IPACS Benchmarks @ DESY Zeuthen

Valerio Angelini
Universitd degli Studi di Firenze
amailp@gmail.com

The aim of the project was to run the IPACS Benchmark Suite on the DESY Zeuthen
PC-clusters and to be able to evaluate parallel performances about different aspects of

parallel computing.

1 Introduction

1.1 IPACS Benchmark Suite

The IPACS-Project’s (Integrated Performance
Analysis of Computer Systems) [2] objective
is to develop methods for measuring system
performance on High Performance Computers
(HPC) based on low level benchmarks, com-
pute kernels, open-source and commercial ap-
plication benchmarks.

The IPACS team has selected a complete set
of benchmark software, and has developed an
user friendly Java client (IPACS-Client) to run
the benchmarks and to graph the corresponding
results.

The characteristics of the benchmarks are
briefly described in Table 1.

For more details check [1] and relative bibli-

ography.

1.2 Cluster equipment at DESY
Zeuthen

The benchmarks were tested on two different
clusters, which have both two different special
networks for HPC (high bandwidth, low la-
tency). Details are described in Table 2.

2 Developed software

Due to the early phase of development of the
IPACS-Client and the lack of documentation re-
garding it, there has been no possibility to use
it in the current clusters’ environment.

Therefore it has been necessary to develop a
set of utilities that makes it possible to execute
the benchmarks easily.

In particular four commands have been set:

run, list, gather, graph.

The user needs to launch these commands di-
rectly from the following path:

/afs/ifh.de/user/a/angelini/benchs

2.1 run: compiling and running
benchmarks

run is a shell script that allows to compile, con-
figure and send a generic benchmark to the batch
system.

The user can choose, with an uniform inter-
face, all the parameters that each benchmark
needs to be run.

The command syntax is:

run BENCH_NAME [-ppn NODE_NUM_PROCS]
[-pa PROC_ARRAY]
[-cl CLUSTER]
[-scr SCRATCH_DIR]
[-h]

BENCH_NAME is a required argument. It selects
the benchmark to be run.

NODE_NUM_PROCS allows to choose how many
processes have to be sent to each node (also
known as ppn). The default value is 2.

PROC_ARRAY specifies how many total pro-
cesses have to be created. The default value
is 4. An even integer must be used if
NODE_NUM_PROCS=2 is set.

CLUSTER is the string that specifies the name
of the cluster in which the benchmark has to
be run. The values allowed are Plejade and
Geminide.

SCRATCHDIR is the file system type to be
used by the benchmark. The values allowed are
panfs and afs.

2 Developed software

| Type | Name | Short description
Low-Level PRIOmark file system and disk I/O performance
CacheBench performance of the memory hierarchy
PMB suite evaluating most of the features provided
by MPI-I0
b_eff accumulated network bandwidth of paral-
lel /distributed computing systems
Compute Kernels | TauBench unstructured grid benchmark, kernels are de-
rived from Tau
Open Source PARPACBench | complex three-dimensional flow problems,
generalized lattice Boltzmann method
Linpack solve linear equations and linear least-squares
problems
ddfem parallel numerical linear-elasticity solver
Commercial Fluent computational fluid dynamics
PowerFlow computational fluid dynamics
StarCD computational fluid dynamics

Tab. 1: Benchmarks in IPACS Benchmak Suite

“Plejade” cluster

“Geminide” cluster

CPU manufacturer | AMD Intel

CPU model Opteron 250 Xeon P4

CPU frequency 2.4 GHz 1.7 ~ 2.0GHz

CPU cache 1 MB L2 256 kB

CPU register width | 64 32

memory size 4 GB 1 GB

memory model PC2700 ECC DDR | RDRAM
SDRAM

host adapter Mellanox Infiniband HA 4X | Myrinet 2000 M3F-

PCI64B-2

switch Mellanox InfiniScale TIT | M3-E32 5 slot chassis,

2400, 24 ports 2xM3-SW16 line cards
| nodes(processors) | 16 (32) | 24 (48)

Tab. 2: Hardware details

2.2 list: getting info about running

benchmarks

list is a Ruby script that checks the status of
the user’s benchmarks, and shows the main in-
formation on the command line.

2.8 gather: gathering results from
finished benchmarks

gather is a Ruby script that gets results from
all finished benchmarks and puts them in the
result tree.

This can be seen in the results directory.
Each result is hierarchically set on the basis of
its own properties, the same ones that the user
specified with the run command.

In addition the timestamp of the date and
time in which the benchmark was run is also
recorded.

