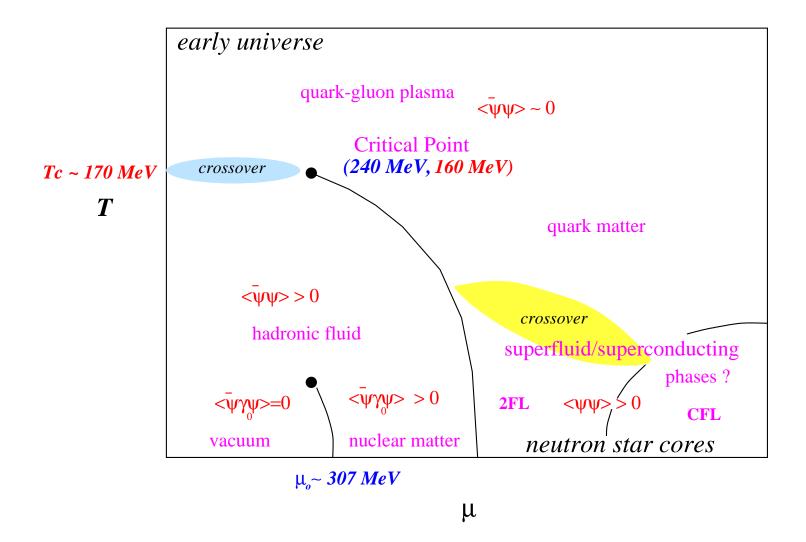
Lattice Matter

Simon Hands

University of Wales Swansea

- Why $\mu \neq 0$ is difficult
- Progress at T > 0
- Two Color QCD
- Flatland NJL
- A conjecture about superconductivity



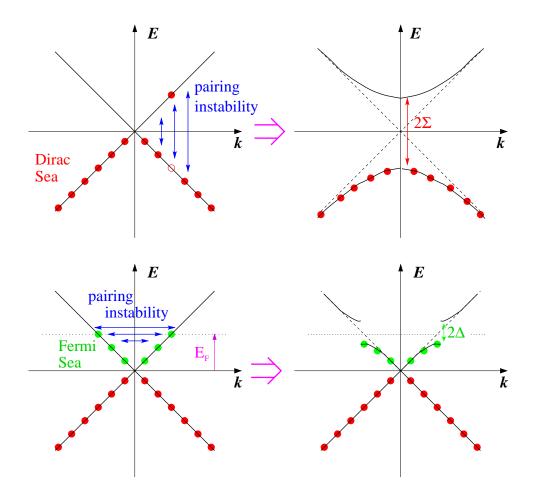
A possible QCD phase diagram

The equilibrium state minimises

$$\Omega(\mu, T) = E - TS - 3\mu N_B$$

This talk will focus on attempts to explore $\mu \neq 0$

Pairing Instabilities



Comparison between $\bar{q}q$ chiral condensation leading to a constituent quark mass Σ and non-conservation of axial charge (top) ...

... and qq diquark condensation leading to a BCS gap Δ implying superconductivity and/or superfluidity (bottom)

In QCD $\Sigma \simeq O(300) \text{MeV}$; Model estimates suggest $\Delta \simeq O(100) \text{MeV}$.

[Berges & Rajagopal]

Why is it so difficult to simulate $\mu \neq 0$?

For a vectorlike gauge theory with fermions

$$\mathcal{D}(\mu) \equiv \mathcal{D}_0 + \mu \gamma_0 = \gamma_5 \mathcal{D}^{\dagger}(-\mu) \gamma_5$$

implies eigenvalues of \mathcal{D} are not pure imaginary and hence not related by complex conjugation:

$$\det M(\mu) \neq \det M^*(\mu) = \det M(-\mu)$$

... the Euclidean functional measure is not positive definite and can't be used for importance sampling

"The Sign Problem"

⇒An exponentially large number of terms must be sampled

This situation is generic in quantum treatments of many-body systems.

Why is vacuum QCD so easy?

Two routes forward ...

