DYNAMICAL SIMULATIONS

Past experience:

- Examine staggered fermion runs on $16^3 \times 32$ and $24^3 \times 32$ volumes, m=0.01, 0.015 and 0.02.
- Cost = $1.4 \cdot 10^{11} \frac{L^3 T}{(fm)^4} \left(\frac{m_\rho}{m_\pi}\right)^5 \left(\frac{1}{a \, GeV}\right)^7 \frac{\text{flops}}{\text{config}}$
- To duplicate CP-PACS quenched results: $a^{-1} = 3.96 \text{ GeV}, 64^3 \times 112, m_{\pi}/m_{\rho} = 0.4, 150 \text{ configs.}$ $\approx 200 \text{ Teraflops} \cdot \text{year}$

Physics Targets:

- QCD Thermodynamics. [Improved fermions might show a much more interesting small mass region?]
- Hadron spectrum in the chiral limit. [Such a study might focus on $m_{\pi} \leq 0.4 m_{\rho}$?]
- Permit charm simulations with correct α_s running. [Wrong $\alpha_s(\mu)$ introduces obvious 10-20% error in essential charm contribution to $K \to \pi\pi$.]
- Control zero modes in small volume simulation. [Enhanced zeromodes make quenching more pathelogical for improved fermions.]

Much of 100 Teraflops could be expended using DW/overlap fermions.