Fluka and Geant4

Using Fluka for CALICE

- Motivation
- Method
- Initial results
- Future

David Ward (Cambridge) for

Nigel Watson (CCRLC-RAL & Birmingham)
Motivation

- Systematic comparison of Mokka and Fluka physics modelling of CALICE test beam
- Particularly interesting for hadronic interactions
 - See G3/G4 studies (DRW, George Mavromanolakis)
- Wish to...
 - Test new Mokka detector models
 - Investigate full TDR type geometry
 - Avoid coding each geometry directly in Fluka
 - error prone, may introduce non-physics differences
- Issues
 - Fluka geometry defined by data cards
 - Only limited geometrical structures supported
 - Repeated structures at 1 level only
"Flugg" Package (P. Sala et al)

- Geometry & physics decoupled in G4 and Fluka
- Wrappers for f77/C++
- Fluka authors' comparisons of G4 with Flugg (FLUka+G4 Geometry)
 - Simple detectors, identical results
 - Complex T36 calorimeter: 81 layers Pb (10mm)-scint.(2.5mm)
 Consistent results
- My first test
 - Use T36 calorimeter as above

[From ATL-SOFT-98-039]
Transverse response of T36 calo. to 10 GeV π^- in flugg

User control available:
- at every tracking step, via rudimentary drawing routine (slow)
- at every energy deposition event

Note
- For G4 replicated or parametrised volumes (correspond to Fluka “lattice volumes”)
 - Region index is degenerate
 - Boundary crossings sometimes not detected
Volume Ambiguity

- fluka 'sees' 3x32 Si volumes
- id for wafers degenerate
 - in z (x3 towers)
 - in y within a stack of 5 detector slabs
 (10 Si layers)
Current Status

- **Mokka running within flugg/Fluka framework**
 - Using Mokka-01-05 + Geant4.5.0.p01 + clhep1.8.0 + gcc3.2
 - Flugg05 (Jan. 2003)
 - Fluka 2002.4 (May 2003)

- **Procedure: start from Mokka release and delete:**
 - all classes except for detector construction, detector parametrisation, magnetic field construction
 - corresponding #include, variable, class definitions in .cc/.hh
 - anything related to G4RunManager, DetectorMessenger
 - code where SensitiveDetector is set
 - interactive code, visualisation, etc.

- **Validation**
 - Minimal debugging tools in flugg, e.g. P55 prototype geometry
 - Library/compiler consistency (fluka object-only code)
Two pass operation

- **One-time initialisation**
 - Read G4 geometry/material definitions
 - Generate fluka input cards
 - Material/compound definitions
 - Material to volume assignments

- **Subsequent runs with a given geometry model**
 - Use generated Fluka cards
 - Tracking within G4 geometry
 - Physics processes from Fluka
First pass, G4 → Fluka conversion

Connecting to the database models

Building sub_detector P66WNominal, geometry db P66WNominal, driver proto01:
Ecal prototype driver with W ideal thickness (reference)

Connecting to the database P66WNominal
proto01: proto size is (499.600000,160.800000,378.200000) mm
proto01: placing prototype at (0.000000,236.000000,0.000000) mm
Sub_detector P66WNominal DONE!

Connecting to the database models

Building sub_detector SinglehcalFeRPC1, geometry db SinglehcalFeRPC1
Single module Hcal Fe & RPC as prototype
Connecting to the database SinglehcalFeRPC1
The sensitive model in Hcal chambers is RPC1
Iron is the radiator material being placed.
Sub_detector SinglehcalFeRPC1 DONE!

Building Hcal...
Detector construction done.

* G4PhysicalVolumeStore (0x401b5288) has 2424 volumes.
* Storing information...
 + Tungsten: dens. = 19.3 g/cm³, nElem = 1
 Stored as TUNGSTEN
 + TungstenModified: dens. = 11 g/cm³, nElem = 1
 Stored as TUNGST02
 + Copper: dens. = 8.96 g/cm³, nElem = 1
 Stored as COPPER
 + Silicium: dens. = 2.33 g/cm³, nElem = 1
 Stored as SILICIUM
 + SiVXD: dens. = 8.72 g/cm³, nElem = 1
 Stored as SIVXD
 + Iron: dens. = 7.87 g/cm³, nElem = 1
 Stored as IRON
 + Aluminum: dens. = 2.7 g/cm³, nElem = 1
 + TetraFluoEthane: dens. = 0.00455 g/cm³
 Stored as TETRAFLU
 Stored as RPCGAS1
 Stored as GRAPHITE
 + Mix: dens. = 2.15747 g/cm³, nElem = 9
 Stored as MIX

