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This report contains a brief introduction to the lattice theory and path integral methods

in Quantum Mechanics, including some short calculations on the harmonic oscillator.

Numerical simulations based on the Metropolis algorithm have been performed to ob-

tain some properties of the harmonic and anharmonic oscillator, such as the ground

state energy, probability distribution and correlation function.

1 Introduction to Lattice Theory

1.1 Path Integrals

Since its introduction by Feynman (1948), the
path integral method has become a very impor-
tant tool for physicists. The Green Function for
a quantum mechanical problem (so called Ker-
nel) is calculated in this method by summing
up all possible classical paths between two fixed
points in space and time and weighting them
with the factor e

i
~

S , where S is the classical ac-
tion of the path1:

S =

∫ tb

ta

L(ẋ, x, t)dt (1)

The path integral, which means integration
over all possible paths, is formally written as:

K(b, a) =

∫ b

a

eiS[b,a]Dx(t) (2)

In order to illustrate how this is done, let’s
consider a particle moving in one dimension be-
tween (xa, 0) and (xb, T ). Because integration
over a functional space has to be given a mean-
ing, we wil introduce a time lattice to obtain a
well defined expression. Therefore, the time axis
is divided inN+1 steps of length a = T/(N+1),
so that every possible path on this time lattice is
given by the set of coordinates (x1, x2, . . . , xN ).
Each one of the xj coordinates can vary from
−∞ to ∞. The action of the path will then be:

1 For convenience, from now on we set ~ = 1

Slat[x] =
N

∑

j=1

a

[

M0

2

[xj+1 − xj ]
2

a2
− V (xj)

]

(3)

With this, the path integral takes on the form:

K(b, a)lat =

∫ xN=xb

x0=xa

eiSlat[x]
N
∏

j=1

dxj

A
(4)

where A is a normalisation-factor.
The solution for the path integral in the con-

tinuum is obtained by taking the limit N → ∞,
therefore sending a → 0, since the total time T
is a fixed value.

1.2 Kernel for the Harmonic

Oscillator

Here a short calculation is presented to show
how the kernel of the harmonic oscillator can
be obtained through the introduction of a time
lattice.

The kernel we seek is given by:

K(b, a) = F (T )eG(xa,xb,T ) (5)

F (T ) =

(

mω

2πi sinωT

)1/2

(6)

G(xa, xb, T ) =
imω

2 sinωT
[(x2

a + x2
b) cosωT − 2xaxb]

(7)
Our starting point will be equation (2) for the

kernel.
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Fig. 1: Time-developement of a non-centered Gaus-
sian in the potential of a harmonic oscillator

If x̄ is the classical path minimizing the ac-
tion, every path connecting points a and b can
be written as: x(t) = x̄(t) + y(t), with y(0) =
y(T ) = 0. After some short calculations, we
come to the following expression:

K(b, a) = F (T )eiScl[b,a] (8)

where

F (T ) =

∫ y(T )=0

y(0)=0

e
iM0
2a

( y2

a
−aω2y2)Dy(t) (9)

and the second factor, the one that refers to
the classical action, leads to the second factor
in equation [5]. Therefore, our task now is to
demonstrate that F (T ) gives the right depen-
dency in ωT , according to eq. [6].

∫

∞

−∞

e
iM0
2a

∑

N
j=1

[

[yj+1−yj ]2

a
−aω2y2

j

] N
∏

j=1

dyj

A
(10)

We perform the following Fourier transforma-
tion, which will ease the calculations:

yj =
N

∑

p=1

bpe
iωpja (11)

ωp =
pπ

(N + 1)a
(12)

This leads to the expresion below, where the
integrand is diagonal in the new coordinates.

F (T ) = J

∫

e
iM0
2a

∑

(

4 sin2 ωpa

2 −a2ω2
)

b2p

N
∏

j=1

dbj

(13)

Here, J is the Jacobian for the Fourier trans-
formation independent of ω. Performing the in-
tegrations over these gaussian integrals, we ar-
rive at:

F (T ) =
(2πa

im

)N/2
J

N
∏

p=1

(

4 sin2 ωpa

2
− a2ω2

)

−1/2

(14)

This product can be divided into two parts,
one of them does not depend on ω, and there-
fore we store it with every other factor, that is
independent of ω, in a constant factor C.

F (T ) = C

[ N
∏

p=1

(

1 −
a2(N + 1)2ω2

j2π2

)

]

−1/2

(15)

Performing the continuum limit (a → 0,N →
∞, (N + 1)a = T ), we finally get the desired
dependency on ωT :

F (T ) = C

(

ωT

sinωT

)1/2

(16)

The constant factor C can as well be calcu-
lated by other means, like the comparison with
the free particle kernel, to be:

C =

√

m

2πiT
(17)

The Kernel can be used to calculate the time-
developement of a given wave function ψ(x) by:

ψ(x, T ) =

∫

K(x, x′, T )ψ(x′)dx′ (18)

In figure 1, the form of a gaussian in a har-
monic oscillator potential moving from right to
left is shown (obtained by using Maple 8).
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1.3 Statistical Approach

By making a transition to imaginary time t →
iτ , therefore performing a rotation for the time-
axis in the complex plane of π/2 (this is equiva-
lent to the transition a→ ia on the lattice), the
Kernel changes to the following form:

K ′(b, a)lat =

∫

e−S′

lat[x]/~

N
∏

j=1

dxj

A
(19)

with:

S′

lat[x] =

N
∑

j=1

a

[

M0

2

[xj+1 − xj ]
2

a2
+V (xj)

]

(20)

The Kernel now is identical to the partition
function in statistical mechanics, and therefore
we can apply the well-known numerical methods
used there for our quantum mechanical problem.
The Boltzmann factor is in this case e−S′/~,
where ~ is equivalent to the temperature. So
the path integral formulation of quantum me-
chanics provides us with a possibility to solve
problems non-perturbatively.

