Multivariate analysis techniques

and machine learning algorithms
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> What this lecture is not

= a math and statistics class, a programming course
> What this lecture tries to be
= an “experimental astroparticle physicists approach to data”

> PART 1 (~25 minutes)

= Data Science: the bigger picture, or, what we are all facing sooner or later

= Machine learning: The basic basics
> PART 2 (~45 minutes)

= Multivariate analysis (MVA) techniques: decision trees, neural networks, deep learning

= Real-life examples: Boosted Decision Trees in y-ray astronomy

> Also see lectures by Orel

> |f anything is unclear just ask
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Literature and Sources

> Many of the slides are inspired by these books and lecture notes

= Think Stats: Exploratory Data Analysis in Python, A.B. Downey, Green Tea Press, 2014

The Elements of Statistical Learning: Data Mining, Interference, and Prediction, Hasti,
Tibshirani, Friedman, 2009, Springer Series in Statistics

= Data Science from Scratch: Joel Grus, O'Reilly, 2015

= Practical Statistics for Astronomers, Jasper Wall (http://www.astro.ubc.ca/people/ivw/ASTROSTATS/)

= Other references given throughout the presentation and at the end

Practical Statistics for Astronomers

Trevor Hastie
Rabert Tibshirani
Jeroene Friedman

Data Science
from Scratch

Joel Grus

Allen B. Downey
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http://www.astro.ubc.ca/people/jvw/ASTROSTATS/

o-date review of MVAs in particle physics

REVIEW

https://doi.org/10.1038/541586-018-0361-2

Machine learning at the energy and
intensity frontiers of particle physics

Alexander Radovic!*, Mike Williams?*, David Rousseau®, Michael Kagan*, Daniele Bonacorsi®®, Alexander Himmel’,
Adam Aurisano®, Kazuhiro Terao* & Taritree Wongjirad®

Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model
of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher
energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning
techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present
and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning
at the frontiers of particle physics.

. . 60:_ __ With machine-learning
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. in NOVA experiment
Z 20 P
of
0:

Mass (GeV)

@ . neutral current

Fig. 1 | Machine learning for calorimetry at CMS. The mass distribution
of Z bosons that decay to electron-positron pairs (Z — e*e), as measured
in the central part of the CMS detector and binned into 1-GeV bins, is
shown for three cases: using only the raw information from the detector
(orange), after clustering the data (green) and after applying the machine-
learning-based corrections discussed in the text (blue). The true position

(©) v, charged current

@© v, charged current

@ +, charged curent

Fig. 4 | Exploring NOvA’s event-selection neural network using “The subplots show example event topologies from points in the two-

of the peak for this decay is 91 GeV. Image adapted from ref. "' under a £-SNE. The features extracted using NOvA's neutri CNN £-SNE space, with the intensity of the colour indicating the

CC BY 4.0 license, copyright CERN, reused with permission. are projected into a two-dimensional space using the t-SNE method. amount of energy deposited and the axes denoting the spatial location of
The points represent events from the CNN training sample, with the the charge deposits in the detector. The various types of event are clustered
colours denoting the true event types: muon-neutrino () charged- into distinct regions in the horizontal direction, while the multiplicity of
current i ions (dark blue), el ino (1) charged. the particles in each event is found to be correlated with the location of the
interactions (light blue), tau-neutrino (v.) charged-current interactions events in the vertical direction.
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Data Science and the basics

about Machine Learning

DATA EXPLOSION

= [n science
= in industry

= in every-day life
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Big Data & Data Science

> According to Wikipedia

= “Data Science is an interdisciplinary ‘&
field about processes and systems to o Q’
extract knowledge or insights from \\\ 4_4
large volumes of data in various %) Machine 0°¢0
forms, either structured or QQ Learning ‘}/
unstructured, which is a continuation si.\
of some of the data analysis fields Q@c'
such as data mining and predictive
analytics, as well as knowledge
discovery in databases”

> Venn Diagram

= Physicists and astronomers are the Substantive
definition of Data Scientists Expertise

= Fulfill all requirements and are

developers of widely applicable code
Source: http://pmone.com
= Beware of the Danger Zone!
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How does machine learning fit in?

