Physics in Collisions 2003 - Zeuthen

Recent Results on Light Meson Physics

Cesare Bini

Universita' "La Sapienza" and INFN Roma

Outline

New results on Scalar Mesons
 A resonance close to 2M_p?
 Search for J^{PC}=1⁻⁺ exotic states
 Gluonium content of η'
 Conclusions

1. New Results on Scalar Mesons

"Too many light scalars below 2 GeV"

=0	I=1/2	l=1
f ₀ (400-1200) [σ]	κ(700)	a ₀ (980)
f ₀ (980)	K* ₀ (1430)	a ₀ (1450)
f ₀ (1370)		
f ₀ (1500)		
f ₀ (1710)		

Particle Data Group "choice"

$N \ ^{2S+1}L_J$	J^{PC}	$u\overline{d}, u\overline{u}, d\overline{d}$ I = 1	$egin{array}{l} u\overline{u},d\overline{d},s\overline{s}\ I=0 \end{array}$	$c\overline{c}$ I = 0	$b\overline{b}$ I=0	$ar{s}u,ar{s}d\ I=1/2$	$c\overline{u}, c\overline{d}$ I = 1/2	$c\overline{s}$ I = 0	$ar{b}u,ar{b}d$ I=1/2	$\overline{b}s$ I = 0	$egin{array}{c} ar{b}c\ I=0 \end{array}$
$1 {}^{1}S_{0}$	0-+	π	η, η'	$\eta_c(1S)$	$\eta_b(1S)$	K	D	D_s	В	B_s	B_c
$1 {}^{3}S_{1}$	1	ρ	ω,ϕ	$J/\psi(1S)$	$\Upsilon(1S)$	$K^{*}(892)$	$D^*(2010)$	D_s^*	B^*	B_s^*	
1 ¹ <i>P</i> ₁	1+-	$b_1(1235)$	$h_1(1170), h_1(1380)$	$h_c(1P)$		K_{1B}^{\dagger}	$D_1(2420)$	$D_{s1}(2536)$			
1 ³ P ₀	0++	$a_0(1450)^*$	$f_0(1370)^*, f_0(1710)^*$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$K_0^*(1430)$					
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	$f_1(1285), f_1(1420)$	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	K_{1A}^{\dagger}					

→ Last years: new experimental results and phenomenological fits

1.1 New evidence of low mass Scalar states:

- 1. Hadroproduction of Charmed Mesons: $\rightarrow D^+ \rightarrow \pi^+\pi^+\pi^-$ / D⁺ $\rightarrow K^+\pi^+\pi^-$ E791 at Fermilab
- 2. Photoproduction of Charmed Mesons: $\rightarrow D_{(s)}^{+} \rightarrow \pi^{+}\pi^{-} / D^{+} \rightarrow K^{+}\pi^{+}\pi^{-}$ FOCUS at Fermilab
- 3. e⁺e⁻ collisions: $\rightarrow J/\psi \rightarrow K^{*0} K^{+} \pi^{-} / D^{0} \rightarrow K^{-} \pi^{+} \pi^{0} / D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$ BES at Beijing, CLEO at Cornell,

To fit their Dalitz plots they need 2 *"broad" low mass states:* σ and κ Signal of the σ according to E791: in D⁺ $\rightarrow \pi^{-}\pi^{+}\pi^{+}$ Dalitz plot fit

Summary of σ and κ results

- CLEO: Phys.Rev.Lett. 89:251802, 2002 Erratum-ibid 90:059901, 2003
- BES: hep-ex/0104050 (Talk at Moriond 2001) hep-ex/0304001
- E791: Phys.Rev.Lett. 86, 770, 2001 Phys.Rev.Lett. 89:121801, 2002
- FOCUS: (Talk by S.Malvezzi at Photon03 see http://www.lnf.infn.it)

Criticism to this approach:

If resonances are strongly overlapping → simple BW sum does't work unitarity not respected

Alternative approach:

write the propagator using the K-matrix formalism:

$$\hat{A} = (\hat{I} - i\hat{\rho}\hat{K})^{-1}$$

ρ is the diagonal phase space matrix;K is the scattering matrix

Anisovich-Sarantsev review of scattering data \rightarrow K matrix for $IJ^{PC} = 00^{++}$:

	f ₀ (980)	f ₀ (1300)	f ₀ (1500)	f ₀ (1750)	f ₀ (1200÷1600)
Mass (MeV)	1020 ÷ 1031	1306 ÷ 1325	1485 ÷ 1490	1732 ÷ 1785	1450 ÷ 1530
Width (MeV)	32 ÷ 35	147 ÷ 170	51 ÷ 60	72 ÷ 160	800 ÷ 1000

