Non-perturbatively O(a) improved Wilson fermions

- UKQCD/QCDSF: physically large volumes ($\gtrsim 1.5~{
 m fm}$) UKQCD: L/a=16; QCDSF: also L/a=24
- Independent cfgs. separated by 40 trajectories

$$rac{N_{
m ops}}{
m indep.~cfg.} = C \left(rac{L}{a}
ight)^{4.55} \left(rac{1}{am_{
m P}}
ight)^{z_2}$$

- Find $C = 0.31 \cdot 10^9$ flops, and $z_2 = 2.8(4)$ $\rightarrow C$ is 10 times larger as in ECFA report
- But: autocorrelations are poorly understood! $2\tau_{\rm int} < 40$ as estimated from plaquette

CP-PACS-style benchmark for $N_{\rm f}=2$

- smallest lattice spacing pprox 50% of CPU effort
- ditto for smallest quark mass
- O(a) improvement helps continuum extrapolation:

Total CPU effort: ≈ 100 Tflops years

* * *

ullet ALPHA: physically small volumes $(L \ll 1 \, \mathrm{fm})$; massless quarks, SF boundary conditions

$$N_{
m ops}/[{
m indep\ cfg}] = C' \left(L/a\right)^z$$

- detailed algorithmic study (hep-lat/0009027)
 - precise autocorrelation data for observable, i.e. $\overline{g}_{\mathsf{SF}}$.
 - $-z \approx 7$ for $L/a \geq 8$
- ullet benchmark: running of $lpha_s$ for $N_{
 m f}=2$
 - L/a = 16 20 sufficient; within reach on APEmille

Total CPU effort: ≈ 0.1 Tflops years