Light hadron spectrum and quark masses

Takashi Kaneko

High Energy Accelerator Research institute (KEK)

study of light hadron spectrum:

- light hadron masses ⇒ test of QCD
- ullet determination of fundamental parameters of QCD; $lpha_s$, m_q

at lattice 2000:

in quenched QCD: matured

 low-lying hadron and quark masses are determined precisely ... besides quenching effects

in
$$N_f = 2$$
 QCD : in progress

o systematic studies of sea quark effects

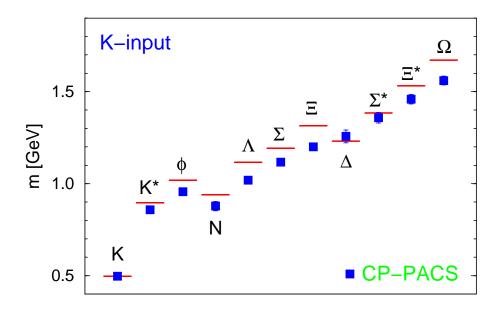
in
$$N_f =$$
 3 QCD : exploratory

- o developing algorithm
- few studies

- B.Orth, "Full QCD beyond the rho decay threshold"
- C.Allton, "Scaling for Dynamical Fermion effects in UKQCD simulation"
- C.Gebert, "QCD spectroscopy with light quarks"
- L,Levkova, "Anisotoropic Lattice and Dynamical Fermions"
- D.Nelson, "Does $m_q = 0$?"
- ullet S.Hashimoto, "Exploration of sea quark effects in two-flavor QCD with the O(a) improved Wilson quark action"
- ullet H.Neff, "Early plateau formulation for the η mass"
- K.Schilling, "A new approach to η' on the lattice"
- ullet N.Ishizuka, "I=2 Pion Scattering Length and Phase Shift with Wilson Fermions
- T.Yamazaki, "Maximum entropy analysis of hadron spectral functions and excited states in quenched lattice QCD"
- J.Hein, "Mass renormalization for improved staggerd quarks"
- J.Rolf, "Computation of the charm quark's mass in quenched QCD"
- O.Philipenson, "Non-perturbative parton masses"
- ullet F.Lee, " N^* Masses from an Anisotropic Lattice QCD Actions"
- H.B.Thacker, "Quenched Chiral Loop Effects in the Scalar Propagator"
- C.Rebbi, "First results from quenched QCD simulations with overlap fermions"
- Y.Aoki, "Hadron spectrum for quenched domain-wall fermions with DBW2 gauge action"
- ullet C.McNeile, "Hadron spectroscopy of twisted mass lattice QCD at $\beta = 6.0$ "
- ullet A.Patel, "Transverse lattice QCD at strong coupling and large N"
- N.Ghaleh, "Transverse Momentum Distribution and Gluon Emission in Electron-Positron Annihilations at 60 GeV."
- ullet J.McIntosh, "Independent plaquette state study of compact U(1) in 2+1 D utilizing an analytic Lanczos procedure"
- R.Frezzotti, "Quenched twisted mass QCD at small quark masses and in large volume"
- ullet H.Moutrarde, "Preliminary calculation of $alpha_s$ from Green functions with dynamical quarks"
- \bullet N.Eicker, "Light Quark Masses with $N_f=2$ Wilson fermion: an Update from SESAM/T $_\chi$ L"
- A.Nakamura, "Study of sigma meson on the lattice"
- T.Draper, "Quenched Chiral Behavior of Hadron Masses with Overlap Fermions"
- ullet D.Hepburn, "Light hadron spectrum using O(a) improved action with $N_f\!=\!2$ "
- ullet A.Hart, "Topology and the scalar glueball with $N_f\!=\!2$ improved Wilson fermions"
- K.Jansen, "Scalar Condensate and light-quark masses from overlap fermions"
- ullet S-J.Dong "Pion decay constant, Z_A , and quark masses from overlap fermions"

quark mass"

- S.Hawswirth, "First results from a parametrized fixed point action"
- U.Wolff, "First results on the running coupling in QCD with two massless flavors"
- ullet H.Matsufuru, "Anisotropic O(a) improved Wilson quark action and hadron spectroscopy"
- T.Umeda, "O(a) improved Wilson quark action on anisotropic lattice"


- results with KS action ⇒ review by Toussaint
- flavor singlet ⇒ review by Edwards
- ullet Ginsparg-Wilson fermion \Rightarrow review by Kikukawa
 - ⇒ review by Hernandez
- my talk : studies with Wilson-type action

- 1. light hadron spectrum
 - in quenched QCD
 - ullet in $N_f\!=\!$ 2 full QCD search for sea quark effects
 - in $N_f = 3$ full QCD
- 2. test/application to chiral perturbation theory
- 3. determination of fundamental parameters of QCD
 - strong coupling
 - quark masses
- 4. summary

1. light hadron spectrum

— before lattice2000 —

ground states: already studied well!!

decay constants, quark masses: non-perturbatively determined (ALPHA, APE, UKQCD, QCDSF...)

this year -

1. testing ground for new formulations

- o anisotropic
- Ginsparg-Wilson fermions (domain-wall, overlap)
- twisted mass QCD

for improvement

non-perturbative improvement

2. study of heavier/excited states

o negative parity baryon

calculation of meson spectrum

on anisotropic lattice

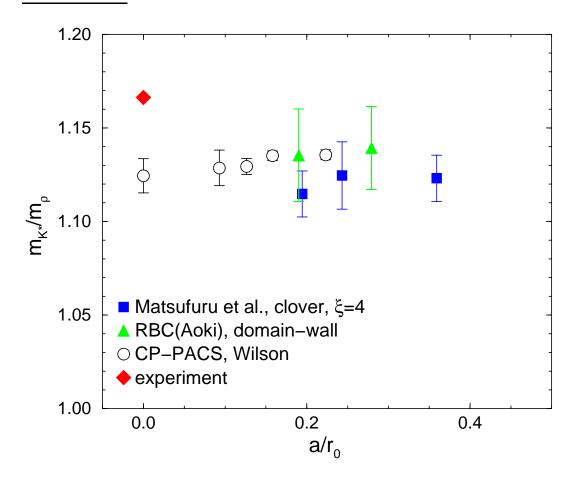
Matsufuru, et al.

plaq + clover (tadpole improved c_{SW}),

$$a_s^{-1}$$
 = 1.1-2.0 GeV, $La\sim$ 2 fm, 200-100conf, ξ = 4

domain-wall fermion

RBC(Y.Aoki):


DBW2 gauge action(QCDTARO)

$$(a^{-1}, L) \sim (1.3 \text{ GeV}, 2.4 \text{ fm}), (2.0 \text{ GeV}, 1.6 \text{ fm}),$$

$$\sim$$
 100 conf, $N_5 = 16$, $M_5 = 1.8$

⇒ consistency with previous calculations using Wilson/KS.