2.4 graph: displaying the results of
the benchmarks

graph is an interactive command line program
written in Ruby.

It allows to display a graph with a selection
of results of a previously chosen benchmark.

If results of the same type are selected, an av-
erage of them is calculated, and the correspond-
ing standard deviation is displayed in the graph.

To run the program, the user has to pass the
name of the benchmark to the command line
with the following syntax:

graph [BENCH_NAME]

If a graphicable benchmark has been selected,
a command prompt shows up, preceded by the
list of all the results successfully recorded for the
selected benchmark (Figure 1).

With the command graph the user can print
the graph of all the results (Figure 2).

It is also possible to show different data for
each benchmark with the data command (Fig-
ure 3).

The user can then refine the results with the
search [regexp] command (Figures 4 and 5).

For the complete list of commands available,
run the help command.

3 State of development of each
benchmark

Due to very different configuration files, to the
various compiling processes, to the different li-
braries needed, to the different formats of the
results, etc., every benchmark is in a different
state of development. Here is a brief status list:

3.1 PRIOmark
Executing

It runs well on both Geminide and Plejade.

Displaying results
Full graph support available.

Notes

In Figure 6 it is possible to see that the Panasas
file system (panfs) always gets better results
than afs on both clusters. It would be inter-
esting to better investigate the strange behavior
of the benchmark with Plejade on panfs (purple
bars).

3.2 CacheBench

Executing

It runs well on both Geminide and Plejade.

Displaying results

It is not integrated in the program to generate
graphs, because it is made to run on only one
processor. However it has an internal script to
generate nice graphs with Gnuplot.

Notes

Figure 7 is the graph generated by CacheBench
on the Plejade cluster.

The two levels of cache are clearly visible in
this graph: the first big step indicates that the
benchmark has reached the first level of cache
(64k), the second step indicates the second level
of cache (1M).

3.8 PMB

Executing

It runs well on both Geminide and Plejade.

3 State of development of each benchmark

g gl = el la]] O] x]
~fbenchs % graph priomark -
: priomark
Data to show : Cumulated Average Bandwidth (all)
| Cluster Scratch Pa Ppn DateTime
geminide afs 2 2 2006-09-08_15:11:59
geminide afs 4 2 2006-09-08_14:43:56
geminide afs 10 2 2006-08-21_14:55:51
geminide afs 8 2 2006-08-21_14:00:28
geminide afs [2 2006-08-18_16:36:23
geminide panfs 2 2 2006-09-08_15:12:21
geminide panfs 4 2 2006-08-23_15:18:53
geminide panfs 10 2 2006-08-18_17:54:06
geminide panfs [2 2006-08-18_16:35:27
geminide panfs 2 2 2006-08-18_14:50:45
plejade afs 4 2 2006-08-23_15:27:03
plejade afs 6 2 2006-08-18_15:27:05
plejade afs 2 2 20065-08-18_15:11:50
plejade panfs 4 2 2006-08-25_13:51:40
plejade panfs 3 2 2006-08-18_14:01:28
plejade panfs 2 2 2006-08-18_14:16:59
e
rY
-
| || graph example &=
Fig. 1: At the beginning all the results are shown
X Gaplai EImEE
priomark. - Cumulated Average Bandwidth {all?}

[={els] T T T T T

; ; : geminideippn 2} on afz: CEEED
geminide(ppn £} oh panfz O
plejadeippn 2} on afz SR

HBytess

2 4 5

Processes
e -0,16683 y= 501,77

Fig. 2: The graph of all the results

3.3 PMB

El s

= search afs

Benchmark : priomark
Data to show : Cumulated Average Bandwidth (all)

Results found for pattern 'afs

| Cluster Scratch Pa Ppn DateTime
geminide afs 2006-09-08_15:11:59
geminide afs 2006-09-08_14:43:56
geminide afs 2006-08-21_14:55:51
geminide afs 2006-08-21_14:00:28
geminide afs 2006-08-18_16:36:23
plejade afs 2006-08-23_15:27:03
plejade afs 2006-08-18_15:27:05

¢ plejade afs 2006-08-18_15:11:50

> data

o
[=R I e - T o N]
P B P B B B B Ba

Choose one of these data to show:
ab-strid Average Bandwidth (Strided)
ab-common Average Bandwidth (Common File Benchmark)
ab Average Bandwidth (all)
cab-common Cumulated Average Bandwidth (Commen File Benchmark)
cab-strid Cumulated Average Bandwidth (Strided)
cab Cumulated Average Bandwidth (all)
ab-single Average Bandwidth (Single File Benchmark)
cab-single Cumulated Average Bandwidth (Commen File Benchmark)