> Data Science covers techniques from different fields

= signal processing, probability models, machine learning, statistical learning, data
mining, database, data engineering, pattern recognition and learning, visualization,
predictive analytics, uncertainty modeling, [...], high performance computing

> Difficult to talk about machine learning without talking about data

> A few examples
= Facebook uses hometown and current location to identify global migration patterns
= Target tracks purchases and interactions to predict which of its customers is pregnant

= 2012 US election — Obama employed hundreds of data scientists to identify potential
voters

> Data Science for social gOOd (http://dssq.uchicaqo.edu)

= Improve government
= Help homeless people

= Improve health care
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http://dssg.uchicago.edu

Data analysis

> How to get data and what to do with it?

1. Data retrieval

= from experiments

= generate your own data

= from internet or an Application Programming Interface (API)
2. Data preparation

= calibrate raw data
= remove outliers or noise
3. Data pre-processing

= |dentify parameters with valuable information in calibrated data
(signal/background classification, pattern recognition)

= First-level selection cuts and data reduction (“outliers”)

4. Data Mining (Machine Learning with multivariate
analysis techniques)

— What are the tools to do that?
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The toolkits

> ROOT
= Mostly used in particle physics

= Adapted in astronomy and astroparticle physics

= C++, object-oriented

t

= Higgs-discovery plots produced with ROOT

Events / 3 GeV

o
[ ]
NN
£ = &
WX

> IDL, MATLAB, R, ds9, ...

= many statistics features and numerical methods

= standard in different fields for many years, now being
replaced by python

UKIDSS JHK

60

40

> Python

= the new standard in industry and science

20
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ROOT vs. python

ROOT functionality

Python Equivalent

interactive interpreter
TH1D,TH2D,TH3D
TProfile

TGraph

TTree

TMinuit

2D/3D graphics
TMVA

GUI

AstroROOT
ROOFit

Reflex, CINT
TMatrix, etc
TMatrixTSparse
TList

TArray, TObjArray
TMap, THashList
TRandom

Math, MathMore
Script compilation
ROOQOT::Math::VirtualIntegrator

HELMHOLTZ

ipython, ipython notebook
numpy.ndarray + numpy.histogramdd()
numpy.ndarray

numpy.ndarray + matplotlib plots
astropy.table or numpy.recarray
scipy.optimize or iminuit
matplotlib

scikit-learn

various (wxwidgets, Qt,gtk)
astropy.io.fits or fitsio
astropy.modelling or Imfit

) python

not needed

numpy.ndarray + scipy.linalg = provides more functionality
scipy.sparse

list than ROOT

list

dict u
numpy.random + scipy.stats
numpy + scipy

Numba, Cython
scipy.integrate
astropy.coordinates
astropy.units

astropy.time .
astropy.wcs (projections)

numpy.ndarray (n-dimensional tables)
scipy.interpolate.interpnd (n-dimensional interpolation)
scipy.signal (digital signal processing)

vastly more external
developers

= shared by many communities
(scientific and non-scientific)

better/cleaner design

= quicker and easier to get
things done

= more lightweight
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Data retrieval

opendata ABOUT SEARCH EDUCATION RESEARCH

Familiarise yourself with the working environments and tools needed to analyse the data provided on this portal.

cms
3 ALICE

= Astronomical observatories after proprietary time

> Open access is the way to go

= Provided via webpages and online archives i

= Mostly in FITS format NP— %
= Particle physics community is joining

= Often via Virtual Machines SkyView

1558 e imtemet's virtuai Tetescope SkyView Images

* (Almost) no fiddling around with software versions, Home  Query Form  Help
installations, external packages, etc.

HEASARG

{if you want to search on parameters other than cbject name or coordinates, select "Detailed Mission/Catalog Search®.)

Digitized Sky Survey: Original Digitized Sky Survey

Select
Object Name or Coordinates: and/or Local Choose File  no file selected
File:
eg.CygX-10or120000, 4126 0r
Cyg X-2; 12.235, 15.345 (Note use of semi-colons File should contain objects and/or coordinate pair:
{;} to separate multiple object names or cocrdinate line or separated by semi-colons.
pairs)
Coordinate System: J2000
Search Radius: Default arcmin
Default uses the optimum radius for each catalog searched.
- and/or search by date? Download FITS or quick look jpeg image. Add to Gallery [What is this?]
Observation Dates: YYYY-MM-DD hh:mm:ss or MJD: DDDDD.ddd

Not all tables have observation dalas For those that do, the time portion of the date is opti
with i s (;). Range operat . (e.g. 1992-12-31; 48080.5; 1995-01-15 12:00:00; 1997-03-20 .. 2000—10—18}

2. What missions and catalogs do you want to search? (Bold text indicates mission is active)

"1 Most Requested Missions
["] Chandra [CXC,C5C] | Fermi "] NuSTAR [CalTech] "] ROSAT
["] RXTE | Suzaku (7] Swift || WMAP
["] XMM-Newton [XSA]

hool | 18.08.2018 | Page 12



Data retrieval

> Generate your own data

= very useful in many circumstances
= using random number generators

= large-scale Monte Carlo simulations
> Monte Carlo simulations
= most of you know those

= for optimization, instrument characterization, ...

