

XXIII Physics in

Zeuthen, June 26,

Collision

2003

Neutrino Oscillations: A Global Analysis

Outline:

The three-neutrino parameters

Impact of atmospheric + K2K experiments

Impact of CHOOZ

Impact of solar neutrino experiments + KamLAND

Conclusions

Based on work done in collaboration with: E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno

Introduction

We have now compelling evidence that the Hamiltonian of v flavor evolution

 $i \frac{dv_{\alpha}}{dt} = H_{\alpha}^{\beta} v_{\beta} \quad \text{is non-trivial:} \quad H_{\alpha}^{\beta} \neq E_{v} \bullet \delta_{\alpha}^{\beta}$

Barring LSND data, all differences from triviality (= massless neutrinos) are consistent with a 3v oscillation framework:

$$\Delta H_{\alpha}^{\beta} = (\Delta H_{kin} + \Delta H_{dyn})_{\alpha}^{\beta} = \begin{pmatrix} UM^{2}U^{+} + V \\ 2E \end{pmatrix}_{3\times3}$$

kinematical dynamical MSW term (in matter)

We have entered the precision era in the determination of ΔH_{kin} , and we are starting to probe the features of ΔH_{dyn} in matter. In the following we review the current status of (kin + dyn) constraints.

Notation

3

Impact of atmospheric + K2K neutrinos

can be basically taken from the 2v analysis of 3K data

since they are not significantly perturbed by 3v effects induced by small θ_{13} or $\delta m^2 / \Delta m^2$ (at least within the current picture).

this also implies no real sensitivity to sign(Δm^2) or δ_{CP}

Let us anticipate the results of SK + K2K constraints:

 $\Delta m^2 = (2.6 \pm 0.4) \times 10^{-3} \,\text{eV}^2$ $\sin^2 2\theta_{23} = 1.00 \ ^{+0.00}_{-0.05}$

new feature:

these errors now scale linearly up to $\sim 3\sigma$ (it was not the case prior to K2K and with the older SK data)

 $\int \Delta m^2$

2v analysis of SK + K2K

(GLF, E. Lisi, A. Marrone and D. Montanino, hep-ph/0303064)

Bounds on Δm^2 from SK and K2K

Combination of SK and K2K:

- almost "parabolic" likelihood
 - errors well-defined

 $\Delta m^2 \approx (2.6 \pm 0.4) \times 10^{-3} \,\text{eV}^2$ (at $1\sigma!$)

K2K decisive to strengthen the upper bound on Δm^2

Why?

Gianluigi Fogli

K2K theoretical energy spectrum 20 20 $\Delta m^2 (eV^2)$ Number of events/(0.5 GeV) n no oscill. 2.F - 3best fit 15 3.F - 315 best fit + sys. shifts Number of events 4.E - 310 10 5 5 0 0.5 2 2.5

K2K experimental energy spectrum

1.5

E (GeV)

1

2

2.5

For Δm^2 slightly above $3 \times 10^{-3} \text{ eV}^2$ (e.g. $4 \times 10^{-3} \text{ eV}^2$) the oscillation minimum is just at the K2K spectrum peak, giving excessive suppression, while 2÷3×10⁻³ eV² gives the right amount of v_{μ} disappearance

3

The amount of systematic error shifts preferred by data is very small if compared to stat. errors: K2K is dominated by stat. errors, and can be largely improved by higher statistics

0

E (GeV)

SK zenith distributions

In SK data, statistics is instead high enough to make systematic errors comparable

Note how systematic shifts pull e-like events to higher normalization, due to the still unsettled feature of "electron event excess"

Difficult to assess a possible relation with subleading 3v effects

 $\theta_{13} \neq 0$? high- δm^2 ?

whose size is comparable to systematic errors

Bounds on $sin^2 2\theta_{23}$

As for Δm^2 , we can bound $\sin^2 2\theta_{23}$:

- likelihood "parabolic" also in this case
 - K2K impact negligible in this case

$$\sin^2 2\theta_{23} = 1.00 + 0.00 - 0.05$$

(1σ)

Impact of CHOOZ

While atmospheric (SK) and K2K bounds on $(\Delta m^2, \theta_{23})$ can be studied well in the 2v approximation, a 3v analysis is mandatory for CHOOZ:

 $P_{ee} = P_{ee} \quad (\delta m^2, \theta_{12}, \theta_{13}, \Delta m^2) \quad survival v_e \text{ probability}$

In practice, Δm^2 is marginalized away in the χ^2 construction, by adding the "atmospheric + K2K" likelihood:

$$\chi^{2}_{\substack{\text{CHOOZ,} \\ \text{ATM,} \\ \text{K2K}}} = \min_{\substack{(\Delta m^{2}, \theta_{23})}} \left(\chi^{2}_{\text{CHOOZ}} \left(\delta m^{2}, \theta_{12}, \theta_{13}, \Delta m^{2} \right) + \chi^{2}_{\text{ATM, K2K}} \left(\Delta m^{2}, \theta_{23} \right) \right) = \chi^{2} \left(\delta m^{2}, \theta_{12}, \theta_{13} \right)$$