Current data to show : Cumulated Average Bandwidth (all)
> [

I |

»

l=| || graph example J

. &1

Fig. 3: The possible data types to be shown

@ OTaPHEXATIDIEE
geminide afs [2 2006-08-18_16:36:23
geminide panfs 2 2 2006-09-08_15:12:21
geminide panfs 4 2 2006-08-23_15:18:53
geminide panfs 10 2 2006-08-18_17:54:06
geminide panfs [2 2006-08-18_16:35:27
geminide panfs 8 2 2006-08-18_14:50:45
plejade afs 4 2 2006-08-23_15:27:03
plejade afs 6 2 2006-08-18_15:27:05
plejade afs 2 2 2006-08-18_15:11:50
plejade panfs 4 2 2006-08-25_13:51:40
plejade panfs [2 2006-08-18_14:01:28

: plejade panfs 2 2 2006-08-18_14:16:59
> search afs

Benchmark : priomark

Data to show : Cumulated Average Bandwidth (all)

Results found for pattern 'afs’

| Cluster Scratch Pa Ppn DateTime

geminide afs 2006-09-08_15:11:59
geminide afs 2006-09-08_14:43:56
geminide afs 2006-08-21_14:55:51
geminide afs 2006-08-21_14:00:28
geminide afs 2006-08-18_16:36:23
plejade afs 2006-08-23_15:27:03
plejade afs 2006-08-18_15:27:05
plejade afs 2006-08-18_15:11:50

o
MO RGN O R
Pt B P B B P P B

S

|| M graph example

—

A |G

Fig. 4: Results shown with the command search afs

3 State of development of each benchmark

X Lall=]o]x]
priomark - Average Bandwidth {all}
120 r T v T T
; D geminidelppn 23 on af: CEEED
. plejadeippn 2} on afz =2
L
i
)
£
2 4 B 8 10
Processes
Fig. 5: Graph of another data with a reduced result set
priomark - Cumulated average bandwidth (write - POSIX)
180 T T T T
i i geminide(ppn 2) on afs =
geminide(ppn 2) on panfs ===
1] 1 MRS S N | — plejade(ppn 2) on afs - |
plejade(ppn 2) on panfs Em=—
140
120
» 100
2
>
@
= 80

60

40

20

Processes
Fig. 6: PRIOmark on both clusters, with different file systems

3.5 TauBench

Memory Hierarchy Performance of plejade14.ifh.de-x86-64

35000 T T T T T T T T T T T T T T T T T T
: : : : : : : : read ——
write
mw ------
handread --&- |
80000 handwrite
handrmw
; memset -- -o-- -
25000 . memcpy & - |
20000 =
(o]
o)
%]
m
= /
15000 4+ -
U*ﬁ@(**%*ﬁ :DQ afuia oo DO O &
10000 7~ VVDDEEHZ B i e N Nt R R
e alaEuleizalzlal
5000 e a‘é R S e
o eoy g BuE A mpn fm goumtt Sl o Rl
T T T T e e e e e B e o o ® 00 see .‘,i?}i 3 ?i—ﬁéﬁff“i”,ﬁ“ﬁ_r Eirmid
O N 1 N 1 N 1 N 1 1 N 1 N 1 N 1 N 1 N 1
256 1K 4K 16K 64K 256K ™M 4M 16M 64M 256M

Vector Length
Fig. 7: CacheBench on Plejade

Displaying results

There was no time to integrate it in the graph
generating system.

3.4 b_eff
Executing

It runs well on Geminide. On Plejade it gets very
strange results for obscure reasons.

Displaying results

Full graph support available.
It has also a very good script to auto generate
PDF reports.

Notes

In Figure 8 it is possible to see that b_eff scales
well on Geminide cluster, in fact the bandwidth
increases almost linearly with the number of
processors. The strange behavior of the first
column is due to the fact that the two processes
were running on the same node, therefore it is
reasonable to observe a greater bandwidth and
a lower latency.

Figure 9 shows the trend of the latency in-
creasing the number of processors. The values
are almost the same for all the configurations:
this means that the network is not the bottle-
neck, and could stand more load.

3.5 TauBench

Executing

It runs well on both Geminide and Plejade.

Displaying results

Full graph support available.

Notes

In Figure 10 it is possible to see a heavy pre-
dominance of the Plejade cluster on the Geminide
one in this type of benchmark: special attention
should be paid to the logarithmic scale of the y
axis.