$m_{K^*}/m_{ ho}$

- consistent with previous calculation with 2-3% accuracy
- ullet confirm small $m_{K^*}-m_K$ in quenched QCD

• light quark masses with non-perturbative renomalization

Giusti, et al.:

$$a^{-1}\sim$$
 2 GeV, $L\sim$ 1.4 fm, 54 conf

Dong, et al.:

$$a^{-1} \sim$$
 1.2 GeV, $~L \sim$ 3.2 fm, $~$ 63 conf

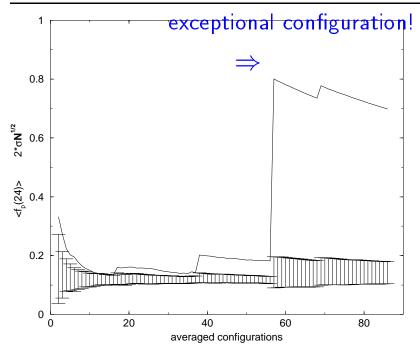
$$\Rightarrow$$
 (see below)

o suppress exceptional conf at small quark masses

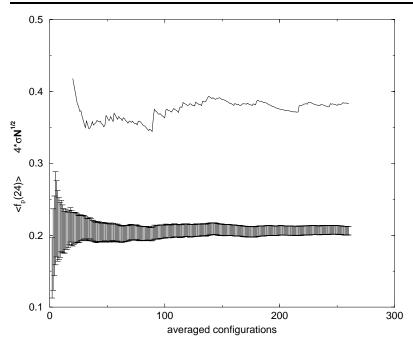
$$D_{\rm tmQCD} = D_{\rm Wilson} + i\mu_q \gamma_5 \tau_3$$

 \Rightarrow lower bound for eigenvalues of $D_{\rm tmQCD}$

McNeile, et al.


$$a \sim$$
 0.09 fm, $L = 1.4$ fm

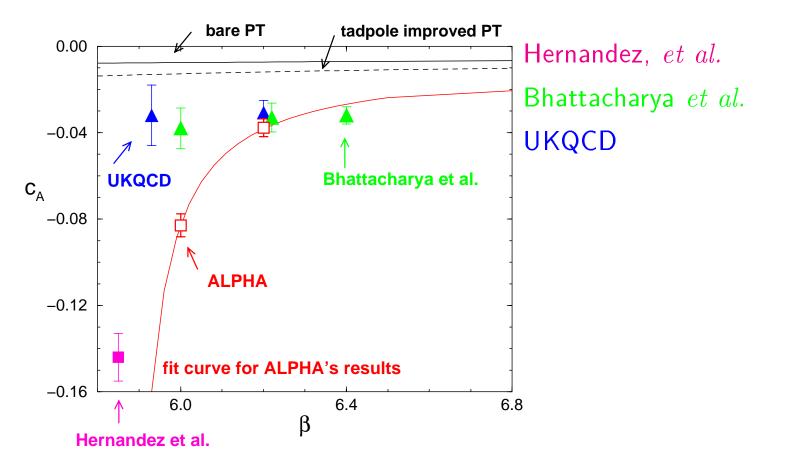
Della Morte, et al.

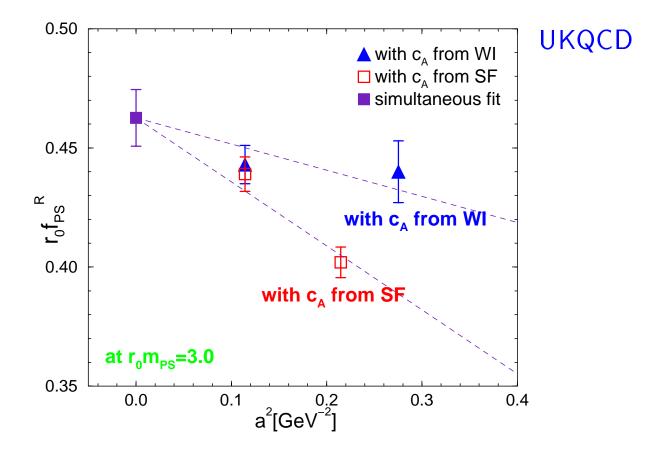

$$a\sim$$
 0.07,0.09 fm, $~L/a\!=$ 16, 24, $~T/L\!=$ 2,3, $~m_{\rm PS}/m_{\rm V}\geq 0.47$

plot $\sigma \sqrt{N_{
m conf}}$ vs $N_{
m conf}$ $\sigma = {
m error~of~} \langle PP^{\dagger} \rangle$, $\sigma \propto 1/\sqrt{N_{
m conf}} \Rightarrow \sigma \sqrt{N_{
m conf}} \sim {
m const}$ $m_{
m PS}/m_{
m V} \sim 0.47$

$2 \sigma \sqrt{N}$ vs statistics in standard QCD

4 $\sigma \sqrt{N}$ vs statistics in twisted mass QCD


• exceptional configurations are suppressed in tm QCD.


- non-perturbative improvement
 - ⇒ precise determination of hadron and quark masses
- at Lattice 2000
 - c_A from Schrödinger functional(SF)
 - c_A from Ward identity(WI)
 - ⇒ different values
- ullet new results for improvement coefficient c_A

Hernandez et al.: Schrödinger functional; at $\beta = 5.85$

Bhattacharya et al.: Ward identity; at $\beta = 6.0$, 6.2, 6.4

UKQCD(Collins): Ward identities; at $\beta = 5.93$, 6.2

choice of improvement condition $\Rightarrow O(a)$ difference in c_A

excited baryons \Leftarrow experimental study in Jefferson Laboratory

negative parity baryon

$$N^*$$
, $J^P = 1/2^-$

 \Rightarrow parity mass splitting $N^* - N$

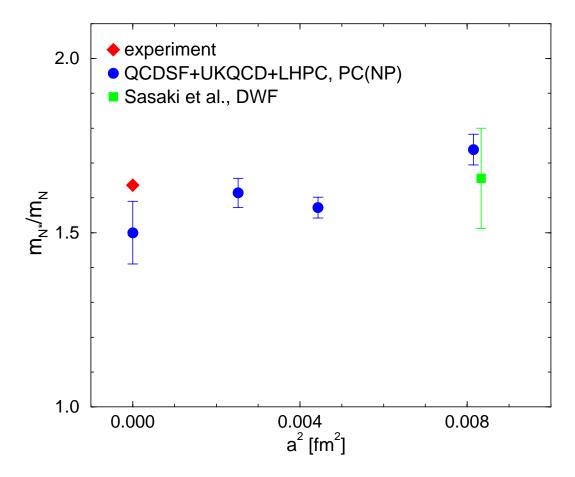
until Lattice 2000

Lee and Leinweber, LHPC, LHPC+UKQCD,...

