Computing at DESY Zeuthen

- an introduction -

Stephan Wiesand

DESY - DV -

July 27, 2006
Content of this talk

- **Part I**
 - computing environment
 - policies
 - resources
 - desktop PCs (linux)
 - login hosts & farms
 - storage, AFS basics
 - getting started
 - basic shell usage
 - email, printing
 - application software

- **Part II**
 - advanced shell usage
 - options, aliases
 - scripting
 - pipelines
 - I/O redirection
 - more about AFS
 - building software
 - compiling & linking
 - make
 - debugging
Getting help

- central email address for questions & requests: uco-zn@desy.de
- mail to this address
 - is read by all who can help
 - will create a ticket in our request tracker
 - your question can’t get lost or be forgotten about
 - is usually answered very quickly
- do not mail questions to individuals
 - we are travelling or on leave occasionally
- note there’s no 24x7 service
Writing to uco-zn

- **bad** examples:
 - “I want to compile a programme and it doesn't work.”
 - “My PC doesn't work properly.”
 - “I see strange fonts.”

- **good** example:
 - “I want to build a programme using the ROOT framework, version 5.08.00, using the default compiler. Builds fail with an error message from the linker about missing symbols. I'm working on lx64.ifh.de. I include my Makefile and the full output of the make command below...”
Finding information

- computing web pages:
 - http://www-zeuthen.desy.de/computing/
 - http://dvinfo.ifh.de

- this talk:
 - http://www-zeuthen.desy.de/~wiesand/intro/

- "Unix@desy.de" reference guide booklet

- unix commands
 - man
 - ("see frobnitz(4)" means "run man 4 frobnitz")
 - info

- many commands have a --help switch
Our computing environment

- major platforms:
 - **Windows** XP/2003
 - Desktops, a few servers (for Windows desktops)
 - Windows 2003 Terminal server
 - ICA (Citrix Metaframe)
 - see http://www.ifh.de/computing/projects/win_desy_de/ICAinfo.html
 - rdesktop(1) - try **winrdp**
 - **Solaris**
 - few login machines left, many backbone services
 - **Linux** (Scientific Linux 3/4)
 - desktops (yours is probably one of them)
 - farms, login hosts, services (i386 or amd64 platform)
NB: Parallel Computing at Zeuthen

- **APE**
 - special purpose hardware
 - custom design & build
 - does one thing well: Lattice QCD

- **PC clusters**
 - more versatile
 - actually used for Lattice QCD as well
 - fast interconnect (Myrinet or Infiniband)
 - main difference w.r.t. "farm"
Policies 1: *Security*

- DESY is an attractive target for hackers
 - and constantly under attack
- cracking a host is much easier from a DESY user account than from outside our network

=> please protect your account!

- use a **strong** password
- keep it to yourself
 - don't write it down
 - don't store it anywhere
 - don't share it with anyone
NB: What's a strong password?

- 7 to 8 characters long (avoid "\", "#", quotes, spaces)
- consists not only of lower case letters but also characters from at least two of:
 - digits
 - upper case characters
 - other printable characters
- is not vulnerable to social engineering
- bad examples: ih8_pcs Isabe11a 2fast_4U
 - many will be rejected automatically, some won't
- good example: g{XP52k
Security policies continued

- don't install or run applications that accept or keep up network connections
 - except those provided by us
- don't run hacker tools, or try to hack hosts
 - contact security@ifh.de if you think you spotted a security problem
- don't change the permissions of your home directory
- don't connect notebooks to our network in place of a desktop, don't invent and configure IP addresses
 - dynamic dhcp is available on many wall sockets
Policies 2: **Acceptable use**

- DESY computing **resources are for research and education only**
- **No commercial activities!**
 - mass mailings, web shops, ...
- **No political campaigns!**
 - again, neither through e-mail nor web nor
- **Don't consume CPU cycles, storage, bandwidth, ...**
 - for anything but your work
 - even then, don't waste them unnecessarily
- **No pirated materials!** (movies, MP3s, software, ...
Resources: Your **desktop PC**

- **purpose:** local login, interactive work
 - mail, web, authoring, software development & tests
 - interactive data analysis
- login is also possible from other hosts
 - only to group PCs, not to guest PCs
 - not from outside DESY
 - some things work only when logged in locally
- local disk/CPU are **not highly reliable/available!**
- **home directory** is (it resides in AFS)
PCs: **SL3 vs. SL4**

