TRANSVERSE Λ POLARIZATION IN SEMI-INCLUSIVE DIS

In collaboration with: M. Anselmino (Torino), D. Boer (RBRC), F. Murgia (Cagliari)

Outline:

- Transverse Λ polarization in unpolarized hadron collisions, $p \, p(A) o \Lambda^{\uparrow} X;$
- The polarizing fragmentation funct. $\Delta^N D_{\Lambda^{\uparrow}/q}(z,k_T) = D_{\Lambda^{\uparrow}/q} D_{\Lambda^{\downarrow}/q} \left[D_{1T}^{\perp} \right]$: a simple (gaussian) model for its explicit $oldsymbol{k}_T$ - dependence;
- Applications: (preliminary) predictions for transv. Λ polarization in unpolarized (NC, CC) semi-inclusive DIS: $\ell(\nu) p \to \ell' \Lambda^{\uparrow} X, \quad \nu p \to \nu \Lambda^{\uparrow} X;$
- $P_{_T}(\Lambda)$ with transversely polarized protons: access to $\Delta_{_T}q\left(x
 ight)\left[\,h_1,\,\delta q
 ight];$
- Conclusions and outlook;

Ref.s : M. Anselmino, D. Boer, UD, F. Murgia, PRD63 (2001) 054029; work in progress

$$egin{aligned} &P_T(\Lambda) ext{ in } p \ p(A)
ightarrow \Lambda^{\uparrow} \ X \ \end{pmatrix} \ P_T^{\Lambda}(x_F, p_T) &= rac{d\sigma^{p \, p
ightarrow \Lambda^{\uparrow} \ X} - d\sigma^{p \, p
ightarrow \Lambda^{\downarrow} \ X}}{d\sigma^{p \, p
ightarrow \Lambda^{\uparrow} \ X} + d\sigma^{p \, p
ightarrow \Lambda^{\downarrow} \ X}} \ &= rac{\sum \int dx_a \ dx_b \int d^2 oldsymbol{k}_{\perp c} \ f_{a/p}(x_a) \ f_{b/p}(x_b) \ d\hat{\sigma}(x_a, x_b; oldsymbol{k}_{\perp c}) \ D_{\Lambda/c}(z, oldsymbol{k}_{\perp c}) \ D_{\Lambda/c}(z, oldsymbol{k}_{\perp c}) \ \end{pmatrix} \ \end{aligned}$$

- Λ polarization entirely generated in the fragm. process, $q
 ightarrow \Lambda^{\uparrow} + X;$
- Effective, inclusive Λ PFF (consistent with available sets of unpol. FF);
- $\int d^2 \mathbf{k}_{\perp} F(\mathbf{k}_{\perp}) \Rightarrow F(k_{\perp}^0), \text{ where } k_{\perp}^0(z) \sim K z^a (1-z)^b;$
- Fit to exp. data \Rightarrow parameterizations for $k^0_{\perp}(z)$ and $\Delta^N D_{\Lambda^{\uparrow}/q_v}(z, k^0_{\perp})$;
- e.g. $k_{\perp}^0(z) = 0.66z^{0.32}(1-z)^{0.5}$
- [Indumathi et al. and Boros et al. sets for unp. FF];

 $P_T(\Lambda)$ -0.3 -0.2 -0.5 -0.4 -0.1 GeV. bins, at the c.m. energy $\sqrt{s} = 80$ actions, vs. p_{T} and for various x_{F} right), to $P_{T}\left(\Lambda\right)$ data from $p\!-\!Be$ remetry broken FF set (see plot on the Best fit, obtained with a SU(3) sym-0.5 1.5 p_T (GeV) 2 And the second 2.5 ω 3:5 4 10-5 10^{-6} 10^{-4} 10^{-3} 10^{-2} 10⁻¹ 100 that $\Delta_0^{\scriptscriptstyle N} D_{\Lambda^{\uparrow}\!/u,d}$ is negative. given by our best fit parameters, comized FF, $D_{\Lambda/u,d}$ and $D_{\Lambda/s}$. Notice pared to the Indumathi et al. unpolar- $|\Delta_0^N D_{\Lambda^{\uparrow}\!/u,d}|$ and $\Delta_0^N D_{\Lambda^{\uparrow}\!/s},$ / $D_{\Lambda\!/\!\mathrm{u},\mathrm{d}}$ D 0.2 $\Delta_0^N \mathbf{D}_{\mathbf{A}^{\uparrow}}$ $|\Delta_0^{N} D_{\Lambda^{\uparrow}/u,d}|$ 0.4 A CARACTER AND A CARACTER Ν 0.6 0.8 as