Analytic Continuation from $\mu = 0$

- Taylor expansion finite radius of convergence and no prospect of reaching critical point [QCDTARO; Ejiri]
- Reweighting can go critical but problems with reaching thermodynamic limit [Barbour et al;Fodor & Katz] Both approaches most effective for $T \neq 0$

Real Measure $det MM^* = det M(\mu)M(-\mu)$

This introduces *conjugate quarks* q^c carrying +ve baryon number in the conjugate representation of the gauge group. Possibility of light qq^c bound states radically altering the physics - eg. onset of nuclear matter at $\mu_o \approx m_\pi/2$, not $\Sigma \approx m_N/3$ [Goksch; Stephanov]

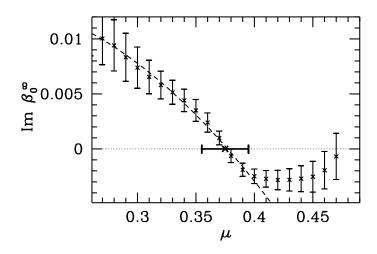
- Two Color QCD baryonic Goldstones a feature, not a problem [Dagotto, Moreo, Wolff]
- QCD with non-zero isospin $\mu_I = \mu_u \mu_d$ leading to pion condensation [Son & Stephanov]
- NJL Model qq^c states don't couple to the Goldstone mode [Barbour,SJH,Kogut,Lombardo & Morrison]

All three systems potentially superfluid $(\langle qq \rangle$ gauge invariant)

$$\begin{split} Z[\alpha] &= \int \!\! DU \exp(-S_{bos}[U;\alpha_0]) \mathrm{det} M[U;\alpha_0] \times \\ &\left\{ \exp(-\Delta S_{bos}[U;\alpha,\alpha_0]) \frac{\mathrm{det} M[U;\alpha]}{\mathrm{det} M[U;\alpha_0]} \right\} \end{split}$$

where the parameter set $\alpha = \{\beta, m, \mu\}$ Reweighting needs small $\Delta \alpha$ to maintain good overlap between trial and true ensembles. Effective along transition line with good overlap in both hadronic and QGP phases

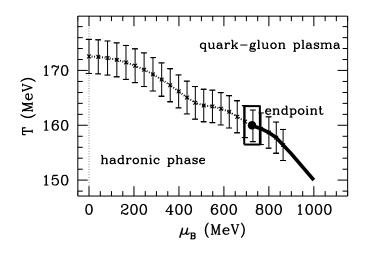
 \Rightarrow reweight using both $\Delta\mu$ and $\Delta\beta$



Determine order of transition via volume scaling of lowest Lee-Yang zero β_0

$$\lim_{V \to \infty} \mathrm{Im}(\beta_0) \bigg\{ \begin{array}{l} = 0 & \mathrm{1st \ order} \\ \neq 0 & \mathrm{2nd \ order} \end{array} \bigg.$$

Critical Point



$$N_f=$$
 2 + 1, 4 $^3,6^3,8^3$ $imes$ 4, $m_{u,d}=$ 0.025 $m_s=$ 0.2 Light quarks $pprox$ 4 $imes$ physical values

$$T_E = 160(4) \text{MeV}$$

$$\mu_E = 242(12) \text{MeV}$$

Taylor Expansion @ $\mu = 0$

• Quark number susceptibilities $\chi_{ij} = \frac{1}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j}$ [Gavai & Gupta]

$$\chi \begin{cases} \approx 0 & T < T_c \\ > 0 & T > T_c \end{cases}$$
 $\chi_s \nearrow \chi_{u,d} \text{ for } T \gtrsim 2T_c$

Results lie below free field prediction

Response of screening masses

[QCD-TARO]

$$\frac{\partial^2 M_{\pi}}{\partial \mu_B^2} > 0$$

$$\frac{\partial^2 M_{\pi}}{\partial \mu_I^2} < 0$$

pion no longer Goldstone pion condensation?

large in QGP phase large in hadronic phase

• Critical line $T_c(\mu) = T_c(0) + \frac{\mu^2}{2} \frac{\partial^2 T_c}{\partial \mu^2} + \cdots$ For $T \approx T_c$ sign problem under control on $16^3 \times 4$ for $\mu \lesssim 70 \text{MeV}$, which includes **RHIC** regime

For N staggered fundamental or adjoint fermions

$$\bar{\chi} \not \! D \chi = \bar{X}_e \not \! D X_o \quad \text{with} \quad \bar{X}_e^{tr} = \begin{pmatrix} \bar{\chi}_e^{tr} \\ \tau_2 \chi_e \end{pmatrix}, \ X_o = \begin{pmatrix} \chi_o \\ -\tau_2 \bar{\chi}_o^{tr} \end{pmatrix}$$

