Computing at DESY Zeuthen

- an introduction -

- Part IT -

Stephan Wiesand
DESY - DV -
July 28, 2006

Content of this talk

> Part T * Part IT
* computing environment * advanced shell usage
* policies * options, aliases
* scripting

* resources
s pipelines

® T/0 redirection

* more about AFS

@ desktop PCs (linux)
@ login hosts & farms

® storage, AFS basics

e getting started * building software

® basic shell usage * compiling & linking

@ email, printing * make

@ application software * debugging

Environment variables

* the shell has variables:
*» my var="some value"

* no space allowed around "="

» echo Smy var
@ dereferencing by prepending a "$"
*> shell variables can be exported:
* export my var

» export my var="some value"
* exported variables are available to child processes

* and called "environment variables"

Commonly used variables

PATH

* alist of directories, separated by colons (":")

* where the shell looks for commands
LD_LIBRARY_PATH

* where the dynamic loader looks for shared libraries

PRINTER and LPDEST
> where your printjobs go by default

env prints the complete environment

echo $<var> prints asingle variable

Where to set the variables

» ~/.zprofile
* variables set and exported here are available to all

your processes

* do NOT change PATH or LD LIBRARY PATH here

2 unless you really really know what you're doing

* no references to external sites
® may slow down most everything considerably

* note: ini changes both => NO ini in ~/ profile or ~.zshrc
* scripts
* generally the right place

* generally try to avoid using LD LIBRARY PATH

Globbing

* Unix jargon for wildcards
» 1s -1 *.c ->all .c files
» 1s -1 *_ [chf] ->all .cor .h or .f files
* 1s -1d /usr/?bin ->/usr/sbin
* expansion is done by the shell, not the command
® scp pub3:/tmp/mydir/*.c ~/

* does not work as (often) expected

* because globbing is done locally

* use single quotes to prevent expansion

* scp 'pub3:/tmp/mydir/*.c' ~/ works

Command aliases

alias my command='echo foo'

> my_command will print "foo"

alias command2='my command; echo "bar"'

> command?2 will print 2 lines: "foo" and "bar"

* note the semicolon separates commands:

» cd /tmp; 1s
aliases can be set in ~/.zshrc
* read by dll interactive shells

a plain alias will print all defined aliases

I/0 redirection

* processes have three I/0 channels by default

* stdin reads input
* stdout prints normal output

» stderr prints error messages
s 1s > list.txt

*» redirects stdout of Is into file list.txt

* errors are still printed to terminal
e 1s > list.txt 2>&l

* predirects stderr to stdout, and both to list.txt

* =>also errors go into list.txt

Input redirection, pipes

» echo '3*4' > infile; bc < infile
* prints "12"
* bc is the "binary calculator”, "<" redirects stdin
@ 1s -1 /usr/bin | less
* | connects stdout of Is with stdin of less
* called a "pipe"
> use 2>&1 | to pipe stdout and stderr, or short: | &

» I/0 redirection does not work for commands using the
terminal in "raw" mode

» passwd < my_passwd.txt does not work (which is good)

Conditionals

» commandl && command2

» executes command?2 if and only if commandl succeeds
» commands return an integer to their parent process

* 0 signals success

» anything else signals failure

* return value of last command is in variable $?

» commandl || command2

> executes command?2 if and only if command]1 fails

» commandl && echo "ok" || echo "failed"

Conditionals

» if test -e /some/file
then
do something
else
echo "/some/file is missing"; exit 1
fi

* is another way to do this

® test IS /usr/bin/test

* returns O or 1, depending on test result

? test -e <file> tests whether file exists

* can also be written if [-e /some/file]; then

* interactive shell will prompt nicely if you hit return
after a line opening an if clause

Loops

o for i in 1 2 3 4 5; do echo $i ; done

* prints 5 lines: "1","2", ..

* for i in {1..5}; do echo $i; done is the same
o for £ in *.c ; do cp S$Sf Sf.BAK ; done

* creates copies of all c-files in current directory

> effectively: cp filel.c filel.c.BAK ; cp ...