No need of σ

4 states of q-bar origin and f₀(1200-1600) possible gluonium origin *V.V.Anisovich, A.V.Sarantsev, Eur.Phys.J,A16, 229, 2003*

Preliminary FOCUS fit with K-matrix approach:

Dalitz plot fit of $D^+ \rightarrow \pi^+ \pi^+ \pi^-$

- 1) Isobar approach: Sum of BWs for: $\rho^{0}(770)$ 33% $f_{0}(400) [\sigma]$ 19% $f_{0}(980)$ 7% $f_{2}(1275)$ 13% $S_{0}(1475)$ 2% Non resonant 10%
- 2) K-Matrix approach use AS K-matrix poles

Good fit is obtained:1. Unitarity is respected2. AS resonances only describe well the data

1.2 Low mass scalar mesons in ϕ radiative decays

$$\phi \rightarrow S\gamma \rightarrow S = f_0(980) , a_0(980)^0 , \sigma$$

 $\phi \rightarrow \pi \pi \gamma$ (I=0,J=0⁺⁺) \rightarrow search for f₀ and σ $\phi \rightarrow \eta \pi \gamma$ (I=1,J=0⁺⁺) \rightarrow search for a₀

φ =	pure ss state	(KK state)	
-----	---------------	------------	--

qq(1)	$f_0 = (uu+dd)/\sqrt{2}$ $a_0 = (uu-dd)/\sqrt{2}$	 →Mass degeneracy ok →Small BR(φ→ Sγ)
qq(2)	f ₀ = ss	➔Mass degeneracy"crisis"
	a ₀ = (uu-dd)/ √ 2	→BR(ϕ → f ₀ γ)>>BR(ϕ → a ₀ γ)
qqqq [<i>Jaffe 1977</i>]	f ₀ = (uu+dd)ss/ √2	→Mass degeneracy ok
	a_0 = duss , (uu-dd)ss/ $\sqrt{2}$, udss	→ ϕ → Sγ "superallowed"
KK molecule [Weinstein,		➔Mass degeneracy ok
<i>Isgur 1984</i>]		→ Small BR(ϕ → Sγ) F(r ²) <<1

Notice:

- 1. M(φ)-M(f₀,a₀)=1020-980=40 MeV
- 2. M(f₀,a₀) close to 2M(K) BW "Flatte'-like"
 - \rightarrow f₀, a₀ line shapes are distorted

Results from KLOE at DAFNE (16 pb⁻¹):

Phys.Lett. B536,209, 2002 Phys.Lett. B537,21,2002

 $M_{\pi\pi}$ (MeV)

Fit using kaon-loop model N.N.Achasov, V.N.Ivanchencko Nucl.Phys.B315, 465 (1989) \rightarrow Spectra are dominated by f_0 and a_0 production

 $\rightarrow \sigma$ needed to account low mass region of $\pi^0 \pi^0 \gamma$ spectrum (neg. interf.)

1000

 $M(\eta\pi)$ (MeV)

1050

Interpretation of KLOE results on scalars (within the context of kaon-loop frame):

parameter	KLOE result	4q model	qq(1) model $f_0, a_0 = (uu \pm dd)/v$	qq(2) model $\sqrt{2}$ $f_0 = ss$
$BR(\phi \rightarrow f_0 \gamma)$	(4.47 ± 0.21) x1	0 ⁻⁴ ~10 ⁻⁴	~ 10 ^{−6}	~10 ⁻⁵
$BR(\phi \rightarrow a_0\gamma)$	(0.74 ± 0.07)x1	0 ⁻⁴ ~10 ⁻⁴	~10 ⁻⁶	~10 ⁻⁶
$g^2(f_0KK)/4\pi$ (GeV ²)	$\textbf{2.79} \pm \textbf{0.12}$	"super-allowed"	"forbidden"	"allowed"
g(f ₀ ππ) /g(f ₀ KK)	0.50 ± 0.01	0.3-0.5	2	0.5
$g^{2}(a_{0}KK)/4\pi$ (GeV ²)	0.40 ± 0.04	"super-allowed"	"forbidden"	"forbidden"
g(a ₀ ηπ) /g(a ₀ KK)	1.35 ± 0.09	0.91	1.53	1.53

Large coupling of f_0 with KK \rightarrow large BRs \rightarrow 4q model more favorite **BUT** the results are model-dependent.