The task now is to generate a great amount
of paths distributed according to the Boltzmann
factor, so called Heat Bath distribution, and use
them to measure interesting observables.

2 Numerical Simulations

The problem studied by numerical implementa-
tion of this theory is that of the one dimensional
oscillator, given by the following potential:

V (x) =
1

2
µ2x2 + λx4 (21)

2.1 Metropolis Algorithm

One of the easiest ways to implement the distri-
bution of the Heat Bath situation in a numeri-
cal simulation is the algorithm introduced by N.
Metropolis et al.. It starts with a certain path
configuration, with N time slices, and changes
the points of it one by one. The method of
Metropolis begins by choosing randomly a new
value x′ with uniform probability. If the action
is lowered by the replacement of x with x′, the
variable is set to this new value. If the action

is increased, then a random number r with uni-
form distribution between 0 and 1 is generated,
and the variable is changed by x′ only if e−∆S

is greater than r. Otherwise the lattice variable
retains its previous value x. In this way, a sec-
ond configuration is obtained.

By repeating this algorithm several times, an
amount of paths is generated. They are dis-
tributed according to the Heat Bath situation.

The starting path is either a straight line or a
completely random distribution of points on the
time lattice between the selected start and end
points. Those possibilities are called, respec-
tively, cold and hot start. This is then thermal-
ized by repeatedly performing the Metropolis
algorithm for a certain amount of times. Once
the path is already thermalized, we start storing
generated paths for later evaluation. Between
two consecutive stored paths, some more itera-
tions are done in order to decorrelate the paths
as much as possible.

2.2 Evaluation of the paths

2.2.1 Probability distribution

Once all the paths are stored, we want to know
the probability for finding the particle in the in-
terval [x, x + ∆x]. In order to do so, the x-axis
is divided into several intervals, so called bins,
of width ∆x. The computer counts the num-
ber of points in each one of these bins. Finally,
the normalization is achieved by dividing these
numbers by the total amount of points gener-
ated during the Metropolis process. In figure 2
and 3 the results for the harmonic2, and anhar-
monic3 oscillator are shown.
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Fig. 2: Ground state probability distribution for the
harmonic oscillator (data and theoretical curve)

2 (M0 = 1, µ2 = 1, λ = 0)
3 (M0 = 1, µ2 = −4, λ = 1)
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Fig. 3: Ground state probability distribution for an
anharmonic oscillator (interpolated data)

2.2.2 Energy distribution

For every path, the average potential energy is
calculated as:

Epot[x] =
1

N

N
∑

j=1

V (xj) (22)

In order to obtain the energy distribution, we
use the same routine introduced for the prob-
ability distribution on the energy values. The
results for the harmonic4 and anharmonic oscil-
lator5 are shown in figure 4 and 5.

The potential energy distribution for the har-
monic oscillator is centered near the theoretical
value given by the well-known quantum mechan-
ics expression for the ground-state E0pot

= ~ω/4
(with our parameters E0pot

= 0.25).
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Fig. 4: Energy distribution for the harmonic oscil-
lator

2.2.3 Correlation

Time correlation is obtained by taking the prod-
uct of the position of two points in the same

4 (M0 = 1, µ2 = 1, λ = 0)
5 (M0 = 1, µ2 = −4, λ = 1)
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Fig. 5: Energy distribution for an anharmonic os-
cillator

path separated by a time interval t, and averag-
ing this product over all points and paths. This
process has been done for different time inter-
vals and plotted against the time in figure 6.
Because of the logarithmic scale, it is easy to
notice that the function is described by an ex-
ponential decay. The intercept of this is given
by the expectation value of x2, while the slope
depends on the ground-state energy.
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Fig. 6: Correlation 〈x(0)x(t)〉 vs. t (data and inter-
polation)

2.3 Lattice correction

The expectation value for x2 is a function of
the lattice constant, and theoretically, for the
harmonic oscillator, given by the expression:

〈x2〉 =
1

2µ
√

1 + a2µ2/4
·
1 +RT/a

1−RT/a
(23)

with:

R = 1 +
a2µ2

2
− aµ

√

1 +
a2µ2

4
(24)
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In order to test the simulation, the average
of x2 was calculated for several lattice constants
and then plotted together with the theoretical
curve against the lattice spacing(figure 7). The
agreement between the generated values and the
theoretical curve increased with the amount of
evaluated points.

For the good agreement in our plot, the
amount of evaluated points was in the order of
106, by setting a total time of T = 500.

It is easy to see that for small lattice spacings
the theoretical value for the continuum (0.5 in
this case) is approached, as a working lattice
formulation requires.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

"T500osc.dat" u 1:2
xsqu(x)

Fig. 7: 〈x2〉 vs. a (data and theoretical curve)
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