- \circ at large quark masses, or at fixed a
- o finite size effects?

this year

o Sasaki et al.


domain wall, $a^{-1}\sim 2~{\rm GeV}$, $L=1.6~{\rm fm}$

LHPC+QCDSF+UKQCD

systematic study of scaling violation, finite size effects clover(NP $c_{\rm SW}$), $a^{-1}\sim$ 2-4 GeV, L= 1.5-2.2 fm

• Lee et al.

anisotropic ($\xi=3$), D_{234} , $a_t^{-1}\sim 2.5$ GeV, L=2.4 fm chiral extrapolation has not been performed

- ullet reproduce experimental N^* N splitting within 10% accuracy.
- interesting to see other excitation
 - N'(1440), $\Lambda(1405)$, ...

 $1.2~N_f = 2~{\sf QCD}$

--- - · J - - **-** - · - ·

recent studies in $N_f = 2$ full QCD

group	action	$a_t[fm]$	$La_s[fm]$	$m_{\mathrm{PS}}/m_{\mathrm{V}}$
SESAM	P-W	0.07	1.2	0.69-0.83
$T\chiL$	P-W	0.07	1.8	0.55,0.7
$SESAM/T\chiL$	P-W	0.09	1.4	0.68-0.85
GRAL	P-W	0.12	1.9	0.4
UKQCD	P-C(1.76)	0.12	0.98-1.9	0.67-0.86
UKQCD	P-C(NP)	0.10	1.6	0.69-0.83
QCDSF	P-C(NP)	0.09	2.4,1.6	0.69,0.76
JLQCD	P-C(NP)	0.09	1.0-1.7	0.60-0.80
CP-PACS	R-C(TP)	0.11-0.22	2.5-2.6	0.55-0.81
Columbia	P-KS	0.09	1.5	0.57-0.70
MILC	P-KS	0.11-0.3	2.4-3.7	0.3-0.8
Columbia	$PKS(\xi \neq 1)$	0.06-0.19	3.2-5.4	0.3-0.8
MILC	Sy-imp.KS	0.13	2.6	0.50

results with staggered fermion \Rightarrow review by Toussaint.

results with Wilson fermion \Rightarrow this talk.

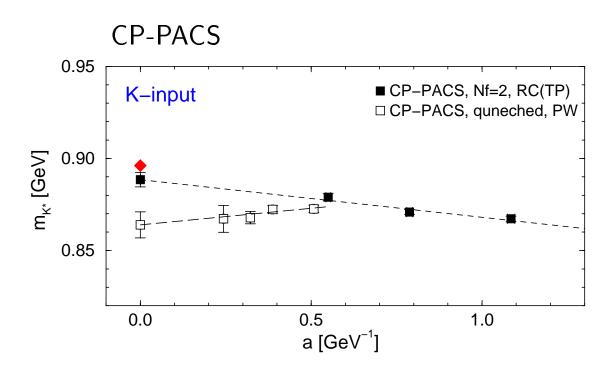
 $\underline{\mathsf{Columbia}(\mathsf{Levkova})} : \mathsf{anisotropic} \ \mathsf{lattices} \to \mathsf{phase} \ \mathsf{transition}.$

GRAL(Orth) : beyond $\rho \to \pi\pi$ threshold.

 $\frac{\mathsf{SESAM}/\mathsf{T}\chi\mathsf{L}(\mathsf{Eicker})}{\mathsf{Eicker}} \qquad \qquad \mathsf{:} \ \mathsf{light} \ \mathsf{quark} \ \mathsf{masses}.$

UKQCD+QCDSF(Schierholz) : strong coupling

• the main issue


search for sea quark effects

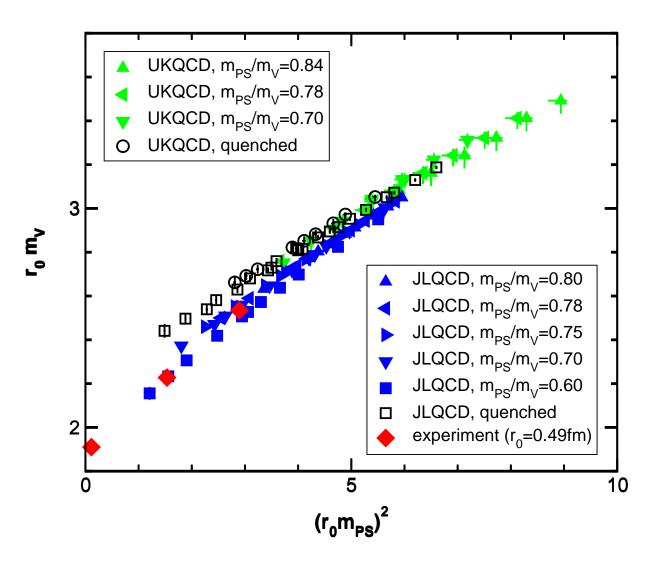
small hyperfine splitting in quenched QCD

 \Rightarrow closer to experiment in $N_f = 2$ QCD?

SESAM/T χ L, UKQCD, CP-PACS, QCDSF, JLQCD, MILC, ...

at Lattice 2000 (review by S.Aoki)

- ⇒ Vector meson masses are closer to experiment
- ⇒ But after continuum extrapolation

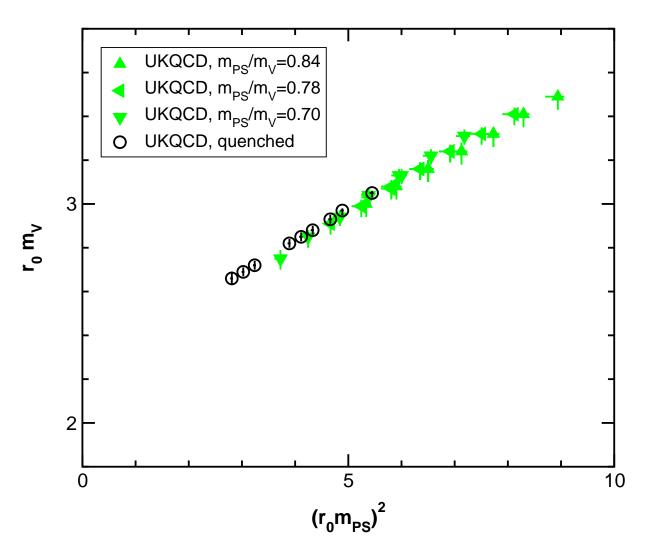

UKQCD

- ullet clover, non-perturbative $c_{
 m SW}$
- fixed a/r_0 ($a \sim 0.1$ fm)
- \bullet $L\sim$ 1.6 fm
- $m_{\rm PS}/m_{\rm V} \ge 0.7$