- this is a time of transition
 - *Scientific Linux 3* is the established environment
 - *Scientific Linux 4* is just emerging
- if in doubt, consult `/etc/redhat-release`
- **SL4 desktop PCs**: `{satyr<n> | n >= 60}`
- **differences w.r.t. SL3** are many, among those:
 - removable media mount points
 - usually in `/media`; check `/etc/fstab`
 - C++ ABI (ROOT, CLHEP, GEANT4, ...)
- if in doubt, use some SL3 system to work there
Resources: Storage

- Data storage is available in many flavours & qualities:
 - **AFS**
 - *secure* (not accessible without knowing the right password)
 - *redundant & highly available*
 - **Tape**
 - as secure as your account
 - **NFS**
 - *insecure* if exported to desktops
 - may or may not be redundant or highly available
 - **local disks** = scratch space, for convenience only
 - *insecure & volatile*
More on storage

- availability of backup:
 - always assume there is none
 - except if explicitly stated otherwise
- your home directory
 - is backed up daily, has a snapshot taken every night
 - available in ~/.OldFiles
 - has a low quota (50 MB), can be raised on request
- AFS/NFS group space
 - is available from your group admin (ask backup status)
- local disks are scratch space only!
What to store where

<table>
<thead>
<tr>
<th></th>
<th>Home directory</th>
<th>AFS group space</th>
<th>NFS group space</th>
<th>Tape</th>
<th>local disks</th>
</tr>
</thead>
<tbody>
<tr>
<td>source code</td>
<td>yes</td>
<td>with backup</td>
<td>with backup</td>
<td>ok</td>
<td>no</td>
</tr>
<tr>
<td>compiled code</td>
<td>no</td>
<td>without backup</td>
<td>ok</td>
<td>no</td>
<td>ok</td>
</tr>
<tr>
<td>test data</td>
<td>no</td>
<td>ok</td>
<td>ok</td>
<td>no</td>
<td>ok</td>
</tr>
<tr>
<td>bulk data</td>
<td>no</td>
<td>without backup</td>
<td>without backup</td>
<td>ok</td>
<td>copy</td>
</tr>
<tr>
<td>shared access</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>confidential</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>precious data</td>
<td>yes</td>
<td>with backup</td>
<td>with backup</td>
<td>ok</td>
<td>no</td>
</tr>
<tr>
<td>ripped DVDs</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

- data on local disks may vanish anytime
- it is not accessible from any other system
Storage Locations

- **AFS**
 - homedir: `/afs/ifh.de/user/<initial>/<user>`
 - group space: `/afs/ifh.de/group/<group>`

- **NFS**
 - `/net/<group>/data<n>`
 - `/nfs/<group>/data<n>` (preferred)
 - `/net/<group>/disk<n>, net/<server>/data<n>`

- **local disk**
 - `/usr1/scratch` (make yourself a directory there)
 - guest PCs (no special group) have `/tmp` only
 - automatically cleaned after 2 weeks
Resources: Login hosts

- pub
 - public linux login
 - will divert you to the least loaded one of pub1-6
 - also accessible from outside
 - right place for doing things that need much memory
 - if your desktop PC doesn't have enough
 - example: OpenOffice
 - not the right place for lengthy, CPU intensive jobs
 - use the farms for that
 - not the right place for storing data
 - not the right place for moving data
Login hosts continued

- lx64
 - public linux/amd64 test system
 - use like pubs: test & evaluation only

- dedicated login hosts
 - most groups have some
 - typically Linux or Solaris
 - ask your group admin

- use `ssh <host>` to log in to `<host>` from your PC

- forget rsh & friends
 - if you know them (if not: good)
Resources: Compute farm

- **PIII**: 80 CPUs, 800 MHz, 256-512 MB RAM/CPU
- **Opteron**: 246 cores, 2.2/2.4 GHz, 2-4 GB RAM/core
 - mostly 64-bit (amd64 aka x86_64)
- common facility shared between all groups
 - batch jobs: simulation, data processing, ...
- interactive access: `qrsh`
 - heavy PAW/ROOT sessions, moving data, ...
- see http://dvinfo.ifh.de/Batch_System_Usage for details & instructions
- most common mistake: failure to request resources
Getting started: **Login, the shell**

- windowing environments:
 - **Icewm, WindowMaker**: lean, low memory usage
 - **GNOME/KDE**: more gadgets, more point'n'click
- choose one on the login screen
- in either case, always keep open a **terminal window**:

![Diagram of xterm window showing prompt, hostname, current directory, and cursor.]
The shell

