Future Avenues to Access Transversity

Polarized proton beams in RHIC

$$\Rightarrow \text{ longitudinal polarization} \rightarrow \begin{cases} \text{measure } \Delta G \text{ via } \overrightarrow{p} + \overrightarrow{p} \rightarrow \gamma + \text{ jet } + X. \\ \text{measure } \Delta q_{val} \text{ and } \Delta \overline{q}_{sea} \text{ via } \overrightarrow{p} + \overrightarrow{p} \rightarrow W^{\pm} + X \\ \text{and } \overrightarrow{p} + \overrightarrow{p} \rightarrow l^{+}l^{-} + X. \end{cases}$$

 \Rightarrow *transverse polarization* \rightarrow measurements of transversity (δq)?

OUTLINE

- · A description of RHIC and the FY2001-2002 run.
- Experimental motivation to measure transverse single spin asymmetries
 a understanding spin asymmetry systematic errors in a collider.
- · Beyond the upcoming run.
- Outlook

L.C. Bland BNL

Polarized Proton Collisions at RHIC

- Two siberian snakes in each ring
 ⇒ stable spin direction is vertical
- No spin rotators for FY2001-02 run.
- Produce longitudinal polarization in FY2001-02 run by turning off one snake at top of ramp...
 - \Rightarrow stable spin direction in bend plane.
 - ⇒ special energies result in longitudinal polarization at all interaction points.

STAR from the Inside - Out

Items in red are not fully implemented for FY2001-2002 run. Expected completion dates are shown in parentheses.

http://server.c-ad.bnl.gov/esfd		S June 01															L						
to be determined Preli	min	ary	sci	hedı	ule,	, su	bje	ct :	to :	func	ling	n an	d o	the	r i	ss I	ues ~Cu Bud	rren get	t RI Lim:	HIC it			
setup	FY 2001															_^	FY 2002						
Program Element	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	J: 1	n Fel) M	Iar	Apr	May	Jun	
AGS-Booster-Tandem Startup																							
RHIC Cryo Cooldown/Warmup																							
RHIC Cryo Operation																							
RHIC Systems Test (Ramping etc, no beam	.)						As	Requ	ire	d					+		-	?					
RHIC Cryo Standby(or off)												pp s	tart	date	to	be	deter	mine	ed				
RHIC Startup with beams																							
RHIC Research with colliding HI beams																							
RHIC Research with colliding pp beams																							
AGS Polarized Proton Studies (No SEB)		g-2	cryo	star	tup							×											
AGS Fixed Target Experiments																							
AGS Fe 0.6-1 GeV/n (SEB-NASA, E957/90	60)								SEB	ends	when	n AGS	pp s	tudi	es be	gi	a l						
AGS 25 GeV/c Protons (FEB-HEP,E821)				-						\bigwedge				FY	2002	2 SI	EB/FE	Bsc	ched	ule t	to be	dete	ern
AGS 25 GeV/c Protons (SEB-HEP,E949)												\otimes											
AGS 25 GeV/c Protons (FEB-HEP,E951)																							
AGS 25 GeV/c Protons (SEB-NP,E930/931	!)																						
AGS 25 GeV/c Protons (SEB-NP,E927/953	<u>3/958)</u>																						
AGS 25 GeV/c Protons (FEB-DP,E955)																							
AGS 25 GeV/c Protons (FEB-BES,E956)																							
Shutdown																							
]

STAR Goals for FY2001 pp Run

- Goal 1: Obtain reference pp scattering data for heavy-ion program.
- Goal 2: Make first measurement of a polarization observable (A) in a $\vec{p}\vec{p}$ collider.

$$\mathsf{P}_{\mathsf{beam}}^{n}\mathsf{A}_{n} = \frac{\mathsf{Y}_{+} - \mathsf{R}\mathsf{Y}_{-}}{\mathsf{Y}_{+} + \mathsf{R}\mathsf{Y}_{-}} \qquad n = \begin{cases} 1 \to \mathsf{single spin asym.} \\ 2 \to \mathsf{two spin asym.} \end{cases}$$

This represents three measurements...

- 1) Spin dependent yield $(Y_{+/-})$ of some process (process 1)
- 2) Relative luminosity (R) of '+' and '-' bunch crossings \rightarrow ratio of yields for process 2
- 3) Magnitude of beam polarization \rightarrow 12 o'clock polarimeter + bootstrap (until calibration exp't with polarized target)
- Goal 3: Understand limiting systematic errors for A_{11} measurements.

What process should be used for first spin asymmetry measurement at RHIC?

Non-zero values of A_N have been observed in FNAL E704...

 $p_{\uparrow} + p \rightarrow \pi + X$

$$\sqrt{s} = 20 \text{ GeV}$$
 , 0.5 < p_T < 2.0 GeV/c

Theoretical models that explain the E704 data also predict non-zero A_N for pion production at RHIC at $\sqrt{s} = 200$ GeV.

 π^0 - D.L. Adams, et al. Phys. Lett. B261 (1991) 201.

 π^{\pm} - D.L. Adams, et al. Phys. Lett. B264 (1991) 462.

Expectations for A_N at RHIC

⇒ 'Extrapolations' of E704 experimental results lead to expected non-zero A_N at RHIC.

