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This report summarizes the calculation of radiative corrections for charm production

in deep-inelastic ep scattering at the HERA collider. These corrections are important

for physics analysis at experiments such as H1. The parametrization of the charm

structure functions was implemented in the HECTOR program so that HECTOR now cal-

culates radiative corrections for deep inelastic scattering as well as for photon gluon

fusion.

1 Introduction

1.1 Deep-inelastic scattering

The H1 experiment at the HERA collider at DESY, Hamburg, studies
deep inelastic scattering (DIS) of electrons or positrons from protons.
Typical beam energies are 27.5 GeV for the electrons or positrons and
920 GeV for the protons. The details about physics at HERA can be
found in [1].
The Born-level (leading order) Feynman diagram of DIS is shown in
figure 1. The electron and a quark of the proton exchange a virtual
boson (γ, Z, or W±) carrying a 4-momentum q = p′e − pe. DIS is
characterized by a large absolute invariant mass Q2 = −q2 (at least
1 GeV2) of the virtual boson. Apart from Q2, the kinematics of DIS
are described by the following variables:

x =
Q2

2 pp · q
(Bjorken-x)

y =
pp · q

pp · pe

(inelasticity)

W 2 = (pp + q)2 = Q2(
1

x
− 1) + M2

p (invariant mass of the γ∗p system)
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Fig. 1: Born level diagram of the DIS pro-
cess.

These satisfy the relations Q2 = x y s and W 2 ≈ Q2/x, where s is the center-of-mass energy squared and
Mp is the proton mass. Hence, only three of these kinematical variables are independent.

A distinction is made between the processes e± p → e± X where a γ or Z is exchanged (neutral current,
NC) and e± p → ν(ν̄) X , where the charged bosons W± are exchanged (charged current, CC). Here, only the
NC process will be considered.

1.2 Structure functions of the proton

Both γ∗ and Z exchange as well as the γ/Z interference term contribute to the NC cross section. Because of the
propagator factors of 1/M 2

Z and 1/M4
Z , respectively, in the latter two terms, these are strongly suppressed at

the relevant values of Q2. In the following, therefore, only the pure γ exchange cross section will be regarded.
Using the structure functions F1 and F2, the double differential cross section for DIS (e+p) can be represented

as follows:
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Fig. 2: An illustration of the proton structure
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Fig. 3: Feynman diagram for the charm produc-
tion by photon gluon fusion

d2σ

dx dQ2
(x, Q2) =

2πα2

x Q4
(2y2 xF1(x, Q2) + 2(1 − y)F2(x, Q2)) (1)

where α is the electromagnetic coupling constant.
In the naive quark parton model (QPM, see fig. 2) the proton is considered as a bundle of quarks and

gluons (collectively known as partons), with collinear momenta, neglecting masses and transverse momenta of
the partons. The Bjorken-x can then be seen as the fraction of the proton momentum carried by the parton
involved in the DIS process. In the QPM, F1 and F2 can be constructed as follows:

F1(x, Q2) =
1

2

∑
q=u,d,s

Q2
q(q(x, Q2) + q̄(x, Q2)) (2)

F2(x, Q2) =
∑

q=u,d,s

x Q2
q(q(x, Q2) + q̄(x, Q2)) (3)

u(x, Q2), d(x, Q2) etc. can be interpreted as quark momentum densities of the u, d etc. quarks and corre-
spondingly for the antiquarks ū, d̄, etc. (currently there is no need to assume the existence of heavy sea quarks
(c, b, or t) in the proton). Analogously, there is also a gluon density g(x, Q2); this, however, does not enter the
Born level DIS cross section.

In the QPM, F1 and F2 satisfy the Callan-Gross-relation FT := 2xF1(x, Q2) = F2(x, Q2). The structure
function FT correponds to the transverse cross section where the exchange photon is transverse (helicity ±1).
The longitudinal structure function, corresponding to processes involving longitudinal photons (helicity 0), is
defined as FL = F2 − 2xF1, so that

F2(x, Q2) = FT (x, Q2) + FL(x, Q2).

Thus FL vanishes in the naive QPM.

1.3 Photon gluon fusion

Experimental measurements of the quark densities have shown that the quarks carry only about one half of the
proton momentum. Since the gluons should contribute the other half, it is very important to measure the gluon
density of the proton. A convenient way of doing this is to use the process of photon gluon fusion (PGF, see fig.
3), as it has a clear experimental signature. In PGF the virtual exchange photon produces a quark-antiquark
pair together with a gluon from the proton:

γ + g → c c̄
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In the “massive approach” followed here, only three active flavors (u, d, and s) are assumed in the proton.
For charm production the PGF is then the dominant process. The cc̄ pair fragments into hadrons, mostly D∗±

mesons, which can be reconstructed from their decays.