KLOE has now 20 x this statistics \rightarrow results soon also on $f_0 \rightarrow \pi^+ \pi^-$

Criticism to this approach: \rightarrow alternative fit to $\pi^0\pi^0\gamma$ KLOE + SND data

"Towards a model independent determination of the $\phi \rightarrow f_0 \gamma$ coupling" (*M.E.Boglione, M.R.Pennington hep-ph/0303200*)

1.3 Possible scenarios

So it is crucial to understand:

 $\rightarrow \sigma$ and κ are real states or are "ghosts" ?

→What is the s-quark content of $a_0(980)$ and $f_0(980)$? (compare $\phi\eta - \phi f_0(980)$) →Where is the scalar glueball? 50-50 mixing between $f_0(1370)$ and $f_0(1500)$?

F.Close and A.Kirk Eur.Phys.J C21, 531 (2001)

2. A resonance close to $2M_p$

2.1 E687 at Fermilab: diffractive photoproduction of 6 π

γp→ 3π⁺3π⁻p

E687: Phys.Lett.B514,240,2001

Fit results:

 $M = 1911 \pm 4 \pm 1 \text{ MeV/c}^2$

$$\Gamma = 29 \pm 11 \pm 4 \text{ MeV/c}^2$$

Quantum numbers:

 $J^{CP} = 1^{--}$ (photon q.n.) G = +, I = 1 (due to pion multiplicity)

Dip can be due to interference between a narrow and a broad vector (*P.J.Franzini and F.J.Gilman, Phys.Rev.D32,237,1985*)

FOCUS data \rightarrow x 20 statistics on the same final state, results soon.

Similar hints from "old" e⁺e⁻ experiments

 $\sigma(e^+e^- \rightarrow 4C+2N) \ (nb)$

Old DM-2 (never published data) (from R.Baldini): $e^+e^- \rightarrow 6$ pions

OBELIX has looked for 6 pions invariant mass distributions in $\overline{n}p$: $\overline{n}p \rightarrow 3\pi^+2\pi^-\pi^0$ (*Phys.Lett.B527, 39 (2002)*) No structure observed \rightarrow baryonium interpretation ruled out

2.2 BES at Bejing: $p\overline{p}$ mass spectrum from radiative $J/\psi \rightarrow \gamma p\overline{p}$ decay

BES: hep-ex/0303006

Anomalous "activity" in $p\overline{p}$ pairs close to the $p\overline{p}$ threshold is observed by BELLE Observation of $\overline{B^0} \rightarrow D^{(*)0}p\overline{p}$ Phys.Rev.Lett. 89:15182, 2002

Observation of $B^{\pm} \rightarrow p\bar{p}K^{\pm}$

Phys.Rev.Lett. 88:18183, 2002

It might be due to proton FF behaviour (steeply rising close to pp threshold)

The situation is *contradictory:*

1 vector state 30 MeV above thresholdE6871 vector state at ~ thresholdDM-2 + Fenice1 spin=0 state at thresholdBES

Problems with energy absolute calibration ? New information from: BES high statistics FOCUS BABAR + BELLE ISR (6 pions and/or pp) VEPP-2000 (up to 2.0 GeV)

1900 MeV is the energy where many hybrids states are foreseen *N.Isgur, A.Kokosky, J.Paton, Phys.Rev.Lett.* 54:869, 1985

Hybrid state ^a	J^{PG}	(Decay mode) _{L of decay}	Partial width (MeV)
x_2^+ (1900)	2++	$(\pi A_2)_P (\pi A_1)_P (\pi H)_P$	450 100 150
y ₂ +- (1900)	2+-	$(\pi B)_P$	500
z_2^+ - (2100)	2+-	$[\overline{K}K^*(1420) + \text{c.c.}]_P$ $(\overline{K}Q_2 + \text{c.c.})_P$	250 200
x_1^{-+} (1900)	1	$(\pi B)_{S,D} (\pi D)_{S,D}$	100,30 30,20
y ₁ ⁻⁺ (1900)	1-+	$(\pi A_1)_{S,D}$ [$\pi \pi (1300)$] _P ($\overline{K}Q_2 + \text{c.c.})_S$	100,70 100 ~ 100
z_1^{-+} (2100)		$(\overline{K}Q_1 + \text{c.c.})_D$ $(\overline{K}Q_2 + \text{c.c.})_S$ $[\overline{K}K(1400) + \text{c.c.}]_P$	80 250 30
x ₀ ⁺⁻ (1900)	0++	$(\pi A_1)_P (\pi H)_P [\pi \pi (1300)]_S$	800 100 900
y ₀ ⁺ - (1900)	0+-	$(\pi B)_P$	250
$z_0^+ - (2100)$	0+-	$(\overline{K}Q_1 + c.c.)_P$ ($\overline{K}Q_2 + c.c.$) _P [$\overline{K}K(1400) + c.c.$] _S	800 50 800