JLQCD

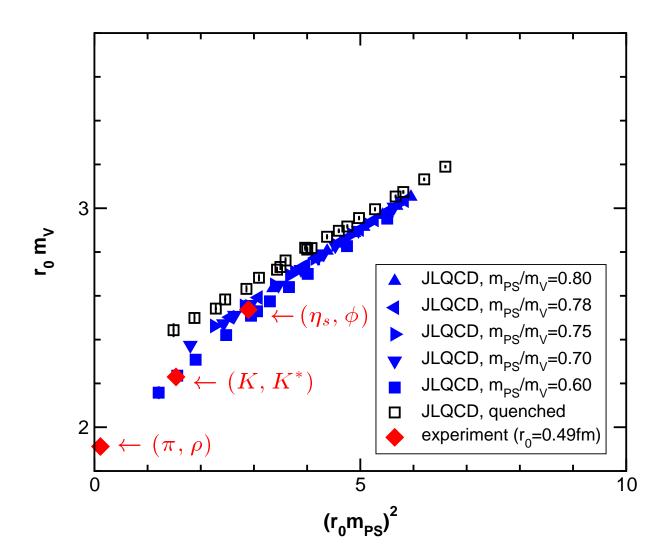
- ullet clover, non-perturbative $c_{
 m SW}$
- fixed β ($a \sim 0.1$ fm at physical $m_{q, \rm sea}$)
- \bullet $L\sim$ 1.1, 1.4, 1.8 fm (\Rightarrow finite size effect)
- $m_{\rm PS}/m_{\rm V} \ge 0.6$
- ullet UKQCD, JLQCD : leading scaling violation $O(a^2)$
 - ⇒ smaller scaling violation compared to CP-PACS

 CP-PACS : RG gauge + tadpole improved clover
- should provide an interesting check of sea quark effects.


UKQCD

- $om_{PS}/m_{V} \geq 0.7$
- o sea quark effect is not clear from this plot.
- JLQCD

clear sea quark effects


larger slope ⇒ larger hyperfine splitting

meson masses at simulation points

UKQCD

- $om_{PS}/m_{V} \ge 0.7$
- o sea quark effect is not clear from this plot.

JLQCD

$$om_{PS}/m_{V} \ge 0.6$$

o clear sea quark effect

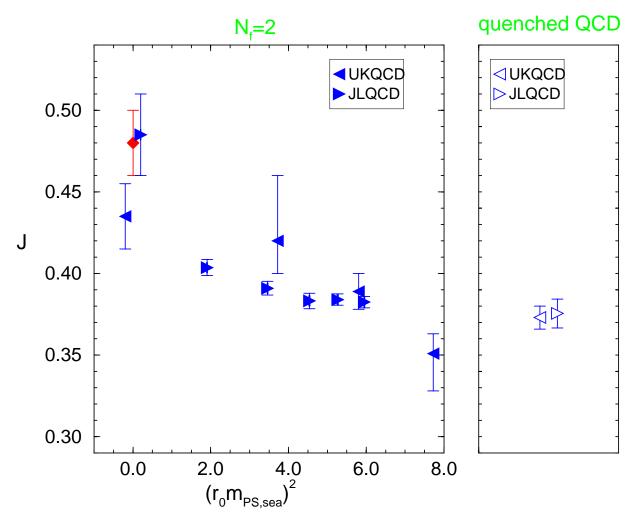
larger slope ⇒ larger hyperfine splitting

$$m_{
m V} \frac{dm_{
m V}}{dm_{
m PS}^2}$$
 @ $\frac{m_{
m V}}{m_{
m PS}} = \frac{m_{K^*}}{m_K}$ (Lacock and Michael)

