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Abstract

In this report we want to give an impression of the importance
of path integrals, their connection with statistical mechanics
and finally turn to the Schwinger model in 2-dimensions. The
goal is also to present some numerical results in the discretized

the Schwinger model.



Chapter 1

Path integrals and Quantum
Mechanics

1.1 Path integrals

Assume we want to determine the probability of the path that a particle may
take in quantum mechanics. The initial point is

xa = x(t = ta) (1.1)

and the final point is xb at the chosen time tb. For simplicity we restrict
ourselves to the particle moving in one dimension. The position of any time
can be specified by a coordinate x as a function of t. The path we mean by
the function x(t). The goal is to find the probability of each possible path for
the particle. In the classical regime we usually use the principle of the least
action (δS = 0) to determine the classical path, which is given of course. It
can be derived as follows:

S =
∫ tb

ta
L(ẋ, x, t)dt (1.2)

L is the lagrangian of the system. For a particle moving in a potential
V (x, t) the lagrangian is:

L =
m

2
ẋ2 − V (x, t) (1.3)

The most interesting case for us will be the transition from the classical
into the quantum regime. The probability P (b, a) to go from xato xb is the
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absolute square of an amplitude K(b, a) to go from xa to xb. The ampli-
tude (which we can call kernel) is the sum of the contribution of each path.
Following the super-position principle:

K(b, a) =
∑

over all paths

ϕ[x(t)] (1.4)

Each contribution of the path has a phase factor proportional to the
action S:

ϕ[x(t)] = constei/h̄S[x(t)] (1.5)

We can also write the kernel in the integral notation.

K(b, a) ∼
∫∫

· · ·
∫ b=xb

a=xa

ϕ[xi(t)]dx1dx2 · · · dxN−1 (1.6)

Which was created by dividing the independent variable t into steps of
infinitesimal width. We obtain a set of values ti. At each time we select a
point xi and integrate through all possibilities. The path is constructed by
taking the multiple integral over all values xi. Having in mind (1.4) we can
write the kernel as follows:

K(b, a) =
∫ b

a
ei/h̄S[x(t)]Dx(t) (1.7)

The sum over all paths written as in (1.6) we shall call the path integral.

1.2 Connection between classical statistical

mechanics and quantum theory

Our aim is to derive the following formula:

K(b, a) =< xb|e−HT/h̄|xa >∼
∫ b

a
e−S[x(t)]/h̄Dx(t) (1.8)

which is the Euclidean (imaginary time) version of Feynman’s path inte-
gral. The vector |xa > and |xb > are position eigenstates. H is the Hamilto-
nian operator. We can expand (1.8) in a complete set of eigenstates.

H|n >= En|n > (1.9)
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and we obtain:

K(b, a) =
∑
n

e−EnT/h̄ < xb|n >< n|xa > (1.10)

We consider a system with one degree of freedom. The most interesting
case in quantum theory is a matrix element < xb, tb|xa, ta > - an amplitude-
to go from position xa at the time ta to position xb at the time tb. The
eigenvectors in Heisenberg picture are defined as:

|x, t >= eiHt|x > (1.11)

Following the definition (1.9) we can write the transition matrix as (one
should consider that we are no longer in Euclidean time!):

< xb, tb|xa, ta >=< xb|e−iH(tb−ta)|xa > (1.12)

We divide tb − ta into small time intervals (tb − ta)/N :

eiH(tb−ta) = eiH(tb−tn−1)eiH(tn−1−tn−2) · · · eiH(t1−ta) (1.13)

After inserting the complete sets of eigenstates between the factors:

< xb|eiH(tb−ta)|xa >=
∫
dx1 · · ·

∫
dxn−1 < xb|eiH(tb−ta)/N |xn−1 >

< xn−1|eiH(tb−ta)/N |xn−2 > · · · < x1|eiH(t1−ta)|xa >(1.14)

To obtain the formula (1.8) we should write the Hamiltonian as a function
of momentum squared- kinematic part, and space variable- x- just as H =
1
2
p2 + V (x). The next step is to write (1.14) within a momentum- space

transition factor- eipx and to integrate over momentum (dpi). Fortunatelly
we can give the analytical result of momentum integrals- cause they are
all squared. The left part in the exponential factor is the integral of the
lagrangian, which lead us to the formula (1.8).

We usually use the follow equation to measure the correlation functions:

Z =
∫
dx < x|eHT/h̄|x >= Tre−HT/h̄ (1.15)

The 2-point correlation function:

Γ(2) = Tre−HT/h̄x(t1)x(t2)/Z (1.16)
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Using this formula we can calculate the expectation value of an operator
in the time limit T →∞

lim
T→∞

< Γ(2) >=

∑
n e

−EnT/h̄<n|x(t1)x(t2)|n>∑
n e−EnT/h̄

∼ e−E0T/h̄ (1.17)

In the next section we will discuss the Schwinger model using the formal-
ism given above.

1.3 The Schwinger model

For the Schwinger model we consider the action given below:

S =
∫
d2x[

2∑
f=1

ψ̄f (iγ
µDµ −m)ψf −

1

4
FµνF

µν ] (1.18)

where ψ̄ and ψ stands for fermion field. 1
4
FµνF

µν is for electromagnetic
field strength tensor, where Fµν = ∂µAν − ∂νAµ. The next step is to turn
from the continuum into the lattice with the boundary conditions. The
constructed lattice is 2 dimensional- space time lattice. ’a’ stands for a
lattice spacing. We can come to the continuum via a→ 0. For the numerical
computing we define the parameter β ∼ 1

a2 which β →∞ in the continuum.
As we remember the amplitude is proportional to the integral of e−S

depending on gauge and fermionic field. Our goal is to calculate the mass
of the pion. To do this we consider the operator Ôx = ψ̄xγ5ψx and examine
the following correlation function < ÔtÔ0 > which we can develop into the
complete set of eigenstates

∑
n < 0|Ôt|n >< n|Ô0|0 >=

∑
n | < 0|Ô0|n >

|2e−Ent which in the limit limt→∞ and projecting to zero momentum gives
∼ e−mπt.