Similarly to eqn. 1, the charm production cross section can be parametrized as

d2σcc̄

dx dQ2
=

2πα2

x Q4
(2y2 xF c

1 (x, Q2) + 2(1 − y)F c
2 (x, Q2))

=
2πα2

x Q4
{(1 + (1 − y)2) F c

2 (x, Q2) − y2F c
L(x, Q2)} (4)

This is the defining equation for the charm structure functions F c
2 and F c

L.

2 Parametrization of F
c

2
and F

c

L

The theoretical predictions for F c
k (k = 2, L) have been derived in [2] using perturbative quantum chromody-

namics (pQCD). In the following, the notation of that publication will be adopted.
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Fig. 4: The LO transverse (left) and longitudinal (right) coefficient functions for F
c(0)
k against η for different values of ξ

In leading order (LO, i.e. O(αs)), F c
k (k = 2, L) is determined by the process shown in figure 3 and can be

written as follows:

F
c(0)
k (x, Q2) =

Q2αs

4 π2 m2
c

∫ zmax

x

dz

z
e2

c g(x/z, µ2) c
(0)
k,g (5)

Here, mc ≈ 1.5 GeV and ec = +2/3 are the charm quark mass and charge, respectively, and µ2 is the mass
factorization scale which was set to µ2 = Q2 + 4m2

c in our calculations. The upper integration boundary is

zmax = Q2/(Q2 + 4m2
c). The quantity g(x, Q2) denotes the gluon density of the proton, and c

(0)
k,g (k = T, L),

with c
(0)
2,g = c

(0)
T,g + c

(0)
L,g, are coefficient functions calculated in [2] in terms of the variables η = s/4m2

c − 1 and

ξ = Q2/m2
c . The LO coefficient functions are shown in figure 4. The transverse coefficient function decreases

with growing Q2 ∝ ξ, whereas the longitudinal function which is an order of magnitude smaller than c
(0)
T,g ,

increases up to a certain value of Q2.

In next-to leading order (NLO, i.e. O(α2
s)), several distinct processes contribute to F c

k in addition to the LO

F
c(0)
k .

An additional gluon contribution appears due to vertex corrections and the gluon bremsstrahlung process:

γ + g → c c̄ + g
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Fig. 5: Examples of Feynman diagrams for QCD
vertex corrections (upper panel) and the gluon
bremsstrahlung process (lower panel)
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Fig. 6: Feynman diagrams involving a light quark,
correponding to a.) Fk,hq and b.) Fk,lq

Examples of the relevant Feynman diagrams are shown in figure 5 (there are several more). Similarly to F
c(0)
k ,

this contribution, denoted F
c(1)
k,g , is also proportional to the gluon density g:

F
c(1)
k,g (x, Q2) =

Q2α2
s

π m2

∫ zmax

x

dz

z
e2

c g(x/z, µ2) (c
(1)
k,g + c̄

(1)
k,g ln

µ2

m2
) (6)

Here, a so-called mass factorization part proportional to the logarithm of the factorization scale appears. The
corresponding coefficient function is denoted by a bar.

The other two contributions to NLO involve a light quark of the proton (u, d, or s) which emits the
participating gluon:

γ + q → c c̄ + q

There are two contributions of this type, since the virtual photon can either couple to the charm quark or the

light quark (fig. 6), denoted F
c(1)
k,hq and F

c(1)
k,lq , respectively. Since they involve a sea or a valence quark of the

proton, they are proportional to the corresponding quark densities:

F
c(1)
k,hq(x, Q2) =

Q2α2
s

π m2

∫ zmax

x

dz

z
e2

c ·
∑

q=u,d,s

(q(x/z, µ2) + q̄(x/z, µ2)) (c
(1)
k,q + c̄

(1)
k,q ln

µ2

m2
) (7)

F
c(1)
k,lq (x, Q2) =

Q2α2
s

π m2

∫ zmax

x

dz

z
·

∑
q=u,d,s

e2
q (q(x/z, µ2) + q̄(x/z, µ2)) d

(1)
k,q (8)

Because these processes are indistinguishable, their amplitudes have to be summed up before squaring. However,
the interference term vanishes after integrating over the internal kinematical variables, so there is no term

∝ ec eq . Note that there is no mass factorization part in the Fk,lq . The coefficient functions d
(1)
T,q and d

(1)
L,q (again

d
(1)
2,q = d

(1)
T,q + d

(1)
L,q) are shown in figure 7. The light quark contribution diminishes with growing Q2.