U. D'Alesio (Univ. and INFN, Cagliari)

Transverse Spin Physics - Zeuthen, 9-11 July, 2001

 10^{1}

0

Transverse Λ polarization in semi-inclusive DIS

4

Transverse Λ polarization in semi-inclusive DIS

J

 $D_{\Lambda/q}(z,k_{\perp})$ and $\Delta^N\!D_{\Lambda^{\uparrow}/q}(z,k_{\perp})$: gaussian parameterizations

• Define:
$$D_{\Lambda/q}(z, k_{\perp}) = \frac{d(z)}{M^2} \exp\left[-\frac{k_{\perp}^2}{M^2 f(z)}\right];$$

 $\Delta^N D_{\Lambda^{\dagger}/q}(z, \mathbf{k}_{\perp}) = \frac{\delta(z)}{M^2} \frac{k_{\perp}}{M} \exp\left[-\frac{k_{\perp}^2}{M^2 \varphi(z)}\right] \sin\phi;$

where ϕ is the angle between the spin and $m k_\perp$ of Λ

- Require:
- $\blacktriangleright \int d^2k_{\perp} \left[k_{\perp}^2\right] D_{\Lambda/q}(z,k_{\perp}) = \left[\langle k_{\perp}^2(z) \rangle\right] D_{\Lambda/q}(z)$ $\Rightarrow \quad {\rm fix} \ d(z), f(z);$
- + Consistency with approx.s and parameterizations adopted for $p\,p o \Lambda^{\uparrow} + X$;

More precisely we have:

- $D_{\Lambda/q}(z,k_{\perp}) = \frac{D_{\Lambda/q}(z)}{2\pi [k_{\perp}^0(z)]^2} \exp\left[-\frac{k_{\perp}^2}{2[k_{\perp}^0(z)]^2}\right];$
- $\Delta^N D_{\Lambda^{\uparrow}/q_v}(z,k_{\perp}) = \Delta^N_0 D_{\Lambda^{\uparrow}/q_v}(z,k_{\perp}^0) \frac{2}{\sqrt{\pi}} \frac{k_{\perp}}{[k_{\perp}^0(z)]^3} \exp\left[-\frac{k_{\perp}^2}{[k_{\perp}^0(z)]^2}\right];$
- The factor 2 comes from consistency with the approach in pA case;

inside the jet: Simple relation between our "effective" $k_{\perp}^0(z)$ and the physical $\langle k_{\perp}^2(z)
angle$ of the Λ

$$\langle k_{\perp}^{2}(z) \rangle = 2 [k_{\perp}^{0}(z)]^{2}$$

Positivity constraint reads:

$$\begin{split} |\Delta_0^N D_{\Lambda^{\uparrow}/q_v}(z,k_{\perp}^0)| \,/\, [D_{\Lambda/q}(z)/2] \leq \frac{\sqrt{e}}{2\sqrt{\pi}} \simeq 0.465 \\ \text{[fulfilled by the original parameterizations obtained in } p \,A \to \Lambda^{\uparrow} \,X \end{split}$$

 $P_T^{\Lambda}(x,y,z,{m p}_T)$ in unpolarized semi-inclusive DIS $\ (x_F>0)$

the hadron $m k_{\perp}\equivm p_{T};$ \uparrow along the $+\hat{y}$ -axis and $\phi=\pi/2$] In the virtual boson - proton c.m. frame [\hat{z} -axis along the virt. boson direction; \hat{x} -axis along

In the region z>0.2 where $D_{\Lambda/\bar{q}}\simeq 0$ and $\Delta^N D_{\Lambda^{\uparrow}/\bar{q}}\simeq 0$ (= 0 in our model), we have:

•
$$\nu p \to \ell^- \Lambda^{\uparrow} X \quad P_T^{\Lambda} \simeq \frac{(d+R\,s)\,\Delta^{\!\!\!N} D_{\Lambda^{\uparrow}/u}}{(d+R\,s)\,D_{\Lambda/u}}$$

•
$$\bar{\nu} p \to \ell^+ \Lambda^{\uparrow} X$$
 $P_T^{\Lambda} \simeq \frac{(1-y)^2 u \left(\Delta^N D_{\Lambda^{\uparrow}/u} + R \,\Delta^N D_{\Lambda^{\uparrow}/s}\right)}{(1-y)^2 u \left(D_{\Lambda/u} + R \,D_{\Lambda/s}\right)}$

•
$$\nu p \rightarrow \nu \Lambda^{\uparrow} X \quad P_{\pi}^{\Lambda} \simeq \frac{(Ku+d) \Delta^{N} D_{\Lambda^{\uparrow}/u} + s \Delta^{N} D_{\Lambda^{\uparrow}/s}}{(Ku+d) D_{\Lambda^{\uparrow}/u} + s \Delta^{N} D_{\Lambda^{\uparrow}/s}}$$