- What you see:
 - **xterm** (or **konsole** or **gnome-terminal**)
 - is a child process of the window manager
 - displays the window
 - the **shell**: **zsh** (tcsh is not recommended, bash not supported)
 - is a child process of xterm
 - prints the prompt (actual display is handled by xterm)
 - accepts and executes your commands
 - starts child processes
 - is your most important interface to the system
Running commands

- in the **foreground**: type the command, hit return
- in the **background**: append `&` to command
- **jobs** will show current background commands
- `fg [%<n>]` brings job n back into foreground
- hitting `^Z` suspends a foreground command
- `bg` continues suspended command in the background
Processes

- `ps` shows processes (also try `top` and `qps`)
 - many options, try: `ps aux` (shows all processes)
- `kill` can send a signal to a process
 - `kill -<SIGNAL> <PID>`
 - useful signals include
 - `STOP` (suspend), `CONT` (continue)
 - `HUP` (hangup, kills softly), `TERM` (terminate), `KILL`
The filesystem

- Unix filesystem is **hierarchic**, the root directory is `/`
- **directories** can contain files and directories
- a complete path is formed by **separating directory components by "/"** (not "\"):
 - `/dir1/subdir2/subsubdir3/something`
 - something may be a file or a directory
- there's no small limit on the length of names
- most characters are allowed ("/") isn't)
 - avoid those interpreted by the shell
 - `* [] {} () \ | ; & ...`
Special directories, navigating

- **special directories:**
 - . (a single dot): the current directory
 - .. (two consecutive dots): the parent directory
 - ~ (only for the shell): your homedirectory
 - ~<user> (only for the shell): someone else's

- **command for moving in the filesystem:**
 - cd <path> sets the shell's current directory
 - cd ~ brings you home
 - cd does the same
 - cd - goes back to previous directory
Copying and moving data

- `cp` file [file ...] {file|directory}
 - copies files to other files or into directories
 - `cp /some/path/fileA /other/path/fileB`
 - `cp /some/path/fileA /other/path`
 - same as `cp /some/path/fileA /other/path/fileA`
 - `cp fileA fileB ../fileC /some/directory`
 - copies three files
- `mv` works like `cp`, but moves files or directories
 - may not work across filesystem boundaries
- there is no `rename` command- use `mv`
 - `mv fileA fileB`
Creating and deleting files/dirs

- `mkdir <path>` creates a directory
 - `mkdir /tmp/mydir`
 - `mkdir /tmp/mydir/mysubdir`
 - or: `mkdir -p /tmp/mydir/mysubdir`

- `rm <path>` deletes a directory
 - again, only works for the last component

- `rmdir <path>` deletes a directory

- `rm -r <path>` recursively deletes directory trees
 - be careful!

- `touch <path>` creates an empty file
Links - hard or symbolic

- `ln <file1> <file2>` creates additional directory entry called a "hard link"
- only works for files, not directories and only within filesystems (AFS: within directories)
- otherwise, usage is like for `cp`
- `ln -s <file1> <file2>` creates symbolic link
- actually a different file pointing to the first one

```
xterm
[nbsw] /tmp/test echo foo >fileA
[nbsw] /tmp/test ln fileA fileB
[nbsw] /tmp/test ln -s fileB fileC
[nbsw] /tmp/test ls -l
  total 8
  -rw-r--r--  2 wiesand  sysprog  4 2003-07-13 10:20 fileA
  -rw-r--r--  2 wiesand  sysprog  4 2003-07-13 10:20 fileB
  lrwxrwxrwx  1 wiesand  sysprog  5 2003-07-13 10:20 fileC -> fileB
[nbsw] /tmp/test cat fileB
foo
[nbsw] /tmp/test cat fileC
foo
[nbsw] /tmp/test []
```
Examining files

- `cat <textfile>`
 - dumps content of text files
- `less <file>`
 - allows navigation (arrow keys, ...)
 - can handle many other formats besides text
 - most anything that can be converted to text
 - including directories, rpms, and many more
- `file <file>` shows the type of the file
 - educated guess only, type is not stored in filesystem
 - unix files are just a stream of bytes
Listing files & permissions (mode)

- `ls <path>` lists files
 - `ls -l <path>` shows details ("long" listing)
 - `-rwxr-xr-x` 1 root root 74384 2003-03-14 03:00 /bin/ls
 - permissions for user owning file (read, write, exec)
 - permissions for group owning the file
 - permissions for others
 - number of hard links
 - size, date and time
 - `drwxr-xr-x` 2 root root 4096 2003-05-17 09:03 /bin
 - a directory
 - note `r-x` is needed for reading, not just `r--`
Changing modes and ownership