Figure 8 shows the different contributions to F c
2 for Q2 = 100 GeV2. The blue curve shows the absolute

value of the sum of the NLO quark contributions, F
c(1)
2 (q) = F

c(1)
k,hq + F

c(1)
k,lq , since this sum is negative. The

purple curve shows the total NLO F c
2 .
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Fig. 7: The NLO transverse (left) and longitudinal (right) coefficient functions for F
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L,lq vs. η for different values of ξ
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The charm structure functions increase with growing Q2. In figure 10, F
c(0)
2 (LO) and F

c(1)
2 (NLO) are

represented against x for Q2 values of 10 and 100 GeV2; in figure 11 the same is shown for F c
L. Note that F c

2 is
approximately one order of magnitude larger than F c

L.

To demonstrate the size of F c
2 in comparison with its light flavor analog F2, the ratio F c

2 /F2 is shown as a
function of x in figure 9. As expected, the ratio drops for growing x due to the diminishing gluon density for
large x. Because of the mass of the charm quarks that have to be produced, the ratio increases with growing
Q2.

In an exact calculation F c
k should not depend on the factorization scale µ2. The existing dependence is shown

in figure 12 for F c
2 , where the LO and NLO calculations are plotted with µ2 varying by a factor of 10. It should

be noted that the NLO F c
2 depends much less on the value of µ2 than the LO calculation, as one would expect.

3 Radiative corrections

In addition to the Born level cross section described by the structure functions, radiative and higher order cor-
rections, sometimes collectively known as radiative corrections, have to be accounted for to explain experimental
measurements.

In quantum electrodynamics (QED) charged particles continuously radiate photons (fig. 13 a.) and b.)).
The radiative corrections accounting for this are very important. If the electron radiates a photon before the
interaction, it loses some energy. Then the leptonic Q2 as determined in the experiment is not the momentum
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squared (q2) carried by the exchange photon. −q2 can range from zero up to the leptonic Q2, resulting in
convolution integrals with splitting functions in the calculation of radiative corrections (see [5]).

Higher order corrections involve additional virtual photons or other particles. An important example are the
electron vertex corrections (fig. 13 c.)).

A standard technique to obtain the dominant radiative and higher order corrections of QED is the leading-log
approximation (LLA). In this approach the terms proportional to ln(Q2/m2

e) which correspond to the collinear
mass singularities are separated. Because of the very small mass of the electron, the leptonic corrections are
dominant and the radiative corrections of the quarks are often neglected.

The LLA differential cross section can be split into several contributions (in contrast to a full O(α) calculation
where this is not possible):

d2σRC

dx dQ2
(LLA) =

d2σISR

dx dQ2
+

d2σinitial,HO

dx dQ2
+

d2σFSR

dx dQ2
+

d2σComp

dx dQ2
+

d2σISR,e+
→e−

dx dQ2
(9)

The first term correponds to initial state radiation (ISR, fig. 13 a.)), the second term comprises the relevant
higher order terms from the initial state. It contains non-negligible O(α2) (2 loop) contributions such as the
QED vertex correction (fig. 13 c.)) as well as higher order soft photon contributions. In the case of a neutral
current interaction, there is also final state radiation (FSR, fig. 13 b.)), which is calculated in O(α). The next
term represents the Compton contribution. This parametrizes the Compton scattering of the positron from the
virtual photon “cloud” around the proton in a certain kinematical range. Finally, if the charge of the final state
lepton cannot be reconstructed, there is also a e+ → e− conversion term.
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Apart from LLA which can be performed to second order, the full O(α) corrections can also be calculated.
Then the corrections cannot be split into different terms of ISR, FSR, Compton etc.. Higher order corrections
however can only be calculated in the LLA approach.
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γ
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γ
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e
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Fig. 13: The O(α) leptonic QED corrections for DIS, similarly for PGF. The diagrams correspond to a.) ISR b.) FSR,
and c.) leptonic vertex correction

4 Numerical computation of radiative corrections

4.1 The HECTOR program

The formulae for the LLA or full O(α) calculation of radiative corrections ([4], [5]) involve integrals that have to
be solved numerically. The HECTOR program [4] written in FORTRAN calculates the radiative corrections for deep
inelastic scattering according to these approaches for a variety of different kinematical variables. HECTOR has
two main branches, named HELIOS and TERAD. HELIOS calculates the corrections in the LLA approach, whereas
TERAD computes full O(α) corrections, at the cost of considerably greater run times. HECTOR allows for certain
cuts in kinematical variables to better suit experimental requirements (see results section).