TABLE I. The dominant decays of the low-lying exotic meson hybrids.

^ax, y, and z denote the flavor states $(1/\sqrt{2})(u\bar{u} - d\bar{d}), (1/\sqrt{2})(u\bar{u} + d\bar{d})$, and ss. The subscript on a state is J; the superscripts are P and C_n .

3. Search for $J^{PC} = 1^{-+}$ exotic states

 $J^{PC} = 1^{++}$ not accessible for q-qbar mesons \rightarrow exotics

E852 at Brookhaven has found 2 states:

- $\pi^{-} p \rightarrow \eta' \pi^{-} p \rightarrow 1^{-+}$ state M=1597 ± 10 ⁺⁴⁵ ₋₁₀
- $\pi^{-} p \rightarrow \rho^{0} \pi^{-} n \rightarrow 1^{-+} \text{ state} \qquad M=1593 \pm 8^{+29}_{-47}$

 $\pi^{-} p \rightarrow \eta \pi^{-} p$ $\rightarrow 1^{-+}$ state M=1370 ± 16 +50 -30

 $\pi^{-} p \rightarrow \eta \pi^{0} n$ \rightarrow no resonant state in 1⁻⁺ wave

Crystal Barrel has found 1: $p n \rightarrow \pi^0 \pi^- \eta \rightarrow 1^{-+}$ state M=1400 ± 20 ± 20 $p p \rightarrow \pi^0 \pi^0 \eta$

```
\begin{array}{l} \Gamma = 340 \pm 40 \pm 50 \\ \Gamma = 168 \pm 20 \pm 50 \\ \Gamma = 385 \pm 40 \ ^{+105} \\ ^{-65} \end{array}
```

Phys.Rev.D60,092001 (1999) Phys.Rev.Lett.80,3977 (2001) Phys.Rev.D65,072001 (2002)

 $\Gamma\text{=}310\pm50$ $^{+50}$ $_{-30}$

Phys.Lett.B423,175 (1998) Phys.Lett.B446,349 (1999)

The two states are called $\pi_1(1400)$ and $\pi_1(1600)$

Hybrid states = q-qbar-gluon	➔ 1. Mass ~ 1.8 – 2.1 GeV
(tube-flux model)	➔ 2. Decay to at least 1 P-wave meson
N.Isgur, J.Paton, Phys.Rev.D31,2119	(1985) (πf_1 , πb_1 , πa_2 , ηa_1 , K K ₁)
	➔ 3. Possible exotic quantum numbers
	(0+- , 1-+ , 2+-)

 π_1 (1600) is confirmed in a decay to a P-wave and S-wave mesons

E852: π_1 (1600) observed in $f_1\pi^-$ and in $b_1\pi^-$ decays hints for a further state π_1 (2000)

→ 1⁻⁺ spectrum is now rich

decay mode	π ₁ (1400)	π ₁ (1600)	π ₁ (2000)
η <i>π</i> -	1370 ± 16		
	(⁺⁵⁰ ₋₃₀)		
η' π ⁻		1593 ± 8	
		(⁺²⁹ ₋₄₇)	
ρπ		1597±10	
		(⁺⁴⁵ ₋₁₀)	
f ₁ π⁻		1709 ± 24	2001 ± 30
		(?)	(?)
b ₁ π⁻		1664 ± 8	2014 ± 20
		(?)	(?)