ullet monitor the slope of " $m_{
m V}$ vs $m_{
m PS}^2$ " plot

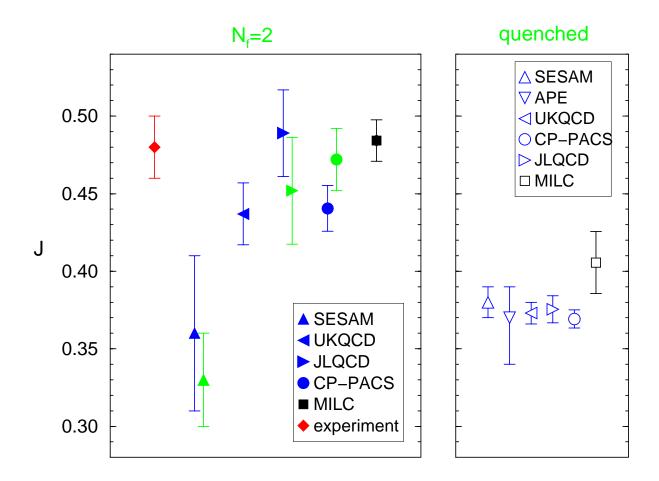
in full QCD

1) calculate J at fixed sea quark masses, and take $m_{\rm sea} \to m_{ud}$

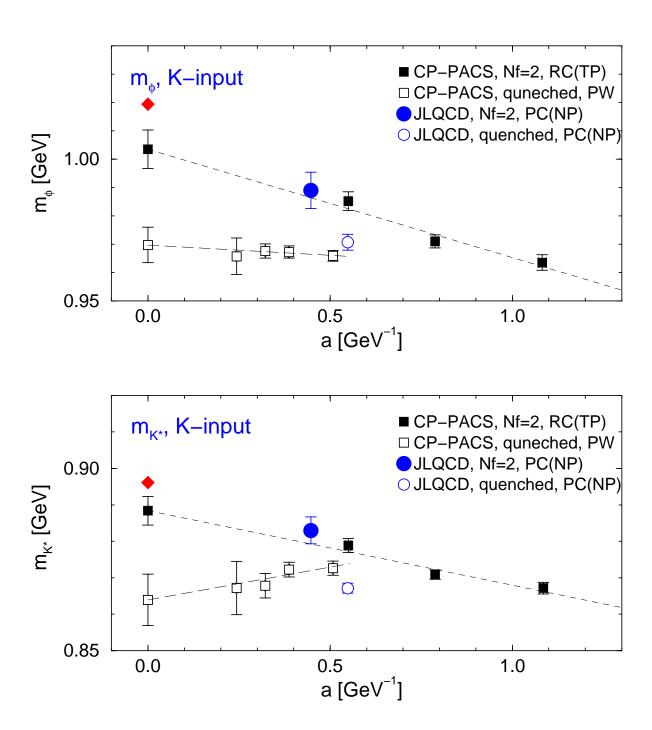

$$J \equiv \lim_{m_{\mathrm{sea}} \to m_{ud}} J(m_{\mathrm{sea}}), \quad J(m_{\mathrm{sea}}) \equiv m_{\mathrm{V}} \frac{dm_{\mathrm{V}}}{dm_{\mathrm{PS}}^2} \Big|_{m_{\mathrm{sea}}}$$

2) calculate J from meson masses at physical quark mass

$$J \equiv m_{K^*} \frac{m_{K^*} - m_{\rho}}{m_K^2 - m_{\pi}^2}$$


3) calculate J as mass ratio at simulation point(MILC)

$$J \equiv m_{\rm V}(m_1, m_2) \frac{m_{\rm V}(m_2, m_2) - m_{\rm V}(m_1, m_1)}{2(m_{\rm PS}(m_1, m_2)^2 - m_{\rm PS}(m_1, m_1)^2)}$$



1) J at fixed sea quark masses, and take $m_{\mathrm{sea}} o m_{ud}$

• J increases as sea quark mass decreases

- 1) J at fixed sea quark masses, and take $m_{\rm sea} \to m_{ud}$
- 2) J from meson masses at physical quark mass
- 3) J as mass ratio at simulation point(MILC)
- sea quark effects \Rightarrow closer to experiment except SESAM \Leftarrow heavy sea quark mass $(m_{\rm PS}/m_{\rm V} \geq 0.69)$?

• sea quark effect is confirmed using different action

JLQCD: plaq + clover(non-perturbative c_{SW})

CP-PACS: RG + clover(tadpole improved c_{SW})

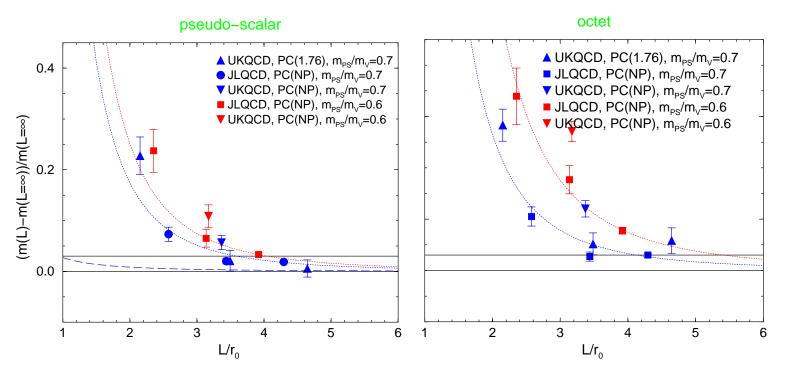
• recent studies of baryon spectrum

CP-PACS : $V\sim 2.5$ fm.

 ${\sf UKQCD} \ : \ V \sim 1.6 \ {\sf fm}.$

JLQCD : $V \sim 1.1$ - 1.8 fm.

These volumes are sufficiently large?

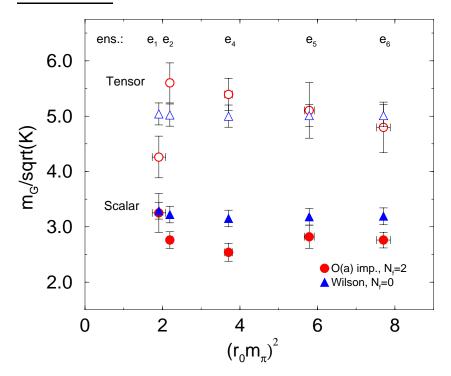

⇒ check finite size effects in JLQCD and UKQCD data

mass shift at finite volume

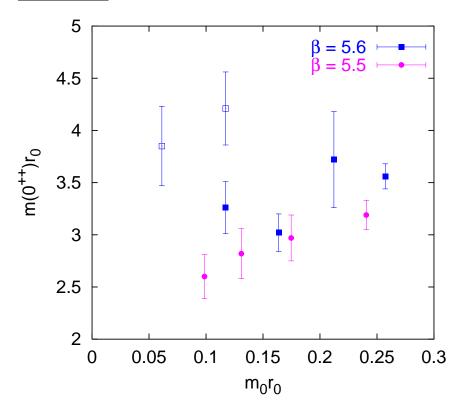
$$(m(L)-m(\infty))/m(\infty)$$
 vs L/r_0

blue symbols : at $m_{\rm PS}/m_{\rm V}$ = 0.7

red symbols : at $m_{\rm PS}/m_{\rm V}$ = 0.6


• volume for FSE \leq 3%, at a = 0.1 fm

	$m_{\mathrm{PS}}/m_{\mathrm{V}}\!\sim\!\!0.7$	$m_{\mathrm{PS}}/m_{\mathrm{V}}{\sim}0.6$
meson	16^3	20^3
baryon	24^3	32^3


- o much larger volumes are required for baryons!
- o still, we haven't obtained definite conclusions

UKQCD : \sim 15% decrease in 0^{++} at $a^{-1} \sim$ 2 GeV

<u>SESAM</u>: $\sim 25\%$ decrease in 0^{++} at $a^{-1} \sim 2.7$ GeV

- decreases in $0^{++} \Rightarrow$ indication of sea quark effects?
- need more precise data and study of scaling violation.