= drawing from probability distributions
> Application Programming Interfaces

= Many webpages provide APls

= Interface to receive data in structured format (XML,
JSON)

= Examples: Amazon, Ebay, Facebook, Geopy,
Google Maps, Last.fm, Rotten Tomatoes, Twitter

HELMHOLTZ &oiocii e
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Generate function

TF1 parabola("parabola","[0]+[1]*x+[2]*x**2",0,20);
format_line(&parabola,kBlue,2);

TF1 gaussian("gaussian","[0]*TMath::Gaus(x,[1],[2])",0,20);

format_line(&gaussian,kRed,2);

TF1 gausppar("gausppar",the_gausppar,-0,20,6);

Fake data

// Fake the data
for (int i=1;i<=5000;++i) histo.Fill(gausppar.GetRandom());

Fit fake data

// perform fit ...
TFitResultPtr frp = histo.Fit(&gausppar, "S");

Draw everything
%0 2/ ndf 42.03/ 44
g - . x ol
< Signal Peak over Prob 0.5564
background Norm 57.83 + 7.90
200 Mean 7.01£0.13
[ Sigma 0.9238 + 0.1543
L a 200.6 5.4
150l b -16.73 = 1.02
C c 0.4438 + 0.0458
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Data preparation

> The data you want to analyze is calibrated

= Congratulations, someone has done the job for you

= Don’t forget to check also calibrated data

> The data you want to analyze is not calibrated

= Lets roll up the sleeves and calibrate the data

= [|llustration of how important calibration (and simulations) are (ATLAS EM calorimeter)

simulation
EM
cluster
energy
data

training of 3 9 Z>ee
MC-based || » resolution |
ely calibration smearing
MC-based calibrated
ely energy ely
calibration energy
4
longitudinal . . Z-ee
layer inter- |~ Cl:)r:'r]:g;tir:;:]ys —  scale —>
calibration calibration
6 Jy->ee Z>lly
data-driven scale validation

ATLAS Collaboration, Eur. Phys. J. C., (2014), 74: 3071




Data pre-processing

What are you
doing here?

> |dentify outliers during data preparation

. X £ You invited me.
> Outl Iers “g PSRN, Did not! Now
@f get out, liar!

1. Occur during data collection, i.e. human errors

2. Malicious act (e.g. in questionnaires) (O/Copyright 2010, . Buske. Al ights reserved, 218 cJB

3. Noise in data (temporal, spatial, etc.)
4. Incorrect assumptions when looking at data or building model
> Importance

= 1 & 2 very important in social sciences, medical studies

= 3 & 4 very important in fields where data is collected with ‘instruments’ (e.g. physics,
astronomy, geo-sciences)

> If kept

= 1 & 2 may influence statistical analyses and outcome of statistical test (e.g. correlations)

= 3 & 4 can fake signal, wrong understanding of background
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Where are we now?

> We retrieved some data

= from an instrument or from elsewhere

> We calibrated the data

= or got calibrated data

> We inspected the data

= identified outliers/features and removed them,

= or know where they come from and include them in our model

> Building a model and interpreting the data

— Dive a bit into Machine Learning Basics
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Machine Learning

> What is Machine Learning?

= Wikipedia: “...is a subfield of computer science, evolved from the study of pattern
recognition and computational learning theory in artificial intelligence. Machine
Learning explores the study and construction of algorithms that can learn from and
make predictions on data. Such algorithms operate by building a model from example
inputs in order to make data-driven predictions or decisions, rather than following
strictly static program instructions.”

> Algorithms are the tools that perform the learning

> Algorithms are building the model, not the user |

> Learn from, and make predictions on data

> The better the input data, the better the predictidn ._

— What are these algorithms?

H ELMHOLTZ RESEARCH FOR Source: https://casis.linl.gov - »
GRAND CHALLENGES

Stefan Ohm | DESY Summer School | 18.08.2018 | Page 17 DESY.
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Machine Learning Categories

> Categorize, based on nature of the learning “signal” or “feedback”
available to the system

> Supervised learning

= algorithm is provided with example input and class labels (the desired output)

= algorithm tries to find a rule that maps inputs to outputs
> Unsupervised learning
= algorithm is provided with example input data and no class labels
= algorithm has to find structure in input
= E.g. discover hidden patterns in data, search for correlations
= Learn at a specific task (find features) and learn the features themselves

> Reinforcement learning

= Constant interaction of algorithm with dynamical environment to perform goal (e.g. drive
car, don’t crash it).