When we keep in mind (1.15) and (1.16) we come to the point that
to calculate the mπ we need to diagonalize the matrix and sum over all
eigenvalues and eigenfuctions to reach our goal.

lim
t→∞

< ÔtÔ0 >∼ lim
t→∞

<
∑
λi

ψα
i ψ̄

β
i

λi

∑
λj

ψα
j ψ̄

β
j

λj

>∼ e−mπt (1.19)
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The interpretation of amplitude is the creation of particle at time 0,
propagation for time t and annihilation at time t.

This formalism lead us to the mass we were looking for.

1.4 The topological charge-

the index theorem on the lattice

It is very interesting to add an information about chiral anomaly and how
it implements our investigation. In the previous section we considered a set
of eigenvalues and eigenvectors. Imagine that some of the eigenvectors can
have vanishing eigenvalues (λn = 0) on condition that: γ5ϕn = ±ϕn. As
a result we have n+ and n− eigenvectors- zero modes. The subtraction of
number of ’right’ and ’left’ zero modes gives us the Pontryagin index ν which
is the direct information of chiral anomaly. The index is so called topological
current, it is always an integer number depending on number of zero modes.

We want to know, how important the zero modes are in the calculation of
the pion mass. To obtain this one should keep in mind that the eigenvalues
we get from calculating the matrix D consist of values of zero mass and a
quark mass itself: λi = λm=0

i +mquark. As we remember (1.19) the pion mass
depends on the sum of 1

λiλj
which for zero modes is equal to 1

m2
quark

. As one

can see the smaller the mass of the quark the more important zero modes
are.



Chapter 2

Simulation

2.1 The correlation function

As we saw in the previous chapter, we can calculate the correlator out of the
eigenvalues and -vectors of the matrix D. There already exists a program,
which does exactly this and fits a cosh-function to the data of the correlator.
To reduce the amount of computer time for this calculation, we now want to
check, if we really need all eigenvalues and -vectors to calculate the correlator.
Perhaps it will be enough, to take only the lowest n (n ∈ N) out of them. So
we add to the existing program the possibility to sort the eigenvalues and -
vectors according to the norm of the eigenvalues and then use only the lowest
n eigenvalues and -vectors to calculate the correlator. For several numbers
n of used eigenvalues and -vectors we calculate the correlator on a 20x20
Grid. The full number of eigenvalues in a 20x20 Spinor-field is of course
20x20x2=800.
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<pp>	(mf/g)2/3=0.4	beta=5	Grid=20x20
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noOfEvsForObs 040   blue

noOfEvsForObs 020   pink
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2.2 The dependency of the correlation func-

tion on the amount of used eigenvalues

To determine the amount of needed eigenvalues and -vectors for several lat-
tice spacings a, we generated the data (eigenvalues and -vectors) with fixed

Z = (
mf

a
)

2
3 = 0.4 for five different values of β = {1, 2, 3, 4, 5}, which is pro-

portional to 1
a2 . So going to the continuum a → 0 means to go to higher

β. To determine the dependency of the number of needed eigenvalues and
-vectors on the lattice, we need a criteria, in which case we want to accept
the calculated correlator. A good parameter for this will be the relative
difference to the exact result:

R =
1

T

∑
t

< pp(t) >exact − < pp(t) >calculated

< pp(t) >exact
(2.1)

In respect to the typical error of the used data, we set the ratio R to 10%,
at which point we would accept the accuracy of computing the correlator.
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Now let us have a view on such a function R( 1
n
) for β = 5:
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By assuming a smooth and monotonous function to the data points with
1
n
, we can estimate the needed number of eigenvalues and -vectors and the

correlated errors by graphical methods.
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2.3 The dependency on the lattice spacing

As the result we obtain the function n(β):

β n
1 770±20
2 735±10
3 63± 5
4 100± 5
5 114± 5
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	(mf/g)2/3=0.4	Grid=20x20

This result don’t show the estimated smooth dependency but a sharp
transition of the lattice spacing. So: what have we done? By increasing
the β, we decrease the lattice space a and we decrease the physical volume
L = Na (N=Number of Gridpoints). Perhaps it would be a better idea
to always use the same constant physical volume by varying β such that
L = Na = N 1√

β
= const. and then calculate the relative amount of needed

eigenvalues and -vectors in dependency on β.
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2.4 The zero-modes experiments

For a better understanding of the physical content of the zero-modes (s.
section 1.4) we also want to calculate their influence on the correlation func-
tion. For this we used the generated data (eigenvalue and -vectors) with

fixed Z = (
mf

a
)

2
3 = 0.8 and fixed β = 5 and calculated the correlator only

and without these zero-modes:
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<pp>	(mf/g)2/3=0.8	beta=5	Grid=20x20

red = noOfEvsForObs 800

green = noOfEvsForObs without the zero-modes

blue = noOfEvsForObs only with the zero-modes

delta(800-without)=13%

delta(800-only)=52%

Although the zero-modes have a big importance with regard to the topo-
logical charge, we can observe only a small influence on the correlator at high
fermion masses.
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