In particular Plejade is faster by factor of 60,
55, 53 and 55, respectively for 2, 4, 6, and 8
processors. Such a big difference is probably
due to an I/O overhead in Geminide. It could
be that all the data fit in the second level cache

3 State of development of each benchmark

MByte/s

microsec

450

400

350

300

250

200

150

100

50

30

beff - Effective bandwidth

Igeminide(plpn 2) on|

16
Processes
Fig. 8: b_eff on Geminide, showing the effective bandwidth.

b.ff - Latency

25

20

15

10

Igeminide(ppn 2)on afls —

2 4 6 8 12 14 16

10
Processes
Fig. 9: b_eff on Geminide, showing the latency.

3.8 ddfem

TauBench - Floating point operation rate

10000 , ,

1000 |

Mflops

100 [

10
2 4

geminide(ppn|2) on af
plejade(ppn
plejade(p

s o]
s ===]
S —

6 8
Processes

Fig. 10: TauBench on different clusters (logarithmic scale of the y axis).

of Plejade and not in Geminide’s, that is 4 times
smaller (1 MB vs. 256 kB).

3.6 PARPACBench

Executing

It runs well on both Geminide and Plejade.

Displaying results

Full graph support available.

Notes

In Figure 11 it is possible to see a good scala-
bility of both clusters in PARPACBench.

In this example Plejade is faster by an average
factor of 2,7.

3.7 Linpack
Executing

Because of very different installation proce-
dures, there was no time to integrate this bench-
mark in the run command.

3.8 ddfem
Executing

It is not integrated in running environment, be-
cause of lack of “petsc” libraries on both clus-
ters.

Unfortunately there was no time to set up the
right environment.

3.9 Commercial benchmarks
Executing

None have been tried. They require commercial
software to be run.

In particular they generate a test file that has
to be evaluated by the corresponding software
(Fluent, PowerFlow, StarCD). All these soft-
wares are not open source and not free.

4 General issues

During my work on the clusters I encountered
some issues that I would like to report for future
studies.

1. It does not seem possible to run an MPI
program on more than 4 nodes on Plejade (8

10 References

PARPACBench - Floating point operation rate
1.6 ! ! !

eminide(ppnI 2) on afs =
plejade(ppn 2) on afs ===

1.4

1.2

7' A S

Gflops

N . Eees [— e

04 o L ot | e

0.2 o S - [- — e —

4 6 8 10
Processes
Fig. 11: PARPACBench on different clusters.

processors maximum). It seems a problem References
related to the batch system, because I also
tried to recompile a very simple example [1] G. Falcone, H. Kredel, M. Krietemeyer,

program with different compilers and the D. Merten, M. Merz, F-J. Pfreundt,
behavior was always the same. C. Simmendinger, D. Versick, “The IPACS-
Project at Glance”, Germany, Septem-
ber 28, 2005
2. I found that the IPACS Benchmark Suite
uses a different formalism regarding the [2] “IPACS Benchmark” Website,
GridEngine files. In particular they use http:/ /www.ipacs-benchmark.org/

different machinefile and nodefile. Related

to this is the fact that I was not able to [3] I. Hailperin, “High Performance Comput-
run most benchmarks with one process per ing Challenge on small Linux Clusters”,
node. DESY Zeuthen, September 7, 2005

[4] M. Snir et alii, “MPI -The Complete Ref-
erence”, The MIT Press, Cambridge, 1998

5 Acknowledgments
[5] T.L. Sterling et alii,“How to Build a Be-

I would like to thank Mr Goetz Waschk and my owulf”, The MIT Press, Cambridge, 1999

supervisor Mr Peter Wegner.
P 8 [6] Gregory R. Andrews,“Foundations of Mul-

I'm als'o very grateful to Mr Karlheinz Hiller, tithreaded, Parallel, and Distributed Pro-
Mrs Sabine Baer and all the Summerstudent gramming”, The MIT Press, Cambridge,

Team for the perfect organization, and to Mr 1999

Gregorio Landi and Mrs Elisabetta Gallo for

making this great experience in DESY Zeuthen [7] Yukihiro “matz” Matsumoto, “Ruby

possible. Programming Language” Website,
A special thank also to SP! http://www.ruby-lang.org/en/

References

11

[8] T. Williams, C. Kelley, “gnuplot -An In-
teractive Plotting Program”, April 2005,
http://www.gnuplot.info/docs 4.1

[9] “Online Oxford Dictionaries”, Website,
http://www.askoxford.com