SCALAR collaboration (Nakamura)

ullet calculation of scalar meson in $N_f\!=\!$ 2 full QCD

Wilson fermion, a=0.2 fm, $m_{\rm PS}/m_{\rm V}=0.9$

 \Rightarrow poster by Nakamura

 $1.3~N_f=3~{
m QCD}$

this year

• with KS fermion

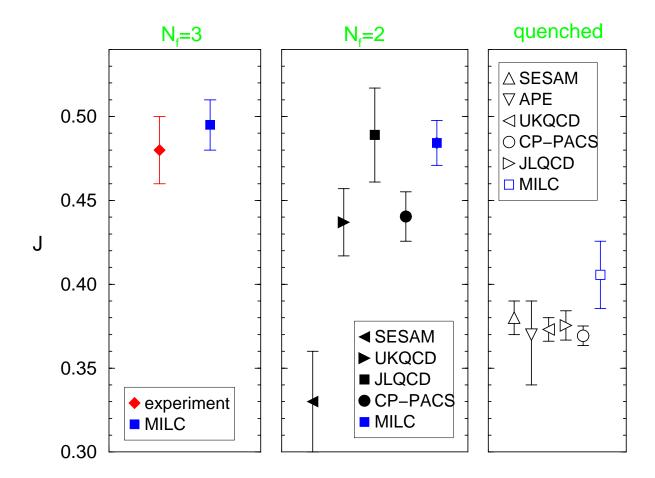
MILC

- improved KS
- o standard hybrid-R
- with Wilson-type action

algorithm for odd number of flavors \Rightarrow review by Peardon exact algorithms have been developed.

- o multi-boson (Lüscher, Borici and de Forcrand, Alexandrou et al.)
- o polynomial HMC (Takaishi and Forcrand)

Gebert et al.

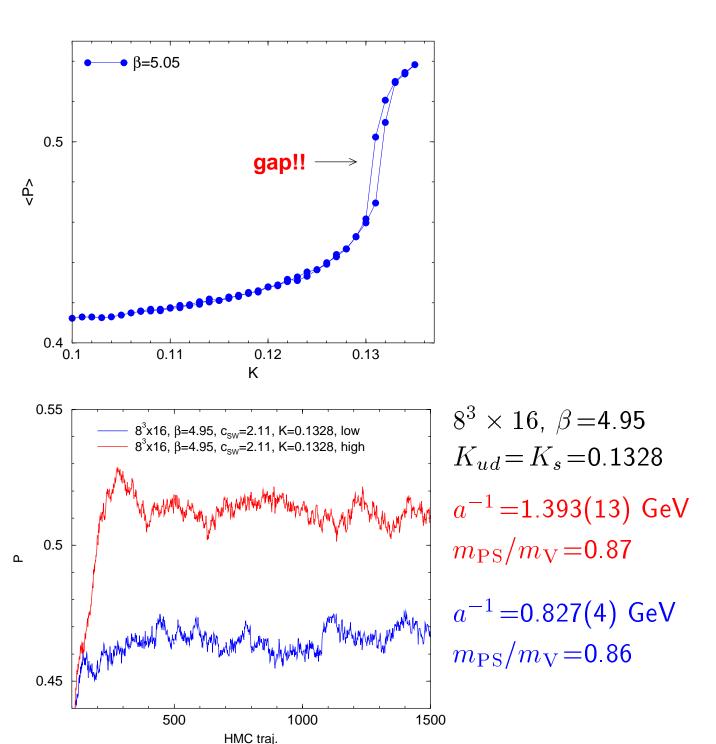

- o plaquette gauge + Wilson
- two-step multi-boson (Montvay)

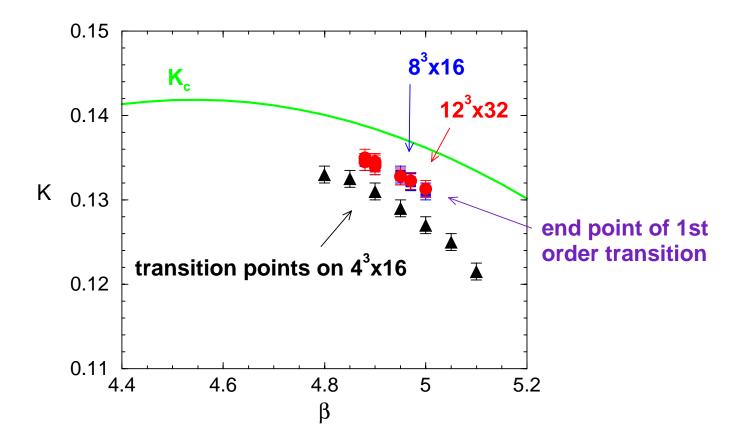
JLQCD

- plaquette gauge + clover
- polynomial HMC (Ishikawa(JLQCD))

$\overline{\mathsf{MILC}}$ (\Rightarrow review by Toussaint)

J parameter:




- MILC's results
 - o clear sea quark effects
 - o consistent with experiment in full QCD
- no systematic deviation between KS and Wilson/clover

JLQCD(Okawa)

 \circ first systematic simulations with O(a) improved Wilson action degenerated 3 flavors, tadpole improved c_{SW} study of phase structure \Rightarrow study of light hadron spectrum

• unexpected phase transition is found!!

- \bullet bulk transition at $T=0. \ \Rightarrow \ {\rm disappears}$ at $\beta \sim {\rm 5.0}$ $a^{-1} \sim {\rm 2.6~GeV} \ {\rm at~the~end~point}$
- this phase transition = lattice artifact
 plaquette gauge + clover quarks ⇒ a⁻¹ > 2.6 GeV.
- phase transition disappears for
 - improved gauge + clover quark
 - o plaquette/improved gauge + Wilson quark
- with improved gauge and/or Wilson quark
 ⇒ coarse lattices are OK!

2. test/application of ChPT

z. test/application of em i

- test of ChPT using lattice data
 - \circ simulated quark masses $\gg m_{ud}$
 - \Rightarrow ChPT is used as a guide for extrapolation to m_{ud}
 - tests of ChPT at simulated quark mass: important!
 - \Leftarrow fit lattice data ($m_{\rm PS}$ and $f_{\rm PS}$) to ChPT formulae.
- determination of low-energy constants α_i (i=1-10)

(recent work by Sharpe and Shoresh)

- o fit lattice data to ChPT formulae
 - ⇒ low-energy constants
 - ⇒ information on physics in real world from ChPT
- $om_u = 0?$ (Cohen, Kaplan and Nelson)

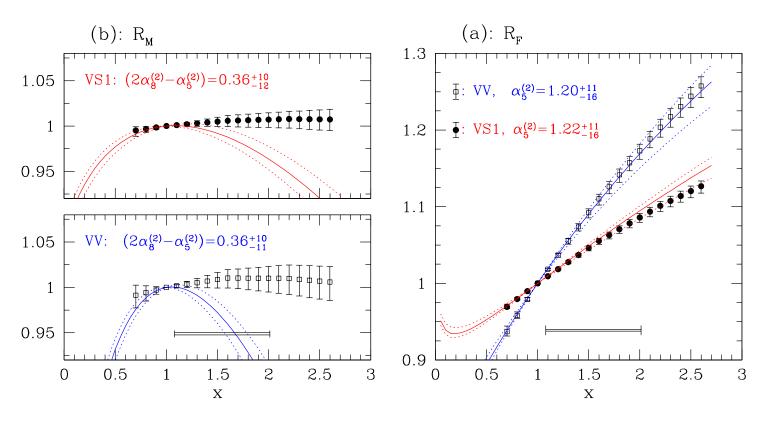
phenomenological value : "standard" $\alpha_8 \sim 0.8$