For $m = \mu = 0$ U(1) \otimes U(1) $_{\varepsilon}$ global symmetry is enhanced: $X \mapsto VX$, $\bar{X} \mapsto \bar{X}V^{\dagger}$ $V \in U(2N)$ Chiral symmetry breaking alters this as follows:

$\begin{array}{ccc} & \underline{\mathsf{Fundamental}} & \underline{\mathsf{Adjoint}} \\ \mathsf{U}(2N) \to \mathsf{O}(2N) & \mathsf{U}(2N) \to \mathsf{Sp}(2N) \\ N(2N+1) \ \mathsf{Goldstones} & N(2N-1) \ \mathsf{Goldstones} \end{array}$

Besides $q\bar{q}$ mesons, some of the Goldstones are qqor $\bar{q}\bar{q}$ baryons. U(2N) rotations relate $\langle \bar{\chi}\chi \rangle$ to diquark condensates

For N=1 adjoint flavor qq_3 forbidden by the Exclusion Principle No Goldstone baryons $\det M(\mu)$ no longer positive definite

Chiral Perturbation Theory

[Kogut, Stephanov, Toublan, Verbaarschot, Zhitnitsky]

Can write effective theory in terms of $2N \times 2N$ matrix Σ with $N(2N\pm 1)$ independent components:

$$\mathcal{L}_{eff} = \frac{f_{\pi}^{2}}{2} \operatorname{ReTr} \left[\partial_{\nu} \Sigma \partial_{\nu} \Sigma^{\dagger} - 2m_{\pi}^{2} \begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix} \Sigma + 4\mu \begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix} \Sigma^{\dagger} \partial_{t} \Sigma - 2\mu^{2} \left\{ \Sigma \begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix} \Sigma^{\dagger} \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix} + \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix} \right\} \right]$$

Gell-Mann-Oakes-Renner:
$$f_\pi^2 = \frac{m\langle \bar{\chi}\chi \rangle}{2Nm_\pi^2}\Big|_{\mu=0}$$

Leading Order Prediction

$$\frac{\langle\bar{\chi}\chi\rangle}{\langle\bar{\chi}\chi\rangle_0} = \left\{\begin{array}{l} 1\\ \frac{1}{x^2} \end{array}; \quad \tilde{n}_B = \left\{\begin{array}{l} 0 & x < 1\\ \frac{x}{4}\left(1 - \frac{1}{x^4}\right) & x > 1 \end{array}\right.$$
 with scaling variables $x = \frac{2\mu}{m_\pi}$, $\tilde{n}_B = \left(\frac{m_\pi}{8m\langle\bar{\chi}\chi\rangle_0}\right)n_B$

ie. a second order transition to a state of non-zero baryon density at $\mu=m_\pi/2$.

Diquark condensate:

$$\langle \chi^{tr} \left\{ \frac{\tau_2}{i\epsilon} \right\} \chi \rangle^2 = \langle \bar{\chi} \chi \rangle_0^2 - \langle \bar{\chi} \chi \rangle^2$$

ie. a bosonic superfluid for x > 1 – Cf. ⁴He

Measuring Diquark Condensates

Introduce diquark source terms via a Gor'kov basis

$$\mathcal{L}_{ferm} = (\bar{\chi}, \chi^{tr}) \begin{pmatrix} \bar{\jmath}\tau_2 & \frac{1}{2}M \\ -\frac{1}{2}M^{tr} & j\tau_2 \end{pmatrix} \begin{pmatrix} \bar{\chi}^{tr} \\ \chi \end{pmatrix} \equiv \Psi^{tr} \mathcal{A} \Psi$$

whence

$$Z[j,\bar{\jmath}] = \int DU \mathsf{Pf}(2\mathcal{A}[U,j,\bar{\jmath}]) e^{-S_{bos}[U]}$$

The diquark condensate $\langle qq \rangle$ is then given by

$$\langle qq \rangle = \frac{1}{V} \frac{\partial \ln Z}{\partial j} = \frac{1}{2V} \langle \text{tr} \tau_2 \mathcal{A}^{-1} \rangle$$

Implement by

• Direct inversion of $\mathcal{A}(j)$ followed by $j \to 0$

[SJH, Kogut, Morrison, Sinclair]