It is also possible to calculate hadronic radiative corrections with HECTOR, this, however, was not used in the
described calculations.

The program is controlled by numerous flags set in an input file (see [4]). HECTOR prints out the Born cross
sections, the corrected cross sections and the relative difference δ between these in bins of two variables. The
variables (for example x, y, or Q2) as well as the bins can be specified by the user. All calculated cross sections
are double differential cross sections with respect to the specified variables.

Fig. 14: The tabulated functions h
(1)
A,T,g (left) and h

(1)
F,T,g (right) against η for different values of ξ.
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4.2 Calculating F
c

2
and F

c

L

To calculate F c
k (k = 2, L), the coefficient functions and the parton densities are needed (see eqn. 5 and following).

The coefficient functions for the LO F c
k are given analytically [3], whereas the expressions for NLO are much

too lengthy to be published. They are available in tables and can be accessed by an interpolation function for
the numerical integration.

Tabulated in η = s/4m2
c − 1 and ξ = Q2/m2

c are the coefficent functions separated from their threshold and
asymptotic parts. For the latter there are relatively compact analytical expressions. In the case of the NLO
gluon contribution, the corresponding tabulated functions, separated into longitudinal and transverse parts, are

called h
(1)
A,k,g and h

(1)
F,k,g (k = T, L), respectively. A and F stand for different color parts. The transverse functions

are shown in figure 14 as functions of η for different values of ξ.

As can be seen by comparing these figures to those in [3], we are using a refined grid (by Andreas Vogt) of
the tabulated functions resulting in much smoother plots. Since in this process the notation and normalization
of different quantities have been changed in the code, careful testing and recalculation was needed to ensure
that the F c

k computation is correct (the existing program only calculates the coefficient functions, not F c
k ).

First, every coefficient function in LO and NLO was compared to the publication [2] which uses the same
notation as [3]. After this comparison it was clear what had been changed during the improvement of the
program (e.g. there was a factor of ξ/π added in LO). The new version of the program now follows the notation
of [5] rather than that of the original authors. Next, the relation between the two notations had to be established
to derive the correct way of calculating F c

k from the given coefficent functions.

To test the F c
k code, the integrals were evaluated using ’toy’ parton densities, simple analytic expressions

without Q2 evolution, and compared to the results Andreas Vogt obtained with his program. After the agreement
of the programs’ output had been confirmed, ’real’ parton densities could be inserted for the F c

k calculations.

The parton densities are also available in tables from different sources. They are derived from experimental
data under certain theoretical assumptions, using LO or NLO calculations. For all plots shown here except
figure 9, the GRV98 parton distributions [6] were used. Figure 9 was generated with the CTEQ 5M1 parton
distributions.

An iterative numerical integration routine (DAIND) is used to integrate the product of coefficient functions
and parton densities.

4.3 Radiative corrections to PGF

To calculate radiative corrections for the photon gluon fusion with HECTOR, the program has to be modified
since it was originally developed for DIS corrections. Because of the similar definitions of Fk and F c

k (eqn. 1
and 4), only the ordinary structure functions have to be replaced by the corresponding F c

k functions.

To keep the program package flexible, two HECTOR flags were added, ICHARM and IGLUON. ICHARM controls
whether radiative corrections are to be calculated for DIS or for charm production, IGLUON sets the gluon
density parametrization to be used for the F c

k calculation. Although not relevant for our calculations, the Gc
k

and Hc
k structure functions which describe the γ/Z interference and pure Z term of the NC cross section, are

also calculated in the modified HECTOR program.

In addition, the HECTOR output was extended. HECTOR now also prints out the values of the different structure
functions for the corresponding values of x and y, or x and Q2. Of course this is not necessary for the radiative
corrections, but it is helpful for diagnostics and may give hints for unreasonable results.

Not surprisingly, the much greater complexity of the calculation of F c
k compared to that of the ’ordinary’

Fk makes HECTOR much more time-consuming (by a factor of 800 to 900).

5 Results

All HECTOR calculations were performed for an e+p scattering process with a positron energy of 27.5 GeV and
a proton energy of 920 GeV. The variables used are the leptonic variables Q2, x, y, . . . as described in the
introduction.
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5.1 Comparison of TERAD and HELIOS results

To estimate the deviation of the LLA results from the very time-consuming full O(α) calculations, radiative
corrections for charm production by PGF were calculated with three different configurations of HECTOR for three
values of x (10−4, 0.1, 0.5) and 100 values of y ∈ [0.01, 0.95] each.