This is what is effectively combined with "solar + KamLAND" data that depend on

 $(\delta m^2, \theta_{12}, \theta_{13})$

Solar neutrinos before KamLAND

Four types of solar neutrino experiments:

- Chlorine (rate)
- Gallium (Ga rate + W-S effect)
- SK spectrum (44 bins)
- SNO spectrum (34 bins)

An interesting point:

High δm^2 or, equivalently, $\langle P_{ee} \rangle \sim 1/2$ not ruled out by any single experiment yet, although CI and SNO disfavor this solution

Solar problem: status before KamLAND

By combining the four solar experiments, only the large mixing angle solutions are seen to survive:

LMA: preferred by data, below the maximal mixing line

LOW: at lower δm^2 , with a long tail in the quasi-vacuum region

Large mixing: $\tan^2\theta_{12} \longrightarrow \sin^2\theta_{12}$ (log) (linear)

Solar data with and without CHOOZ

Concerning the upper bound on δm^2 coming from solar v experiments:

There exists an upper bound on δm^2 from all solar v exps. combined

Solar data with and without CHOOZ

Concerning the upper bound on δm^2 coming from solar v experiments:

- There exists an upper bound on δm^2 from all solar v exps. combined
- Not very dissimilar to the safe upper bound on δm^2 from CHOOZ

However, we cannot exclude yet rather high values of δm^2 (~few×10⁻⁴ eV²), consistent with

<P_{ee}> ~ 1/2

not easy to see MSW effects responsible for P_{ee} < 1/2

Gianluigi Fogli

Role of SNO in constraining $\langle P_{ee} \rangle$

By comparing ES, CC and NC fluxes measured by SNO:

SNO data

 $\Phi_{\rm e} \,(10^6 \, {\rm cm}^{-2} \, {\rm s}^{-1})$

Gianluigi Fogli

The KamLAND data

- The KamLAND total rate singles LMA out
- The KamLAND spectrum fixes the LMA sub-structure:

Above the analysis threshold (2.6 MeV) the "bulk" of the spectrum (first 4 bins above threshold) seems more suppressed than the "tail"

The KamLAND e⁺ spectrum

For given $\sin^2\theta_{12}$ we can compare the spectra expected for different values of δm^2 .

In particular we can select the values near to the best fit.

KamLAND e⁺ spectrum ($\sin^2 \vartheta_{12} = 0.31$) no oscillation $\delta m^2 = 2.0 E - 5 eV^2$ $\delta m^2 = 4.0 E - 5 eV^2$ $\delta m^2 = 3.0 E - 5 eV^2$ $\delta m^2 = 5.0 E - 5 eV^2$ (counts/0.425 MeV) 2 3 7 8 9 2 3 4 7 8 9 $\delta m^2 = 6.0 E - 5 eV^2$ $\delta m^2 = 8.0 E - 5 eV^2$ $\delta m^2 = 7.0 E - 5 eV^2$ $\delta m^2 = 9.0 E - 5 eV^2$ rate 8 9 $\delta m^2 = 1.0 E - 4 eV^2$ $\delta m^2 = 2.0 E - 4 eV^2$ $\delta m^2 = 1.5 E - 4 eV^2$ $\delta m^2 = 3.0 E - 4 eV^2$ 7 8 9 8 9 Evis (MeV) Evis (MeV)

The KamLAND e⁺ spectrum

For given $\sin^2\theta_{12}$ we can compare the spectra expected for different values of δm^2 .

In particular we can select the values near to the best fit.

There is a specific behaviour of the "bulk" and "tail" suppression for each spectrum.

The emerging sub-structure in the KamLAND allowed regions depends on the "bulk-tail" relative suppression and might be altered by future KamLAND data.

The KamLAND parameter space

strong lower limit on δm^2

EXAMPLE no upper limit on δm^2

bounds on θ_{12} still weak

the region allowed shows a sub-structure related to the specific "bulk"/"tail" relative suppression

Gianluigi Fogli

XXIII Physics in Collisions - Zeuthen, June 26, 2003

0.9

Gianluigi Fogli

LMA-I and LMA-II energy spectra

From a comparison of the LMA-I and LMA-II energy spectra ...

It is seen that bins near threshold are decisive to discriminate between LMA-I and LMA-II

this requires to include geo-v analysis

Progress and consensus in modeling geo-neutrinos are needed

Matter effects: how to test their presence

We can write the Hamiltonian for solar 2v oscillations in the form:

$$H = H_{kin} + H_{dyn} = \frac{k}{2} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix} + \frac{V}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
with
$$\begin{cases} k = \delta m^2 / 2E \\ V = 2^{1/2} G_F N_e \end{cases}$$
free parameter
Let the dynamical (MSW) term be rewritten in the form:
$$V \longrightarrow V \cdot a_{MSW}$$
we can check if the data
$$\begin{cases} exclude a_{MSW} = 0 \text{ (no MSW effect)} \\ prefer & a_{MSW} = 1 \text{ (standard MSW effect)} \end{cases}$$

A similar exercise was made to test the kinematical term in atmospheric v: rewriting $L/E \rightarrow L E^n$, test if n = -1

The SNO CC/NC double ratio is particularly useful to test matter effects

In fact, in the LMA region CC/NC values lower than 0.5 are reachable in presence of standard matter effects ($a_{MSW} = 1$), while they are excluded if $a_{MSW} = 0$.