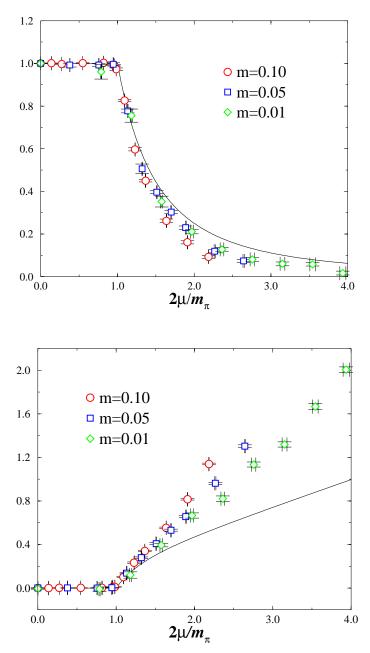
ullet Banks-Casher relation for $au_2 \mathcal{A}$

[Bittner, Lombardo, Markum, Pullirsch]

ullet Probability distribution function for $\langle qq
angle$

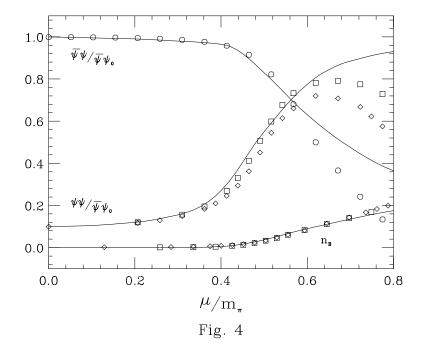
[Aloisio, Azcoiti, Di Carlo, Galante, Grillo]

Two Color Highlights

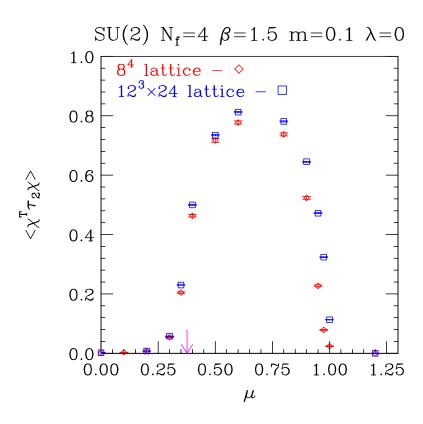


 $\langle \bar{\chi}\chi \rangle$ and n_B vs. μ for $\beta=2.0$ on $4^3\times 8$ [SJH,Montvay,Morrison,Oevers,Scorzato,Skullerud]

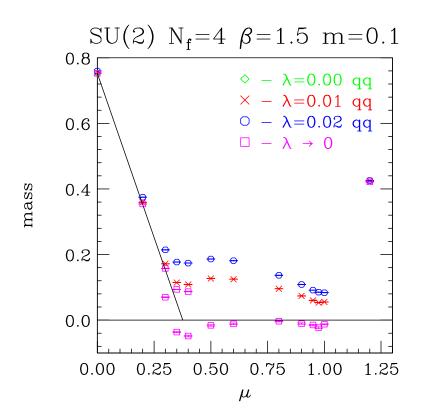
 $\chi {\rm PT}$ works well over a decade of quark mass



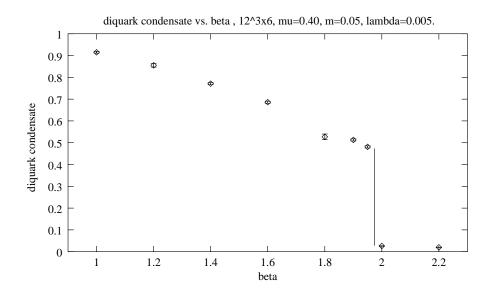
 $\langle \bar{\chi}\chi \rangle$, $\langle qq \rangle$ and n_B vs. μ for $\beta=0$, m=0.2, j/m=0.1 on 4^4 and 6^4 [Aloisio, Azcoiti, DiCarlo, Galante, Grillo]



 $\langle qq \rangle$ vs. μ for $\beta=1.5$, m=0.1, $j \to 0$ on 8^4 and $12^3 \times 24$ [Kogut, Sinclair, SJH, Morrison]



Scalar diquark mass vs. μ for $\beta=1.5$, m=0.1 $12^3\times 24$ [Kogut, Sinclair, SJH, Morrison]



First order transition to normal state for $\mu = 0.4$ on $12^3 \times 6$ [Kogut, Toublan, Sinclair]

The Sign Problem Revisited

For N=1 adjoint flavor

- χ PT not expected to hold (no Goldstone baryons)
- simplest local diquark is superconducting