The settings common to all configurations are :

• inclusion of initial and final state radiation and Compton contribution

• all contributions to NC reaction (γ, Z, and γ/Z interference)

• no e+ → e− conversion

• no electroweak form factors (use of sin2 θeff
W )

• no hadronic radiative corrections

• no cuts in kinematical variables

The three configurations, given names for convenient reference, are

HELIOS1: O(αL) LLA calculation without soft photon exponentiation

HELIOS2: O(αL) and O((αL)2) corrections summed up with HELIOS soft photon exponentiation

TERAD: Full O(α) calculation with higher order corrections from the LLA approach and HELIOS soft photon
exponentation.

The last configuration is the most time-consuming since TERAD and HELIOS calculations are combined.
The main HECTOR result is the relative difference of the corrected and Born differential cross sections,

δ =

d2

dxdy
σB − d2

dxdy
σCorr

d2

dxdy
σB

,

in other words the size of the radiative corrections in relation to the Born cross section. This is also the relevant
quantity for the experimental results (see below).
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Fig. 15: The relative size of the radiative corrections, δ (in percent), vs. y; results from the configurations HELIOS1 and
TERAD2 for different x (left), and from the three different configurations and a fixed value of x = 10−4 (right).

In figure 15, δ (in percent) is shown vs. y for the different values of x and the different configurations. The
bend in the curves at y ≈ 0.4 is due to the low Q2 damping applied to the structure functions in HECTOR to
ensure the right Q2 → 0 behavior. Note that the radiative corrections quickly reach considerable values when y
approaches 1. The corrections also fall with growing x (see also fig. 16).
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The deviations of the LLA calculations from the full O(α) results also rapidly increase in this region, whereas
at y . 0.5 they are negligible. Obviously the LLA estimates are too large at high y values.

The deviations also diminish for growing x. At x = 0.5 they are less than 5 % at all values of y. Thus,
depending on the kinematical region one is interested in and on one’s demands for accuracy, it is often sufficient
to use the much faster HELIOS branch of HECTOR. At large y and small x, however, running TERAD becomes
inevitable.

5.2 Radiative corrections for H1 kinematics

Radiative corrections are calculated to correct Monte Carlo data, which are generated without incorporating
these processes. They have to be computed for those bins in two variables which are also used in the analysis of
the experimental data. At H1, a grid in x and y of 32 points each is used. The δ values for this grid are shown
in figure 16. They were generated using the HELIOS1 configuration.

Because of the limited resolution and acceptance of detectors, certain kinematical cuts have to be made
when calculating radiative corrections. For example, if events are selected where the charm system has been
detected, it has to have at least a certain threshold energy determined by the calorimeter. The HELIOS branch
of HECTOR allows some kinematical cuts to be set. The cuts used for this calculation were a hadronic Q2

h of at
least 1 GeV2, a hadronic invariant mass squared of W 2

h > 3600 GeV2, and a E − pz cut of 40 GeV.
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Fig. 16: δ(x, y) (in percent) vs. x and y, calculated for the
H1 grid.
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Fig. 17: Uncorrected and radiative corrected Q2 distribu-
tion of Monte Carlo (MC) generated charm events in ar-
bitrary units. Experimental data points from H1 are also
shown.

From the definition of δ it is obvious how to calculate the corrected cross sections:

d2σCorr

dx dy
= (1 + δ)

d2σB

dx dy

This holds also when using other variables, such as x and Q2, as long as the bins are transformed properly.

In figure 17, the normalized number of Monte Carlo simulated D∗ mesons produced in PGF (c → D∗ →
D0 +π) and reconstructed in the H1 detector is shown in bins of Q2. The simulation was done disregarding any
radiative processes; therefore, the uncorrected histogram in figure 17 represents the Q2 behavior of the Born
cross section. Radiative corrections for this Q2 binning were calculated with HECTOR and, interpolating between
the bin boundaries, applied to the Born-level distribution. In the same figure, experimental data collected with
the H1 experiment (a fraction of the 2000 data production) is shown. The distributions of both simulated and
experimental data are normalized to 1. The values of the radiative corrections in figure 17 do not exceed 2 %,
for presentation reasons they have therefore been multiplied by a factor of 2.

When calculating double differential cross sections also binned in x, however, the radiative corrections reach
considerable values.
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