•
$$\nu p \rightarrow \nu M' \Lambda$$
 $\Gamma_T \simeq \frac{(Ku+d) D_{\Lambda/u} + s D_{\Lambda/s}}{(Ku+d) D_{\Lambda/u} + s D_{\Lambda/s}}$

•
$$\ell p \to \ell' \Lambda^{\uparrow} X \quad P_{\pi}^{\Lambda} \simeq \frac{(4u+d) \Delta^N D_{\Lambda^{\uparrow}/u} + s \Delta^N D_{\Lambda^{\uparrow}/s}}{(4u+d) D_{\Lambda^{\uparrow}/u} + s \Delta^N D_{\Lambda^{\uparrow}/s}}$$

•
$$\ell p \to \ell' \Lambda' X \quad P_T^{II} \simeq \frac{1}{(4u+d) D_{\Lambda/u} + s D_{\Lambda/s}}$$

where
$$R = \tan^2 \theta_c \simeq 0.056$$
 and $K \simeq 0.555$.

Transverse
$$\Lambda$$
 polarization in semi-inclusive DIS

U. D'Alesio (Univ. and INFN, Cagliari)

HERMES kin.: 0.023 $\leq x \leq$ 0.8, $y \leq$ 0.85, 1 $\leq Q^2 \leq$ 24 (in GeV²), $W^2 \geq$ 4 GeV²; broken (on the left) and a SU(3) symmetric (on the right) set of unpolarized and polar-NOMAD kin.: $\langle E_{
u}
angle =$ 48.8 GeV; $\langle Q^2
angle \simeq$ 9 GeV 2 ; $\langle x
angle =$ 0.22. izing FF for different semi-inclusive DIS processes Preliminary predictions for $P_T\left(\Lambda
ight)$ vs. z, integrated over p_T , with a SU(3) symmetry

U. D'Alesio (Univ. and INFN, Cagliari)

HERMES kin.: 0.023 $\leq x \leq$ 0.8, $y \leq$ 0.85, 1 $\leq Q^2 \leq$ 24 (in GeV²), $W^2 \geq$ 4 GeV²; unpolarized and polarizing FF for different semi-inclusive processes. a SU(3) symmetry broken (on the left) and a SU(3) symmetric (on the right) set of NOMAD kin.: $\langle E_{
u}
angle =$ 48.8 GeV; $\langle Q^2
angle \simeq$ 9 GeV 2 ; $\langle x
angle =$ 0.22. Preliminary predictions for $P_T\left(\Lambda
ight)$ vs. $\,p_T^{}$, integrated over $0.4\,<\,z\,<\,0.8,$ with

U. D'Alesio (Univ. and INFN, Cagliari) Transverse Spin Physics - Zeuthen, 9-11 July, 2001
$P_{T}^{\Lambda}(x,y,z,\boldsymbol{p}_{T}) \text{ in polarized semi-inclusive DIS } (x_{F}>0)$
$\ell p^{\uparrow} ightarrow \ell' \Lambda^{\uparrow}(p_{_T}) + X P_{_T} = rac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}}$
$d\sigma^{\uparrow\uparrow} = \sum_{q} \left\{ f_{q\uparrow/p\uparrow} [d\hat{\sigma}^{\ell q^{\uparrow} ightarrow \ell q^{\uparrow}} \hat{D}_{\Lambda\uparrow/q^{\uparrow}}(\boldsymbol{p}_{T}) + d\hat{\sigma}^{\ell q^{\uparrow} ightarrow \ell q^{\downarrow}} \hat{D}_{\Lambda\uparrow/q^{\downarrow}}(\boldsymbol{p}_{T})] ight.$
$+ f_{q\downarrow/p\uparrow} [d\hat{\sigma}^{\ell q\downarrow ightarrow \ell q^{\uparrow}} \hat{D}_{\Lambda\uparrow/q\uparrow}(oldsymbol{p}_{T}) + d\hat{\sigma}^{\ell q\downarrow ightarrow \ell q^{\downarrow}} \hat{D}_{\Lambda\uparrow/q\downarrow}(oldsymbol{p}_{T}) \}$
$[d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}](oldsymbol{p}_{_T}) ~=~ rac{1}{2}\sum_{a}^{} \left\{ qd\hat{\sigma}\left[\Delta_{_T}D_{\Lambda/q}(+oldsymbol{p}_{_T}) - \Delta_{_T}D_{\Lambda/q}(-oldsymbol{p}_{_T}) ight]$
$+ \Delta_T q \Delta_N \hat{\sigma} \left[\Delta_T D_{\Lambda/q} (+ oldsymbol{p}_T) + \Delta_T D_{\Lambda/q} (- oldsymbol{p}_T) ight] igg\}$
$\Delta_T D_{\Lambda/q}(\boldsymbol{p}_T) \equiv \hat{D}_{\Lambda\uparrow/q\uparrow}(\boldsymbol{p}_T) - \hat{D}_{\Lambda\downarrow/q\uparrow}(\boldsymbol{p}_T) \text{and} \Delta_T q \equiv f_{q\uparrow/p\uparrow} - f_{q\downarrow/p\uparrow} d\hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} + d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\uparrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\downarrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\downarrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\downarrow} - d\hat{\sigma}^{q\uparrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\uparrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} : \Delta_T \hat{\sigma} \equiv d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} = d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} = d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} = d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} - d\hat{\sigma}^{q\downarrow \to q\downarrow} = d\hat{\sigma}^{q\downarrow \to q$