= Learn the rules of a game by playing it (goal: win game)

HELMHOLTZ (500 e
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Machine Learning Categories

> Categorize, based on the desired output

> Classification

= inputs are divided in two or more classes; produce model to map input to classes

= Examples: spam filtering, signal/background classification, particle type
> Regression

= the output is continuous rather than discrete as for classification

= Example: What is the energy of an event with properties x,y,z
> Clustering

= input data is to be divided into groups, which are not known beforehand

= Where do sports-team supporters live and what is their typical age?
> Density estimation
= finds the distributions of inputs

> Dimensionality reduction
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Other types of tasks and problems

> Learning to learn

= |learns its own inductive bias based on past experience (frequent change of properties
necessary to map input to output)

> Developmental learning

= takes it one step further and generates own sequences of learning situations to
acquire skill set

= employing active learning, maturation, motor synergies, and imitation
> Relation to other fields

= ML focuses on predicting, based on known properties — data mining focuses on
discovering, based on unknown properties

= ML and Statistics are closely related fields, now also with interdisciplinary
approaches (Statistical Learning)

= Statistics and ML now more or less combined in Data Science

HELMHOLTZ (500 e
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PART 1

> Summary

Data explosion is here

Data is the bread and butter for physicists/scientists, but they also bring the skill set
to do data science

Data needs to be retrieved, prepared and cleaned before usage
Data needs to be parameterized (e.g. PDFs) for generalization

Plenty of toolkits available to do analysis — some with more focus on statistical
methods than others

Machine Learning algorithms build model, learn from data & make predictions on data

Different classes of algorithms are used for different tasks (e.g. supervised vs.
unsupervised learning)

— PART 2: Discuss different ML algorithms

HELMHOLTZ 00 e
Stefan Ohm | DESY Summer School | 18.08.2018 | Page 21



PART 2

Machine Learning Algorithms
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1. Toolkits

2. Decision Trees

1. Artificial Neural Networks

2. Deep Learning

HELMHOLTZ &oiocii e
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PART 2.1

Toolkits
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Toolkits

Top 20 R Machine Learning packages, by

> ML algorithms Wi i
= widely used in many programming languages ":Et
= Fortran, C, C++, .NET, JAVA, python e

> Nowadays, community is e —
= moving towards toolkits o =

= growing larger and larger

= moving from science-driven to science/industry-driven development

> Here, introduce two packages
= TMVA

= JIMVA,
= scikit-learn ll—.

HELMHOLTZ &oiochi e
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> TMVA: Toolkit for Multivariate Data Analysis
= built upon ROOT

= provides framework for supervised learning techniques

= provides processing, parallel evaluation and application of multivariate classification and

regression methods, model selection and evaluation
> Methods

= Rectangular cut optimization

Projective and multi-dimensional likelihood estimation

Linear and non-linear discriminant analysis

Neural Networks

Decision Trees
= Support Vector Machines, etc.

> Usage

= driven by the needs for high-energy physics applications
= also applied in y-ray astronomy (see later)

HELMHOLTZ &iociiifees
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TMVA-Toolkitig a Analysis

arxiv.org » physif v Diese Seite ubersefien

von A Hoecker - - Zitiert von: 765 - Ahfllche Artikel

04.03.2007 - arX| - ; pics/0703039 ... Physics > Data Analysis,
Statistics and Probability ... Integrated into the analysis framework ROOT, TMVA is a
toolkit which hosts a large variety of multivariate classification ...

| Background rejection versus Signal efficiency

TMVA,
5 1 ;@E* T
T0.95F R =
2 e |
2 o9f =
2 £ | MVA Method: E
S g
3 085 —— cuts E
% 08| —— Likelihood E
S o7sk.| —— LikelihoodD N\ E
@ E | — Fisher \ \\\ E
0.7 =| ——— CFMIpANN \_\ E
0.65 TMIpANN X
06 E | — HMatrix \ "\..._E
“E | —— PDERS F 3
0.55 BDTGini =
0_5:‘.‘.\..‘.\.‘.w.‘.‘i‘..".‘...‘..‘.‘....\\\“-F
0 01 02 03 04 05 06 07 08 09 1
Source: (2) Signal efficlency