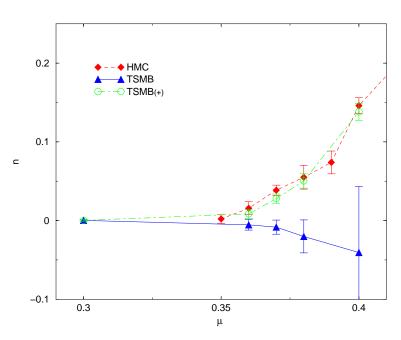
$$qq_{sc}^{i} = \frac{1}{2} \left[\chi^{tr} t^{i} \chi + \bar{\chi} t^{i} \bar{\chi}^{tr} \right] \in \mathbf{3} \text{ of SU(2)}$$

à la Georgi-Glashow

• $\det M(\mu)$ is real but not positive definite – use Multi-Bosonic algorithm and reweighting

[SJH, Montvay, Scorzato, Skullerud]

Fermion density



 n_B vs. μ for $\beta=2.0$, m=0.1 on $4^3\times 8$. Average sign $\langle \text{sgn}(\det) \rangle=0.30(4)$ at $\mu=0.38$

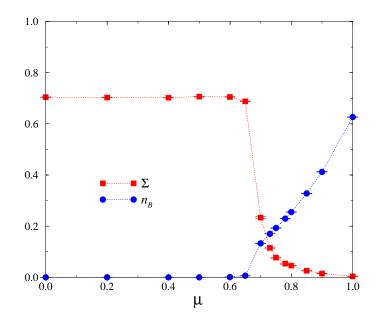
World's most expensive simulation of the vacuum?

The NJL Model in d = 2 + 1

$$\mathcal{L} = \bar{\psi}(\partial \!\!\!/ + \mu \gamma_0 + m)\psi - \frac{g^2}{2} \left[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5 \vec{\tau}\psi)^2 \right]$$

- $SU(2)_L \otimes SU(2)_R \otimes U(1)_B$ global symmetry spontaneously broken to $SU(2)_{isospin} \otimes U(1)_B$ for $g^2 > g_c^2 \approx 1.0a$, together with generation of a constituent quark mass $\Sigma = g^2 \langle \bar{\psi} \psi \rangle$.
- Interacting continuum limit at $g^2 o g_c^2$, $\Sigma a o 0$ [Rosenstein, Warr, Park]
- Strong first order transition restoring chiral symmetry at $\mu=\mu_c \approx \Sigma \gg m_\pi$ [SJH, Kim, Kogut]
- Baryon density $n_B = \langle \bar{\psi} \gamma_0 \psi \rangle = 0$ for $\mu < \mu_c$, but increases as $n_B \propto \mu^2$ in the chirally restored phase.

Is $U(1)_B$ spontaneously broken by a diquark condensate for $\mu > \mu_c$ leading to superfluidity?



Since the lightest baryons are fermions, expect a Fermi surface. A BCS instability would yield superfluidity as in 3 He. We have investigated using a pfaffian simulation with scalar $SU(2)_L \otimes SU(2)_R$ singlet diquark source term

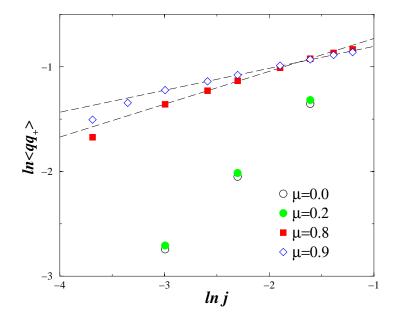
$$j_{\pm}(qq_{\pm}) \equiv j_{\pm}(\chi^{tr}\tau_2\chi \pm \bar{\chi}\tau_2\bar{\chi}^{tr})$$

[SJH, Lucini, Morrison]

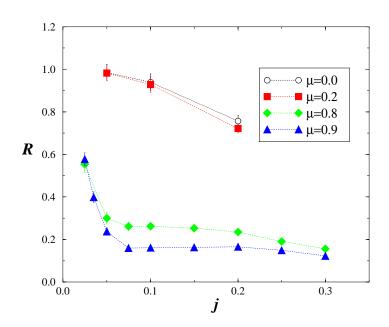
Investigate both condensate $\langle qq_+\rangle$ and susceptibilities $\chi_\pm = \sum_x \langle qq_\pm(0)qq_\pm(x)\rangle$. + is "Higgs", - is "Goldstone"

Ward identity:

$$\chi_{-}\big|_{j_{-}=0} = \frac{\langle qq_{+}\rangle}{j_{+}}$$



The condensate scales as $\langle qq_+(j)\rangle \propto j^{\alpha_1}$



$$R = \left| \frac{\chi_{+}}{\chi_{-}} \right| = \frac{\partial \ln \langle qq_{+} \rangle}{\partial \ln j} = \alpha_{2}$$

Naively expect $\lim_{j\to 0} R = 0$ if $U(1)_B$ broken, 1 otherwise.