"
$$m_u = 0$$
" $\alpha_8 \sim -0.9$

 $(Gasser, Leutwyler, Bijnens, Ecker, \dots, 1984-1992)$

studies in quenched QCD

- o Bardeen et al., 2000
- o ALPHA, 2000


UKQCD : first estimate of α_8 in N_f =2 full QCD

o "ratio" method of ALPHA, PQChPT formulae by Sharpe,

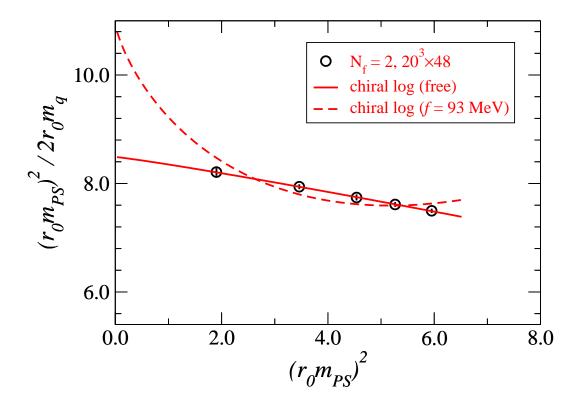
$$R_M^{VV} \equiv rac{2y/m_{
m PS}^2(y)}{2y_{
m ref}/m_{
m PS}^2(y_{
m ref})} = (x-1)\,y_{
m ref}\left(rac{2lpha_8-lpha_5}{}
ight) + \log {
m terms}$$

$$R_F^{VV} \equiv rac{f_{
m PS}(y)}{f_{
m PS}(y_{
m ref})} = (x-1)\,y_{
m ref}\,rac{lpha_5}{2}/2 + \log \, {
m terms}$$

$$y \equiv B_0 m_q / (4\pi F)^2$$
, $x = y/y_{\text{ref}}$

•
$$\alpha_5^{N_f=2} = 0.99(6)(20), \quad \alpha_8^{N_f=2} = 0.67(4)(20) \implies m_u \neq 0$$

but...


- \circ fit for R_M does not seem good...
- ⇒ Are lattice data really consistent with PQChPT?

examination of ChPT log behavior in $N_f = 2$ QCD

$$m_q \equiv m_{q,\text{val}} = m_{q,\text{sea}}$$

$$\frac{M_{PS}^2}{2B_0m_q} = 1 + \frac{y}{N_f}\ln[y] + y\{(\alpha_8 - \alpha_5) + N_f(\alpha_8 - \alpha_5)\}$$

- no clear evidence of chiral log
- ullet no evidence also for " f_{PS} vs m_{PS}^2 "
 - \Rightarrow not consistent with ChPT $(m_{\mathrm{PS}}/m_{\mathrm{V}} \sim$ 0.6-0.8)

- o finite size effects
- lattice artifacts
- higher order of ChPT
- \circ sea quark mass $(m_{\mathrm{PS}}/m_{\mathrm{V}}\sim$ 0.6-0.8) isn't small enough
 - D.Nelson et al.

KS,
$$N_f = 3$$
, $m_q/m_s \ge 0.1$,

 R_M : better consistency with ChPT

important works in future

- explore (much) smaller sea quark masses also with Wilson type action.
 - ⇒ attempt by GRAL collaboration
- extend UKQCD's and JLQCD's attempts toward small sea quark masses.

3. determination of fundamental parameters of QCD; α_s and m_q

01-101110

• famous calculation by NRQCD (Davies et al., 1997)

$$\alpha_{\overline{\rm MS}}^{(N_f=5)}(M_Z) = 0.1174(24)$$

KS action for light quarks

$$N_f = 0$$
, 2 (extrapolated to $N_f = 3$)

 $\alpha_{\overline{\mathrm{MS}}}$ from α_P , scale from Υ

important to confirm this results using Wilson-type action

• SESAM, 1999

similar calculation with Wilson action

$$\alpha_{\overline{\rm MS}}^{(5)}(M_Z) = 0.1118(17)$$

⇒ significantly smaller

scaling violation?

Wilson action

Ph.Boucaud, et al. $N_f = 0$, 2

$$N_f = 0, 2$$

 $lpha_{\overline{\mathrm{MS}}}$ from three gluon vertex

scale from ρ

$$\alpha_{\overline{\rm MS}}^{(5)}(M_Z) = 0.113(2)$$

 $\circ O(a)$ improved Wilson action

UKQCD at Lattice00
$$N_f = 0$$
, 2, $\alpha_{\overline{\rm MS}}$ from α_P ,

scale from Υ

QCDSF+UKQCD

$$N_f =$$
 0, 2, $\alpha_{\overline{\rm MS}}$ from α_P

scale from r_0

$$\alpha_{\overline{\rm MS}}^{(5)}(M_Z) = 0.1076(20)(18)$$

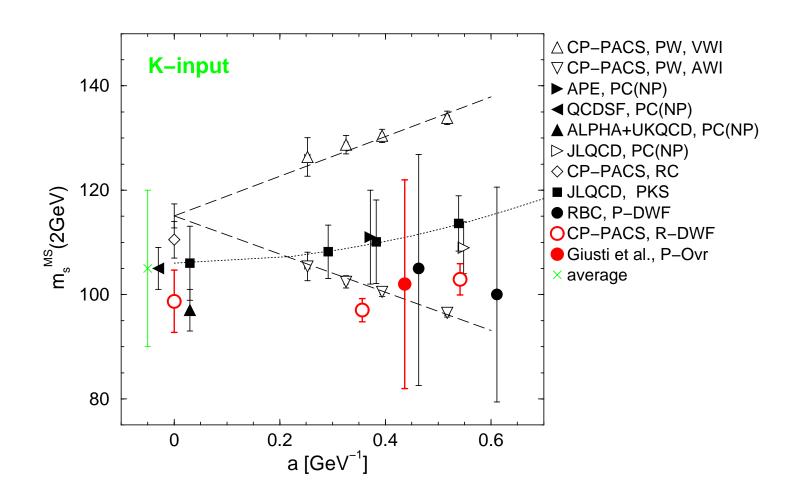
ALPHA

- \circ non-perturbative evolution of $lpha_{
 m SF}$ in $N_f\!=\!2$
- determination of scale : in progress