> Machine Learning in python

= built upon python (fast, clean, robust, comprehensive
and easy-to-use)

Source: (3)

Outlier detection Outler detection

uuuuuuuuuu

= provides supervised, semi-supervised, unsupervised
techniques,

= additionally: dataset loading and transformations, A el -
model selection and evaluation, scaling to bigger data ‘R -

!
-
-t - -6 -4 — o 2 S &
> e O S 1. One-Class SVM (errors: 8] 2. robust covariance extimator (emors: 14)

= all of the TMVA methods, plus
P Wissenschaftliche Artikel zu scikit-learn machine learning in

Clustering python . journal of machine Iearnln
Scikit-learn: Machine learning in Python - Pedregofl - Zitiert von: 1902

DecompOSIng Slgna|S |n COmponentS Pylearn2: a machine learning research library - God

Orange: data mining toolbox in Python - Dem&ar - Zitiert von: 78

Density estimation
Scikit-learn: Machine Learning in Python

= Unsu perVised Neural Networks jmir.org/papersivi2/pedregosaiia.html v Diese Seite ibersetzen
von F Pedregosa - Zitiert von: 1894 - Ahnliche Artikel
1 1 1 H - 1 Scikit-learn: Machine Learning in Python. Fabian Pedregosa, Gaél Varogquaux,
8 DImenSIOnallty redUCtlon and pre proceSSIng Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu ...

> U Sage About us — scikit-learn 0.16.1 documentation
scikit-learn.org/stable/about.html v Diese Seite (ibersetzen

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825- 2830,
2011. Bibtex entry: @article{scikit-learn, title={Scikit-learn: Machine ...

= widely used in science and industry (Evernote,
Spotify)

HELMHOLTZ &oiocii e
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PART 2.2

Decision Trees
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Decision Trees

> Concept

= a decision tree is a predictive modeling tool

uses a tree structure to represent a number of possible decision paths

classification trees predict class

regression trees predict continuous (real) number

decision trees map a n-dimensional input to a 1-dimensional output

HELMHOLTZ 00 e
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Decision Trees

> A general description

Consider inputs X, and X, mapped onto Y

a) Feature space can be modeled by constants, but in different regions

of parameter space R
b) Described by a binary decision tree with cu>ts on input parameters at - b . .
nodes N | R
c) Terminal nodes declare class labels R;
— Decision Trees split parameter space into rectangles and fit a simple t1

model in each one (e.g. a constant)

Root (input data) Xi<t

Node (tests attributes) X2St2 X1 <ts

/

Branch (attribute value)

Ry Ra Rg
Leaf (terminal value or

class label) Source: (4)  Rs  Rs

Stefan Ohm | DESY Summer School | 18.08.2018 | Page 30
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Decision Trees

> Learning

= using representative training data
= identify variables/parameters with classification potential

1. Split the source set (consisting of all classes) into subsets based on an attribute
value test (binary decision or cut on continuous variable)

2. Repeat process on subsets — grow decision tree Event with set of parameters M; = (m; 1. . ./n;¢)

3. Stop at a certain point (purity in leaves)

S
Source: (5)

> User input
= Training set consisting of events of known classes
= List of variables with classification potential

> Decision Tree output

= Each leaf returns signal/background (classification mode)

= Each leaf returns a specific value of the target variable

HELMHOLTZ 00 e
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Decision Tree Learning

> Advantages

simple to understand and interpret

almost no data preparation

able to handle both, numerical and categorical data

‘white box’, completely transparent

robust, even if the assumptions for the model do not perfectly describe the real data
performs well with large data sets

can classify data for which attributes are missing

> Limitations

decision trees learn to locally optimize
Overfitting and over-complex trees do not generalize well from training data

Some concepts are hard to learn by trees (e.g. parity, odd/even number classification)

HELMHOLTZ 00 e
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Decision Tree: Ensemble Methods

> Single decision trees tend to overfit

= j.e. instable to statistical fluctuations in the training sample
— classifier response is altered compared to real data

— lower performance in classification problems
> Ways out

= train a forest of decision trees
= classify events based on a majority vote of many trees

= since same input training sample is used, we have to come up with different tree
structures

— Boosting (Boosted Decision Trees)

re-weighting of misclassified events, when building the next decision tree
— Randomization (Random Forests)

randomly choose subset of events or classifying parameters for training of single tree
— Pruning

grow trees to maximum extent, cut back insignificant leaves

HELMHOLTZ “oeor, .. %
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Boosted Decision Trees