We find:

$$\alpha_1 \approx \alpha_2 \approx 0.3 \ (\mu = 0.8), \approx 0.2 \ (\mu = 0.9)$$

• This strongly suggests *critical behaviour* in the dense phase, with continuously varying exponents $\delta(\mu)$, $\eta(\mu)$ defined by

$$\langle qq
angle \propto j^{rac{1}{\delta}}$$
 ; $\langle qq(0)qq(ec{x})
angle \propto rac{1}{|ec{x}|\eta}.$

Cf. the low temperature phase of the $2d\ XY$ model, with

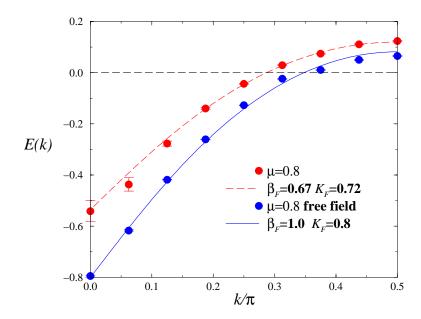
$$\delta(T) \geq 15$$
 ; $\eta(T) \leq \frac{1}{4}$

• We conjecture a 2d critical system describing thin film superfluidity. The superfluid current is related to the phase of $qq(x) \simeq \phi_0 e^{i\theta(x)}$ via

$$\vec{J}_s = K_s \vec{\nabla} \theta.$$

Supercurrents are metastable thanks to long range phase coherence. [Kosterlitz & Thouless]

• NJL exponents are distinct from those of the XY model; dimensional reduction does not apply – a 2d description follows from the *static* nature of the phase fluctuations $\partial_t \theta \approx 0$.



Can also probe spin- $\frac{1}{2}$ sector via the Gor'kov propagator $\mathcal{G} = \mathcal{A}^{-1}$. Simple pole fits to the momentumdependent timeslice propagator

$$\mathcal{G}(\vec{k},t) = \sum_{\vec{x}} \mathcal{G}(\vec{0},0;\vec{x},t)e^{-i\vec{k}\cdot\vec{x}} = Ae^{-Et} + Be^{-E(L_t-t)}$$

yield the quasiparticle dispersion relation E(k).

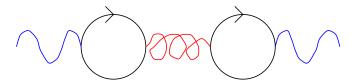
- Fermi momentum $k_F \lesssim \mu$ Fermi velocity $v_F = \frac{\partial E}{\partial k} \Big|_{k=k_F} \approx 0.7c < c$
- No evidence for a BCS gap $\Delta \neq 0$

Characteristic of a normal Fermi liquid with repulsion between quasiparticles with parallel momenta.

 \Rightarrow NJL₂₊₁ is a relativistic gapless superfluid.

Other Sign/Phase Problems

- TCQCD with N=1 adjoint staggered quark superconductor at large μ ?
- ullet The Hubbard Model away from half-filling models high- T_c superconductivity
- Technicolor requires chiral fermions in complex representations of the gauge group
- " τ_3 -QED" describes 2+1d superconductivity by giving the photon a mass via a mixed Chern-Simons term [Dorey & Mavromatos]



 $\det M \neq \det M^* \text{ since } \{\gamma_5, \mathcal{D}\} \neq 0$

• QCD itself?

Conjecture: sign problem whenever local symmetry broken by pairing

Summary

- Significant progress in $QCD(\mu)$ for $T \neq 0$. We have the first non-trivial LGT prediction in the (μ,T) plane. The **RHIC** regime is within reach. Expect much activity in coming year.
- At T=0 models yield LGT's first contact with ab initio (relativistic) condensed matter physics

Two Color QCD ⇔ superfluid ⁴He NJL ⇔ superfluid ³He

- \bullet NJL $_{3+1}$ will test model approaches to color superconductivity
- True superconductivity may require a sign problem