Transverse Λ polarization in semi-inclusive DIS

1

On the other hand we have:

$$\begin{split} &\Delta_{T} D_{\Lambda/q}(+\boldsymbol{p}_{T}) - \Delta_{T} D_{\Lambda/q}(-\boldsymbol{p}_{T}) \\ &= [\hat{D}_{\Lambda \uparrow/q\uparrow}(+\boldsymbol{p}_{T}) - \hat{D}_{\Lambda \lor/q\uparrow}(+\boldsymbol{p}_{T})] - [\hat{D}_{\Lambda \uparrow/q\uparrow}(-\boldsymbol{p}_{T}) - \hat{D}_{\Lambda \lor/q\uparrow}(-\boldsymbol{p}_{T})] \\ &= [\hat{D}_{\Lambda \uparrow/q\uparrow}(+\boldsymbol{p}_{T}) - \hat{D}_{\Lambda \lor/q\uparrow}(+\boldsymbol{p}_{T})] - [\hat{D}_{\Lambda \lor/q\downarrow}(+\boldsymbol{p}_{T}) - \hat{D}_{\Lambda \uparrow/q\downarrow}(+\boldsymbol{p}_{T})] \\ &= 2 \hat{D}_{\Lambda \uparrow/q}(\boldsymbol{p}_{T}) - 2 \hat{D}_{\Lambda \lor/q}(\boldsymbol{p}_{T}) = 2 \Delta^{N} D_{\Lambda \uparrow/q}(\boldsymbol{p}_{T}) \\ &= [d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}](\boldsymbol{p}_{T}) = \sum_{q} \left\{ q \, d\hat{\sigma} \Delta^{N} D_{\Lambda \uparrow/q}(\boldsymbol{p}_{T}) \right\} \end{split}$$

$$+ \ \Delta_{_{T}}q\,\Delta_{_{N}}\hat{\sigma}[\Delta_{_{T}}D_{\Lambda/q}(+\boldsymbol{p}_{_{T}})+\Delta_{_{T}}D_{\Lambda/q}(-\boldsymbol{p}_{_{T}})]/2$$

• for unpolarized
$$p$$
 $\Delta_T q \equiv 0 \Rightarrow \sum_q q \, d\hat{\sigma} \Delta^N D_{\Lambda^*_T/q}(p_T)$

• for
$$\nu$$
-CC processes $\Delta_N \hat{\sigma} \equiv 0 \Rightarrow \sum_q q \, d\hat{\sigma} \Delta^N D_{\Lambda\uparrow/q}(p_T)$

if integrated over
$$p_T \implies \sum_q q \Delta_T q \Delta_N \hat{\sigma} \Delta_T D_{\Lambda/q}$$

[M. Anselmino, M. Boglione, F. Murgia, PLB 481 (2000) 253]

Transverse
$$\Lambda$$
 polarization in semi-inclusive DIS

- PFF $\Delta_0^N D_{\Lambda^{\uparrow}/q}(z,\langle k_\perp
 angle)$: good description of transverse Λ,Λ polarization in $p A \to \Lambda^{\uparrow} X$;
- Parameterizations for the PFF to extrapolate a consistent, gaussian k_{\perp} - dependence for $\Delta^{\!\scriptscriptstyle N} D_{\Lambda^{\!\uparrow}\!/q}(z,k_{\perp});$
- Preliminary predictions for P_{T}^{Λ} in unpolarized semi-inclusive DIS ($x_{F} > 0$): importance of a comparison of different processes (CC vs. NC);
- $P_{_T}^{_\Lambda}$ in polarized SI-DIS to access $\Delta_{_T} q$ and/or to disentangle $\Delta^N D_{\Lambda^{\uparrow}/q}$ effects;
- Improvements (in progress) from a more detailed treatment of (not averaged) k_\perp - dependence in $p\,A o \Lambda^{ op} X,$ where a large amount of data is available;
- More data on semi-inclusive DIS to test the z and k_{\perp} dependence of PFF.