@ for £ in *.c ; do cp $f "basename $Sf .c BAK.c ; done
* basename <file> <suffix> strips suffix off name
> the backticks substitute the output of their command

» effectively does cp filel.c filel BAK.c ;

Scripts

recipe for creating a shell script:

*» create a file with a first line #! /bin/zsh
® or, maybe, #!/bin/sh

> fill it with shell commands

> make it executable with chmod +x

this script can be called like any other command
arguments are available as $1, $2, ... inscripts

if you have some software that needs a special
LD_LIBRARY_PATH, write a wrapper script and place
it into ~/bin

Wrapper Prototype

#!'/bin/zsh
export LD LIBRARY PATH=/afs/cern.ch/atlas/libs

some command “S@”

* some_command will b executed with the right
LD_LIBRARY_PATH in its environment

> will not affect anything else

* "$@" expands to the list of all parameters passed to
the script

Summary: the shell

*> a very powerful tool worth learning

» for more information, see

* the zsh man/info pages

> the bournint.ps document (use google to find it)
* caveats:

> what was shown works for the bourne shell family
» zsh, ksh, bash, sh

* there are minor differences between those
> there is also a csh family with a very different syntax

* csh, tcsh

More about AFS

> AFS is a global filesystem

» segmented into "cells", path: /afs/<cell>/. ..

* NB: /bin/pwd (nhot just pwd) shows real current directory
> DESY Zeuthen cell: ifh.de

> DESY Hamburg cell: desy.de
» CERN cell: cern.ch
> some of its features:
> good security: valid token needed for access
* data replication (readonly)

* data relocation (readwrite, fransparent to clientsl)

AFS cache

» the client maintains a local cache

» persistent (still available after reboot)

* readwrite

* local changes to a file are flushed to the server when
the file is closed

> while you edit a file, the authoritative copy resides
locally on your PC

*> use an editor that closes the file when you save

* emacs does
» PCs should be shut down cleanly

% do NOT use the power or reset buttons

AFS quotas

> AFS space is handled in chunks called volumes
* your home directory is one volume
» your ~/.OldFiles snapshot is another volume

> each volume has an associated quota

*» fs listquota <path> shows

* the quota (maximum amount of data allowed)

* the current usage
* you should stay below 95%
* is another way to find out whether a dir is in AFS

» ~/ OldFiles does not count for fs listquota ~

AFS permissions: ACLs

> AFS permission system is different:

* traditional Unix filesystem has read, write, execute
* AFS has

* read, write, insert, delete,

% lookup, lock, administrate

» all these are per directory
* traditional mode bits are mostly ignored
* but the x bit retains its meaning

* an ACL is a list of pairs: (<who>, <mode>)
* who: auser, oragroup

* mode: a list of bits, like rwid

Examining ACLs

> is also done with the £s command:
» fs listacl <path> shows ACL of a directory

» fs listacl ~ should show
» system:administrators rlidwka

% the sysadmins can do anything

s system:anyuser 1

@ any user worldwide (!) can lookup files (follow symlinks)

» <user> rlidwka

* you can do anything as well

* do NOT change the ACL of your ~

Changing ACLs

» fs setacl <path> <who> <mode>

* handy shortcuts for mode:

? read for rl

® write for rlidwk

° all for rlidwka (careful!)
® none for e

» fs setacl ~/code group:amanda read

* make ~/code readable for amanda group

» fs setacl ~/code <user> write
% allow a colleague to do anything but change the ACL
 good for collaborative work

* but better done in group space, not home directory

The AFS sysname

* a per-host property
» Scientific Linux DESY 3: i586_rhel30
* SL4: 1386_linux26
* Solaris 8: sund4x_58

» fs sysname shows the value for a host

> a path component @sys is replaced by the sysname
> only in AFS
* typical usage:

» setalink .../bin -> .../@sys/bin

@ call .../bin/command to get the right binary automatically

Summary: AFS

* AFS is the best filesystem we have

* is also true for the hardware storing homedirs

* please do not waste the space, it's precious

> AFS is best for collaborative work

> NB: ~/public/www is available as
http://www-zeuthen.desy.de/~<user>

* note ~/public is really public
> AFS space is the right place for
» valuable files (source code) - if backed up

» confidential files (CV, saved mails, ...)