HALL-D experiment at Jefferson Lab will search hybrids in more efficient way

4. Gluonium content of η (958)

$$|\eta\rangle = X_{\eta} |u\overline{u} + d\overline{d}\rangle + Y_{\eta} |s\overline{s}\rangle + Z_{\eta} |glue\rangle$$
$$|\eta'\rangle = X_{\eta'} |u\overline{u} + d\overline{d}\rangle + Y_{\eta'} |s\overline{s}\rangle + Z_{\eta'} |glue\rangle$$

 ϕ is an ss state \rightarrow selection of ss compone

KLOE measurement (Phys.Lett.B538,21 (2002))

$$\frac{\Gamma(\phi \to \eta' \gamma)}{\Gamma(\phi \to \eta \gamma)} = (4.7 \pm 0.47_{stat} \pm 0.31_{syst}) \times 10$$

 \rightarrow Extract the pseudoscalar mixing angle:

$$\frac{\Gamma(\phi \to \eta' \gamma)}{\Gamma(\phi \to \eta \gamma)} = \cot^2 \phi_p \left(\frac{p_{\eta'}}{p_{\eta}}\right)^2 F(\phi_v, \phi_p)$$
$$\phi_p = (41.8 \pm 1.9)^o$$

→Check the gluonium content of η': $X_{\eta^2} + Y_{\eta^2} = 1$

The other 2 bands are due to:

$$\frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \pi^0 \gamma)} \simeq 3 \left(\frac{m_{\eta'}^2 - m_{\rho}^2}{m_{\omega}^2 - m_{\pi}^2} \frac{m_{\omega}}{m_{\eta'}}\right)^3 X_{\eta'}^2$$
$$\frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^0 \to \gamma\gamma)} = \frac{1}{9} \left(\frac{m_{\eta'}}{m_{\pi^0}}\right)^3 (5X_{\eta'} + \sqrt{2}Y_{\eta'} \frac{f_{\pi}}{f_{\pi}})^2$$

→ Compatible with **no Gluonium content**

Other results to mention $X(1750) \rightarrow K^+K^-$ from FOCUS $X(1750) \rightarrow K_S K_S$ from ZEUS $\xi(2230)$ from BES

Phys.Lett.B545, 50, (2002) (see talk by M.Barbi at Photon03) (no news since talk by J.Shan at ICHEP02)

Other experiments already working:

HFRA

COSY

. . . .

- \rightarrow study of scalar mesons in pn \rightarrow d M
- → search for glueballs and hybrids in central production

And others too will start in few years

COMPASS

CLEO-cat J/ ψ (compare with BES) glueball searchesVEPP-2000e⁺e⁻ up to E_{cm} = 2 GeVHESR-PANDAproton beamHALL-Dphotoproduction of hybrids

Many thanks to: *G.Adams, R.Baldini, G.Dunwoodie, A.Dzierba, A.Filippi, F.Harris, S.Malvezzi, J.Napolitano, S.Serednyakov, J.Shan, E.P.Solodov, A.Zallo*

3. Search for new states

3.1 Conclusive evidence of X(1750) from FOCUS

Enhancement in K⁺K⁻ inv.mass

- 1) M = 1753.5 \pm 1.5 \pm 2.3 MeV
- 2) Γ = 122.2 ± 6.2 ± 8.0 MeV
- 3) $J^{CP} = 1^-$ (diffractive photoprod.)
- 4) No K*K decay:
- Γ(X(1750)→K*K)/Γ(X(1750)→K⁺K⁻)<0.065 90% C.L.
- ➔ Look at angular distribution Look at K_SK_S decays

FOCUS: Phys.Lett.B545, 50, 2002

 $Mass(K^{+}K^{-}) (GeV/c^{2})$

3.2 Evidence of "another" X(1750) from ZEUS

"Similar" to photoproduction: Several results from HERA

Photoproduction of Vector Mesons: Fixed target vs. HERA

Inclusive spectrum of $K_S K_S$ pairs

ZEUS

3.4 Status of ξ(2230)

- So far, no clear signal has been observed in the 58 10^6 J/ ψ sample.

Exp.	<mark>σ</mark> Mass	<mark>σ</mark> Width	<mark>к</mark> Mass	<mark>₭</mark> Width
E791	478_{-13} ⁺²⁴ ± 17	$324_{-40}^{+42} \pm 21$	$797 \pm 19 \pm 43$	$410\pm43\pm87$
FOCUS (preliminary)	443 ± 27	443 ± 80		
BES	390 ₋₃₆ +60	282 ₋₅₀ +77	771 ₋₂₂₁ +164 ±55	220 ₋₁₆₉ +225 ±97
CLEO	513 ± 32	335 ± 67	not found	