- `chmod <modespec> <file>` changes permissions
 - `chmod +x <file>` makes file executable for anyone
 - `chmod u+x <file>` makes file executable for user owning file only
 - `chmod go-r <file>` makes file unreadable for group and others
 - `chmod g+w <file>` makes file group-writable
- `chown <new owner> <file>` changes ownership
 - you're probably not allowed to do that
- `chgrp <new group> <file>` changes file's group
Permissions in AFS space

- permissions explained so far work in traditional UNIX file systems
 - local disks, NFS (/net/..., /nfs/...)
- in AFS (/afs/...), things are different:
 - permissions are per-directory, not per-file
 - many traditional mode bits
 - are either ignored, or
 - have a different meaning
 - instead, there are ACLs (access control lists)
 - listed and manipulated with the `fs` command
 - you'll hear much more about AFS in Part II
AFS tokens

- to *access* anything in AFS space, it must be (by ACL)
 - either world-accessible
 - or host-accessible for the host you're working on
 - or you need an AFS token giving you permission
- the latter is the most common case
 - includes your home directory
- you get a fresh token by typing your password
 - when you log in
 - when you unlock the screen
 - when you run the `kinit` command
AFS token expiration

- an AFS token is actually a wrapped Kerberos ticket
- you get a normal Kerberos ticket with the token
 - grants passwordless access to mail, other hosts, ...
- AFS tokens and Kerberos tickets expire
 - after 25 hours
- afterwards, many things won't work anymore
 - opening new windows,...
- => *Problems? First thing at all, check your token!*
 - tokens shows a list (klist shows all krb tickets)
Getting started: email

- **pine** is the recommended email client
 - ancient looks, but very convenient and reliable
- stay away from **kmail**
- **thunderbird** can be used as well
 - but doesn’t know about your kerberos ticket
 - and may require manual configuration
- mail server provides imap4/ssl - don’t use **pop**
- save mails in home directory, **delete from inbox**
- forwarding: connect to
 - http://registry.desy.de/registry
Getting started: printing

• to set your default printer, edit ~/.zprofile
 • it's prepared: PRINTER=ps_lo2
 • sets an environment variable (see Part II)

• printing commands:
 • lpr [-P <printer>] <file>
 • lp [-d <printer>] <file>

• a single printer may have multiple (queue) names
 • hpcolor1/hpcolor1t for paper/transparencies

• print in color only if necessary
 • often much more expensive than black & white
Application software: editors

- **xemacs** is recommended
 - syntax highlighting for many programming languages
 - many other powerful features
- **emacs** (GNU emacs) is available as well
 - just as good and powerful
- **vi or gvim**
 - much leaner than emacs, just as powerful
 - but a matter of taste
- **nedit**
 - Windows addicts tend to like this one
Other application software

- some software can only be used after an appropriate ini command

- a plain ini shows a list - some examples:
 - ini pgi32
 - modifies environment for using PGI compilers
 - cc, f90 etc.
 - ini ROOT
 - allows using the root software (from CERN)
 - ini ROOT_64
 - use 64bit version of ROOT (on amd64 systems)
 - ini -d ROOT_64 reverts the last change
Math Software

- **Maple**
 - unlimited number of licenses

- **Mathematica**
 - limited number of licenses
 - don't waste
 - prefer Maple if you can

- **Matlab**
 - very limited number of licenses
 - each as expensive as a medium size car
 - don't expect one to be available, except from your group
Storage media on desktop PCs

- **CD/DVD-ROM**
 - `mount /mnt/cdrom` makes content available there
 - run `umount /mnt/cdrom` before removing the media
- **legacy floppy** (may no longer work on all PCs)
 - `[u]mount /mnt/floppy`
- **USB memory sticks**
 - `[u]mount /mnt/hotplug` (1st partition on device)
- never ever forget the umount command
 - or you **will** damage the filesystem on any r/w device
- a public CD writer is available in 2L01
Remote commands & copying

- **ssh <host> <command>**
 - executes a command on <host>
 - works with many, but not all commands
 - default command is a login shell

- **scp [host1:]file1 [host2:]file2**
 - copies files between hosts (one must be local host)
 - mostly works like cp:
 - scp pub3:/tmp/myfile ~
 - scp pub:/not/available/on/desktops/myFile /tmp
 - wildcards (see Part II) must be quoted
That's it for today

- Questions?

- See you for Part II

- Have a pleasant and successful stay here at DESY Zeuthen!