Building software

* if your project is small & simple, it's easy:
» <compiler> -o my prog <sourcel> ...
@ gcc -0 my prog *.c

> for more complicated projects:

* Two steps:
* compile source files into object files

@ link object files + libraries to build the executable

® shared libraries may need some extra attention

* commonly done using make

» recompile only files that changed

* build according to rules defined in a Makefile

The test trap

* has this happened to you?

> you have a file test.c, and run gcc -o test test.c

* you run test, and nothing happens

* there's a /usr/bin/test command
» /usr/bin is searched before . (PATH variable)

* another common case, with the same reason:
* a group has some standard programme, in your PATH
» you build a modified version and run it (you believe)
» your changes seem not to make any difference...

* make it a habit to use ./<command>

Compilers available (Linux)

default: gcc, g77, g++ (Solaris: also cc, 77, CC)

» use these unless there's a good reason not to

* could be: performance, fortran 90/95
intel compiler:
» ifort, icc, icpc
> no DESY license (read the output of prpm -qi icc)
portland group compiler
* use ini -v pgi (also before running your programs)

some groups have licenses for compilers from
» KAI and NAG

Common compilation options

* —=C

* only compile, do not link

* =g

* add debugging information to output file

» -0

> optimize (often incompatible with -g)

» often available as -O1 or -O2 or ...

s -0 <filename>

* change the name of the output file

» —I<path> [-I<path2> ...]

* prepend paths to search path for includes

Linking

* always use the compiler to link

* do not call the linker directly

> the compiler knows about language specific libraries

* common options:
» —-L<path>
* prepend path to search path for libraries
* —-l<some lib>

% link against libsome_lib.so
 if available, the shared library is preferred
% or against libsome_lib.a

* otherwise, the static library is used

A complete example

> let's suppose you

* have two fortran files:
® main.f and fit.f
* and have to link against cernlib:

s libkernlib.a libpacklib.a libmathlib.a
* found in /cern/pro/lib
@ g/7 -c -g -o main.o main.f
» g77 -¢c -g -o fit.o fit.f
» g77 -o my fit prog main.o fit.o \

-L/cern/pro/lib -lkernlib -1lmathlib \
-lpacklib

About mixing languages

> mixing C and C++ is rather simple:
* declare interfaces extern "C" in C++

* use the C++ compiler for linking
> mixing C/C++ with FORTRAN isn't:

> fortran symbols usually have an appended

» C's symbol for function some_func() is some_func
» FORTRAN's is some_func_ or even some_func___

® g77 options: -funderscoring, -fno-second-underscore

* a tool for interfacing: cfortran.h

» use g++ for linking, add -lg2c (maybe more)

Using shared libraries

* advantages over static libraries:
» faster linking
> smaller executables

> less RAM needed if multiple programmes using the
same library are running on a systems

* problem:

* all shared libs needed for running must be found at
run fime

* 1dd <executable> shows the ones actually found

> "not found" for one means no go at all

How programmes find shared libs

* sorted by precedence, this is determined by:

» system's dynamic linker configuration
> alist of search paths can be recorded at compile time
* LD_LIBRARY_PATH in environment (avoid!)

* recording a list of paths can be achieved by

* an environment variable LD _RUN_PATH, or

* a-rpath <path> [...] argument to the linker

% using the compiler for linking, this must be written as
-Wl,-rpath,<path> [-Wl,-rpath,<path2> ...]

* in some cases, -rpath-link is needed as well

> use one of these methods if possible

The make tool

make is not a script processor
Makefiles are not scripts
* typically not processed top to bottom
make is a tool to create files
* typically from other files (-> dependencies)
* according to rules
*> rules are defined in the Makefile
prefer GNU make (non-Linux: typically available as gmake)
» available on all relevant platforms

» generally superior to vendor's make

Our example with make

the Makefile

main.o: main.f
77 -¢c -g -0 main.o main.f

fit.o: fit.f
g/l -¢c -g -o fit.o fit.f
a Tab character!

my fit prog: main.o fit.o
g77 -o my fit prog main.o fit.o \
-L/cern/pro/lib -lkernlib -lpacklib -lmathlib