Considerations for a measurement at RHIC:

- no momentum analysis in forward direction, $Y(\pi^+) \approx Y(\pi^-)$ and $A_N(\pi^+) \approx -A_N(\pi^-)$
 - ⇒ expect zero *net* A_N for forward hadrons (when h⁺ is not discriminated from h⁻)

k

| p

- focus on measuring $A_N(\pi^0)$, but it requires detection of π^0 's with E > 20 GeV in the very forward direction ($p_T = 1.5 \text{ GeV/c} \Rightarrow \theta_{\pi} \sim 15 \text{ mrad}$)

Forward π^0 Detector Simulations

Use electromagnetic calorimeter (EMC) + shower maximum detector (SMD) to reconstruct $\pi^0 \rightarrow \gamma\gamma$ decays up to E_{π}~50 GeV.

p+p → π^0 +X single event, \sqrt{s} =200 GeV, E_{π}=37.6 GeV Simulated SMD profile Detector at z=750 cm, r=45 cm

SMD provides good $\gamma\gamma$ opening angle measurement and crude single γ energy measurement $\Rightarrow \pi^0$ reconstruction.

Existing detector (prototype endcap EMC) tested at SLAC with 5,10 and 20 GeV electrons. Good agreement with simulations found.

Use FPD to make *first measurement of polarization observable* at RHIC $\vec{p} + \vec{p}$ collider.

Expect single-spin asymmetry (A_N) to be significant for π^0 with large x_F and moderate p_T from FNAL E704 results.

Forward π^0 Detector Installation

- FPD installation is now complete.
- 'Stand-alone' data acquisition (DAQ) operational.
- Need to complete link to STAR trigger and DAQ systems.

 $p_{\uparrow} + p \rightarrow X$, $\sqrt{s} = 200 \text{ GeV}$, 2.48 nb⁻¹ X detected at z=750 cm and x=45 cm

 Simulated p_T and x_F distributions expected for polarized proton collisions.

Does A_N for $p_{\uparrow} + p \rightarrow \pi + X$ probe transversity?

- There are other explanations for A_N for large x_F pion production...
 - Sivers effect: initial-state interaction
 - twist-3 quark/gluon correlator
- Different models all fit E-704 data and have similar extrapolations to RHIC energies
- · Is this a robust way of determining δq ?

Concurrent Measurements with Vertical Polarization (FY2001-2002)

- h^+ , h^- and π^0 leading particle asymmetries near $x_F \sim 0$ (mid-rapidity).
- Λ yield and polarization (\Rightarrow polarization transfer D_{NN}) near $x_F \sim 0$ (mid-rapidity).

Measurements with Longitudinal Polarization (FY2001-2002)

- If there is measureable A_N for forward π^0 production, then use up/down detectors to check the direction of the proton polarization.
- h^+ , h^- and π^0 leading particle longitudinal spin correlation near $x_F \sim 0$ (mid-rapidity).

How hard collision can be probed in 2001?

Jan Balewski, IUCF Austin, January, 2001 STAR Collaboration Meeting

*) Reality: DAQ ~30 Hz, L=~10³⁰, duty cycle 50% \rightarrow ~10⁷ events in total

Longer Term Prospects for Probing $\delta q(x)$ at RHIC?

- Interference fragmentation functions triggered on away-side jet

↓ Jet trigger, used to set initial-state partonic x p↑ + p → π⁺π⁻ + π⁰ + X ↓ Measure superposition of helicity 0,1 states ⇒ requires good M_{ππ} resolution near M_ρ Can the interference fragmentation function be measured in e^+e^- collisions?

- Selection of qq' scattering from p_{\uparrow} + $p \rightarrow di\text{-jet}~events$

Can qq' scattering be isolated from dominant qg and gg contributions to di-jet yields?

For $p + p \rightarrow di$ -jets + X, get significant dilution of sensitivity to $\delta q(x)$ because of qg and gg scattering contributions \Rightarrow

$$A_{TT} = \frac{\delta \sigma_{qq'}}{\sigma_{qq'} + \sigma_{qg} + \sigma_{gg}} \iff A_{TT}^{qq'}$$

Suppress qg and gg scattering conributions by phase space cuts \Rightarrow

- selecting large invariant mass di-jets (large rapidity gap)
- exploiting fragmentation differences (demand high p_T fragments)

Outlook for RHIC spin

- The present RHIC run (FY2001-2002) will produce the first polarized proton collisions at $\sqrt{s} = 200$ GeV.

• The first polarized proton collisions at RHIC will be with vertical polarization for experimental reason ($\int L dt \sim 1.5 \text{ pb}^{-1}$).

• The first measurement of a polarization observable in a polarized proton collider will be for π^0 production at large x_F and small p_T , in similar kinematics for which anomalously large A_N was first observed in E704 at $\sqrt{s} = 200$ GeV. Is there a relation to $\delta q(x)$?

 Subsequent years will see the completion of the STAR and PHENIX detectors, and the installation of spin rotators ⇒ focus on longitudinal polarization measurements:

$$\Rightarrow$$
 measure ΔG via \overrightarrow{p} + \overrightarrow{p} $\rightarrow \gamma$ + jet + X.

$$\Rightarrow$$
 measure Δq_{val} and $\Delta \overline{q}_{sea}$ via $\overrightarrow{p} + p \rightarrow W^{\pm} + X$.

• Vertical polarization runs in subsequent years may provide definitive measurements of $\delta q(x)$ via $\pi^+\pi^-$ correlations (interference fragmentation function).

PHENIX detector at RHIC