--------------- … ----------------
* Printing FLUKA materials...
* Printing FLUKA compounds...
* G4PhysicalVolumeStore (0x401b5288) has 2424 volumes.
* Printing ASSIGNMAT...
* Printing Magnetic Field...
 No field found...
*** Entering UsrIni.f!! ***
*** Entering HistIn.f!! ***
GEANT4 Volume Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Volume Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WorldPhysical</td>
</tr>
<tr>
<td>2</td>
<td>SensWafferPhys</td>
</tr>
<tr>
<td>3</td>
<td>DeadWBlock</td>
</tr>
<tr>
<td>4</td>
<td>DeadWBlock</td>
</tr>
<tr>
<td>5</td>
<td>DeadWBlock</td>
</tr>
<tr>
<td>6</td>
<td>DeadWBlock</td>
</tr>
<tr>
<td>7</td>
<td>DeadWBlock</td>
</tr>
<tr>
<td>8</td>
<td>DeadWBlock</td>
</tr>
<tr>
<td>9</td>
<td>DeadWBlock</td>
</tr>
<tr>
<td>10</td>
<td>SlabWBlock</td>
</tr>
<tr>
<td>11</td>
<td>SlabWBlock</td>
</tr>
<tr>
<td>2417</td>
<td>EndCapChamberPhys</td>
</tr>
<tr>
<td>2418</td>
<td>EndCapChamberPhys</td>
</tr>
<tr>
<td>2419</td>
<td>EndCapChamberPhys</td>
</tr>
<tr>
<td>2420</td>
<td>EndCapChamberPhys</td>
</tr>
<tr>
<td>2421</td>
<td>EndCapChamberPhys</td>
</tr>
</tbody>
</table>

Material Definitions

<table>
<thead>
<tr>
<th>Material ID</th>
<th>Material Type</th>
<th>Density</th>
<th>Cross Section</th>
<th>Area Product</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.0</td>
<td>TUNGSTEN</td>
<td>183.840</td>
<td>1.930e+01</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>74.0</td>
<td>TUNGST02</td>
<td>183.840</td>
<td>1.100e+01</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>COPPER</td>
<td>63.546</td>
<td>8.960e+00</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>SIVXD</td>
<td>28.090</td>
<td>2.330e+00</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>SILICIUM</td>
<td>28.090</td>
<td>8.720e+00</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>IRON</td>
<td>55.850</td>
<td>7.870e+00</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>ALUMINUM</td>
<td>26.980</td>
<td>2.700e+00</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>BERYLLIU</td>
<td>39.950</td>
<td>1.780e-03</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>ARGON</td>
<td>14.010</td>
<td>9.990e-01</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>OXIGEN</td>
<td>16.000</td>
<td>9.990e-01</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>NITROGEN</td>
<td>12.010</td>
<td>9.990e-01</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>CARBON</td>
<td>1.010</td>
<td>9.990e-01</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>HYDROGEN</td>
<td>12.010</td>
<td>9.990e-01</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>2420</td>
<td>G10</td>
<td>2.200e+00</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material to Region Assignments

<table>
<thead>
<tr>
<th>AssignMAT</th>
<th>Material ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>1.0</td>
</tr>
<tr>
<td>6.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>21.0</td>
</tr>
<tr>
<td>2423.0</td>
<td>2424.0</td>
</tr>
<tr>
<td>21.0</td>
<td>2425.0</td>
</tr>
</tbody>
</table>

Material Definitions

<table>
<thead>
<tr>
<th>Material ID</th>
<th>Material Type</th>
<th>Density</th>
<th>Cross Section</th>
<th>Area Product</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.0</td>
<td>TUNGSTEN</td>
<td>183.840</td>
<td>1.930e+01</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>74.0</td>
<td>TUNGST02</td>
<td>183.840</td>
<td>1.100e+01</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>COPPER</td>
<td>63.546</td>
<td>8.960e+00</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>SIVXD</td>
<td>28.090</td>
<td>2.330e+00</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>SILICIUM</td>
<td>28.090</td>
<td>8.720e+00</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>IRON</td>
<td>55.850</td>
<td>7.870e+00</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>ALUMINUM</td>
<td>26.980</td>
<td>2.700e+00</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>BERYLLIU</td>
<td>39.950</td>
<td>1.780e-03</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>ARGON</td>
<td>14.010</td>
<td>9.990e-01</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>OXIGEN</td>
<td>16.000</td>
<td>9.990e-01</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>NITROGEN</td>
<td>12.010</td>
<td>9.990e-01</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>CARBON</td>
<td>1.010</td>
<td>9.990e-01</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>HYDROGEN</td>
<td>12.010</td>
<td>9.990e-01</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>2420</td>
<td>G10</td>
<td>2.200e+00</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In these plots, Fluka has energy deposited in all material, not just active layers.
In these plots, Fluka has energy deposited in all material, not just active layers.

[G3/G4 plots from DRW]
Fluka with G3/G4

In these plots, fluka has energy deposited in all material, not just active layers.

Nigel Watson / CCLRC-RAL & [G3/G4 plots from DRW]
Ongoing Work

- Restrict study to energy deposited in active layers
- Improve reliability for larger samples
 - ~understood technical issue
- Review energy thresholds/step size in Fluka
 - default min. K.E. > 100 keV
 - neutrons, 19.6 MeV
 - energy e/γ > 500 keV (??)
 - low energy neutron cross-sections
- Compare systematically with G3/G4 results,
 - Same initial conditions
 - Thresholds, mip normalisation, etc.
 - Adopt same output format as DRW/GM
Summary

Identified “easy” way of comparing G4/Fluka
- Alternative to deprecated G-Fluka
- Preferable to “standalone” Fluka as more efficient for variations in geometry

Integration with Mokka geometry classes
- Need to feed changes back to Mokka developers

Will be useful input when devising test beam programme/strategy