Future upper limit (CC/NC)_{max} by SNO decisive to:

Place improved limits (δm²)_{max}

Provide compelling evidence for matter effects

Global fit to solar matter effects

A global fit to solar v including CHOOZ and KamLAND data (with δm^2 and θ_{12} as free parameters) shows that:

- a_{MSW} = 0 strongly disfavored
 - a_{MSW} ~ O(1) favored
- but still large ±3σ uncertainty on a_{MSW} (~ 3 decades)

However, the situation may dramatically improve in a near future! Indications can be found by simulating a higher KamLAND statistics (×5 and ×10 the present data)

from LMA-I:

a_{MSW} ~ 1

Solar and reactors 2ν analysis: summary

Current LMA sub-structure determined by bulk-tail suppression pattern in KamLAND spectrum. Some pattern change with higher statistics cannot be excluded.

Bounds on $\sin^2\theta_{12}$ dominated by solar neutrinos.

Upper bounds on δm^2 from solar v data alone stronger than - but not as compelling as - the CHOOZ limit.

Near-future SNO data (CC/NC) decisive to assess upper bound on δm^2 and (related) upper bounds on $\langle P_{ee} \rangle$ and $\sin^2\theta_{12}$, as well as to confirm emerging evidence for matter effects. Higher KamLAND statistics also very important.

In the meantime, a conservative attitude allowing $\delta m^2 \sim few \times 10^{-4} eV^2$, quasimaximal mixing, $\langle P_{ee} \rangle \sim 1/2$, and vanishing matter effects is still admissible at the $\sim 3\sigma$ level.

3v analysis: terrestrial data only

Purely "terrestrial" neutrino data from atmospheric (SK) accelerator (K2K) and reactor (CHOOZ + KamLAND) neutrino experiments are now able to put both upper and lower bounds on the solar parameters (δm^2 , θ_{12})

In particular ...

• the CHOOZ upper bound on δm^2 becomes stronger when $sin^2\theta_{13}$ increases

3v analysis: solar data only

In a similar way, we can consider solar data in a three-generation framework:

- there is weaker sensitivity to $sin^2\theta_{13}$ from solar v data
 - the upper bound on δm^2 appears to be weakened when $\sin^2\theta_{13} \neq 0$

Combining solar and terrestrial data

Combining all data ...

the best fit is reached in the 2vlimit ($s_{13}^2 = 0$)

we recover the safe upper bound on δm², imposed by the CHOOZ data

the higher $\Delta \chi^2$ tolerance due to the extra degree of freedom marginally allows a solution "LMA-III" (at $\delta m^2 \sim 2.5-3.2 \times 10^{-4} \text{ eV}^2$)

Bounds on the parameters (δm^2 , θ_{12} , θ_{13})

Taking LMA-I as the reference solution, we can extract the following $\pm 1\sigma$ estimate for the relevant solar 3v parameters:

Gianluigi Fogli

 $\delta m^2 \approx (7.3 \pm 0.8) \times 10^{-5} \text{ eV}^2$

LMA-I (~1 σ): $\langle \sin^2 \theta_{12} \approx 0.315 \pm 0.035 \rangle$

sin² θ₁₃ ≤ 0.017

However, the most complete information comes from the $\Delta\chi^2$ functions for each parameter, the other two being projected away

Conclusions

- We have entered the precision era in the determination of the parameters governing the neutrino flavor evolution.
- Upper and lower bounds exist on the kinematical parameters:

 $\Delta m^2 \qquad \theta_{23} \qquad \delta m^2$

concerning the "atmospheric parameters" (Δm^2 and $\sin^2 2\theta_{23}$), bounds are sufficiently strong to allow a meaningful definition of $\pm 1\sigma$ errors (improvable by K2K)

 θ_{12}

- concerning the "solar parameters" (δm² and sin²θ₁₂), the main issue is the resolution of the LMA-n ambiguity (improvable by KamLAND, SNO)
- Evidence starts to emerge for dynamical MSW effect in the Sun (improvable by KamLAND, SNO).

But:

only upper bound on $sin^2\theta_{13}$

- no sensitivity to sign(Δm^2)
- no sensitivity to δ_{CP}

- Placing a lower bound on $\sin^2\theta_{13}$ will be a decisive step to attack the problem of estimating $sign(\Delta m^2)$ and δ_{CP} with (far) future experiments, completing the determination of the 3ν parameters.
- Many ideas to test θ_{13} :

- reactors
- (very) LBL experiments
- supernovae

... but the precision program will require its time:

patience is needed with v Physics!