NRQCD (KS)

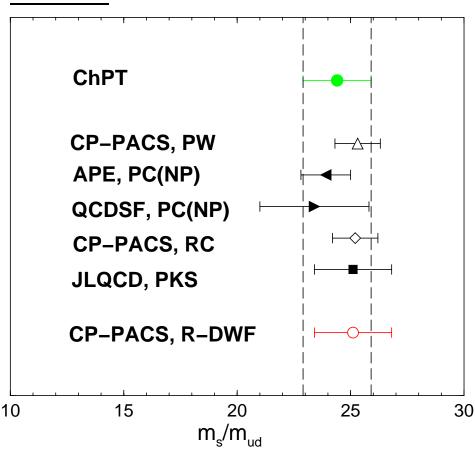
SESAM (Wilson)

UKQCD (clover, Y) 0.14 0.16 α_p (N_f =2, 8.2GeV)


- ullet all results using scale from Υ .
- smaller values for Wilson-type action.
- \bullet discrepancy is present before conversion to $\overline{\rm MS}$ scheme.
- reason is still unclear.
 - scaling violation?
 - higher order correction?

3.2.1 quenched QCD

strange quark mass


<u>CP-PACS</u>: domain-wall, $a_{\rho}^{-1} = 1.8$, 2.8 GeV, $La \sim 2.6$, 2.3 fm

<u>Giusti et al.</u>: overlap, $a_{f_K}^{-1} = 2.3 \text{ GeV}, La \sim 1.4 \text{ fm}$

$$m_s^{\overline{
m MS}}(2~{
m GeV})=105\pm15~{
m MeV}$$

 m_s/m_{ud}

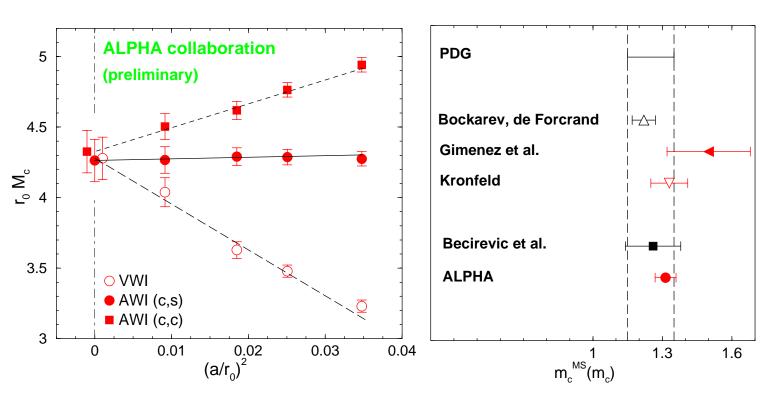
- new result from CP-PACS : consistent with previous results and ChPT
- ullet use ChPT ratio, average of m_s

$$\Rightarrow m_{ud}^{\overline{\rm MS}}(2~{\rm GeV}) = 4.5(7)~{\rm MeV}$$

• results with overlap fermion

Giusti
$$et\ al.$$
, $m_{ud}^{\overline{\rm MS}}(2\ {\rm GeV}) = 4.2(0.2)(0.7)\ {\rm MeV}$
Dong $et\ al.$, $m_{ud}^{\overline{\rm MS}}(2\ {\rm GeV}) = 4.6(1.2)(0.2)\ {\rm MeV}$

• this year

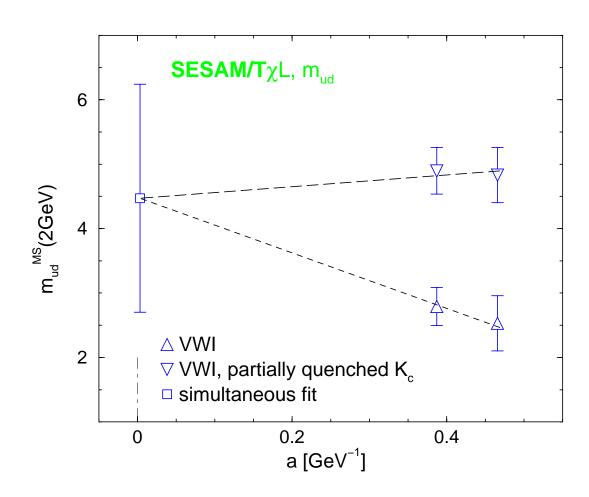

Becirevic et al. : NP clover, NP Z, $a \sim 0.07$ fm

ALPHA(Rolf) : NP clover, NP Z, $a \rightarrow 0$

Juge $et\ al.$: clover, 2loop matching, $a \rightarrow 0$

• in relativistic lattice formulations

 $O((am_c)^n)$ error \Rightarrow should take continuum limit



- Juge, et al.: very pleliminary, $m_c^{\overline{\mathrm{MS}}}(m_c) = 1.28(4)(??)$
- ullet new results are $m_c^{\overline{\rm MS}}(m_c) \sim 1.3~{
 m GeV}$
- largest error in ALPHA's result ← uncertainty in scale
 ⇒ determination in full QCD

bottom quark mass \Rightarrow review by Ryan

• this year

SESAM/T χ L (Eicker) : 1 loop Z, $a^{-1}\sim$ 2.2, 2.6 GeV

- $om_{ud} = 4.5(1.7) \text{ MeV}$
- $\circ m_s = 92(83) \text{ MeV}$
- $m_s/m_{ud} = 20(16) \text{ MeV}$
- o large errors come from continuum extrpoaltion
 - ⇒ calculation at small lattice spacing is needed.

quneched QCD: matured

- o various methods have been tested and ready for applications.
 - non-perturbative improvement/renomalization
 - improved formulations
 (anisotropic lattices, domain-wall, overlap, twisted mass QCD)
 - \Rightarrow implementation in full QCD.

$N_f\!=\!$ 2 full QCD : systematic invetigations by many groups

o sea quark effects in meson spectrum

good! ... but, at finite lattice spacing (except CP-PACS)

extensive simulations are still needed for

scaling violation: fine lattices

baryon: larger volumes

test of ChPT: smaller sea quark masses

high performance computer / "improved" formulations

few progress for quark masses

NP improvement/renormalization are required

$N_f\!=\!$ 3 full QCD : real world!

- o ready for systematic studies.
- o several groups started simulations with KS/Wilson action
- ⇒ We hope see interesting results at Lattice2002!!