energy) data taking early 2008
- The detectors are well on their way
- If a Standard Model like Higgs exists it will be found in the next few years
- Also other new physics on the TeV scale should be found
- Ideal time for students to join