* make my fit prog will now do the job

* is already better than a script

> recompiles only changed files

Make targets & rules

our make file has three targets

* main.o, fit.o, my_fit_prog
» <target>: <dependencies>

* read ":" as "depends on"

* empty dependencies are ok

* make <target> means: create the file <target>
a simple make means: make <topmost target>

the lines after the target definition tell make how to
create the file (must start with a tab)

* together, this is called a rule

Our example with default target

the Makefile
all: my fit prog

main.o: main.f
g/77 -¢ -g -0 main.o main.f

fit.o: fit.f
g/77 -¢c -g -o fit.o fit.f

my fit prog: main.o fit.o

g77 -o my fit prog main.o fit.o \
-L/cern/pro/lib -lkernlib -lpacklib -lmathlib

> now a simple make will create my_fit_prog

* unless the file "all" exists

Make variables

FC:=g77
FCOPTS:=-c -g
LIBS:=-L/cern/pro/lib -lkernlib -lpacklib -lmathlib

all: my fit prog

main.o: main.f
S (FC) $(FCOPTS) -o main.o main.f

fit.o: fit.f
S(FC) $(FCOPTS) -o fit.o fit.f

my fit prog: main.o fit.o
g77 -o my fit prog main.o fit.o $ (LIBS)

Make variables

can be set in the Makefile with

* = evaluated recursively

* := no recursion (can be much faster - use this)

cah also come from the environment or command line
make FC=ifort would use the intel compiler instead

useful special variables:
e $@

* the targeft file of a rule

o $<

* the input file(s) of a rule

Special make variables

FC:=g77

FCOPTS:=-c -g

LIBS:=-L/cern/pro/lib -lkernlib -lpacklib -lmathlib
OBJECTS:=main.o fit.o

all: my fit prog

main.o: main.f
S (FC) $(FCOPTS) -o $@ S<

fit.o: fit.f
$(FC) $(FCOPTS) -o $Q $<

my fit prog: $ (OBJECTS)
S(FC) -o $@ $(OBJECTS) $(LIBS)

Generic rules

FC:=g77

FCOPTS:=-c -g

LIBS:=-L/cern/pro/lib -lkernlib -lpacklib -lmathlib
OBJECTS:=main.o fit.o

all: my fit prog

get rid of all builtin default rules
.SUFFIXES:

how to compile fortran source files
% $.f

.0
S (FC) $(FCOPTS) -o $Q@ $<

my fit prog: $ (OBJECTS)
S(FC) -o $Q@ $ (OBJECTS) $ (LIBS)

Summary: make

* very powerful tool
> prefer it over scripts for building

» can do much more

*» additional dependencies (on include files...)
? can even be done automatically (but not trivial)
* substitute shell command output

* use xxx-config commands to get libs, include paths

® more and more packages have one (ROOT, cernlib, ...)

» perform transformations on variable content...

> consult make's info pages for more information

4

"]

4

Debugging your software

compile all source files to be debugged with -g
» compile without -O, or result may be confusing
for gcc & friends, the debugger is gdb
* other compilers may need others
gdb itself is not very convenient to use
convenient frontends:

* (x)emacs - use M-x gdb
* very usable, but takes some getting used to

* ddd

® GUI, very easy to use

gdb commands

step single step to next source line

next like step, not stepping into subroutines

* break set abreakpoint (at file:line or a routine)
cont continue running until finished or breakpoint
* print print a variable's content

display keep printing a variable's content

watch stop execution when a variable changes
» dynamic breakpoints

many more ...

Appendix A

> Remember:

* always have a valid AFS token, and some space left in ~
* think thrice about what you store where

* mail problems/requests to uco-zn@desy.de

% include as much information as possible

> Some URLs (useful, but maybe hard to find):

@ http://dvinfo.ifh.de

* http://www-zeuthen.desy.de/computing/services/AFS/backup.html

* http://www-zeuthen.desy.de/computing/services/Mail/mailservice.html
* http://www-zeuthen.desy.de/computing/services/Mail/spam.html

* http://www-it.desy.de/support/help/uco_documentation/afs.html.en
@ http://www-zeuthen.desy.de/~wiesand/intro/

That's it, finally

> Questions ?

* Again: Have a pleasant and
successful stay here at DESY
Zeuthen!