> Stabilizing and improving the decision tree response

= Adaptive boost is the most common boosting algorithm (applicable to any MVA classifier)
= Gradient boost (at least in TMVA only available for decision trees)

= Bagging (resampling technique based on underlying PDFs)
> Adaptive Boosting

= Imagine the building of the first tree, containing many leafs that contain signal and
background events

first tree will have associated misclassification rate err 1 — err
O =

misclassified events will get a new weight when training the next tree: err

re-normalize such that the sum of weights is the same as the previous tree

if h(x;) is the response of a single classifier and x the set of input parameters, the boosted
event classification is yz,, (X) iS given as

1 Ncollect,ion

yBoost(x) = N— ' Z ln(ai) : hi(x)

collection R

HELMHOLTZ (540 oo
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Example: BDTs in H.E.S.S. Data Analysis

Berge (2006)

> Improve sensitivity of IACTs in the analysis //“ """""

= improve reconstruction of showers

= two possibilities:
+ classification using MVAs and image shape parameters (e.g. neural networks, boosted decision trees)
+ use information in all pixels to do reconstruction (full-blown, CPU-intense likelihood fitting)

> Why cuts on scaled parameters are not sufficient

= Cuts on shower shape (Width/Length) are box cuts

= other parameters have separation potential as well (such as height of maximum

Cherenkov light emission)

: _ Colour = CRs
= box cuts ignore correlations Contours =y rays

— MVAs can take care of this

MRSL [o]

' ' ' ' '
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BDTs for y/hadron classification

> BDT settings

= 200 trees trained (compromise between performance and processing)

Gini index used to split at nodes, similar performance achieved with other techniques

Stop splitting at (N, + N,) / (10 * N2 ) — taking into account the training statistics and
number of training parameters

Number of steps when scanning input parameters for best cut set to 100

Input parameters (everything with classification potential)
- MRSW, MRSL, MRSWO, MRSLO, oE/E, X

max

Output is (cut) parameter that measures hadroness or y-ray likeliness

. 4
Event with set of parameters M; = (m; ;... .J1;6) w14r

b3 m ;< mS
121 4
miy < m;

mi; < mj

10

N s o
T

12

Ll 4 i
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2 o 2 3
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Some more details

> Training sample

= classification should work for full dynamic range of instrument (energy, zenith angle)

= if distribution of input parameters for signal and background change as a function of
observation condition, the BDT response will change as well

= Train in energy and zenith angle bands

= Training statistics between 120k/240k events and 15k/25k events for y/hadrons

= Cut on BDT output alone not a good idea (would result in a signal efficiency that
changes with observation conditions) — cut on signal efficiency instead

= Note the range of BDT output distributions

Training statistics Source: (5)

Zenith Reconstructed energy [TeV]

angle [l 57 63  03-05 05-1.0 1.0-20  2.0-50 5.0-100.0
0.0-150 120k/240k 55k/110k 55k/115k 35k/70k  25k/45k  15k/25k
15.0-25.0 95k/190k 60k/120k 65k/125k 40k/85k/  30k/55k  15k/35k
25.0-350 60k/120k 65k/130k 70k/135k 50k/95k  35k/70k  20k/45k
35.0-425 -|- 75k/150k 75k/155k  55k/115k 45k/95k  35k/65k
425-475 -|- 55k/105k 95k/195k  75k/145k 60k/125k 50k/100k
475-525 —|- |- 140k/275k 100k/200k 95k/185k 80k/165k
525-60.0 -/- /- 50k/100k  70k/140k  70k/135k 70k/140k

Cut parameters for (¢, = 0.84/0.83)

Reconstructed energy [TeV]
0.1-0.3 0.3-0.5 0.5-1.0

0.28/031 0.59/0.61 0.63/0.64
0.27/029 0.56/0.58 0.61/0.63
0.22/025 0.51/0.53 0.59/0.60
0.45/0.48 0.58/0.60
0.25/0.28 0.54/0.56
0.47/0.50
0.29/0.32

Zenith
angle [°]

1.0-2.0

0.52/0.59
0.56/0.57
0.55/0.57
0.52/0.53
0.54/0.56
0.48/0.51
0.46/0.48

2.0-5.0

0.61/0.62
0.56/0.57
0.48/0.51
0.44/0.46
0.42/0.45
0.36/0.39
0.38/0.40

5.0-100.0

0.63/0.64
0.60/0.61
0.54/0.56
0.43/0.45
0.39/0.42
0.38/0.41
0.35/0.37

0.0-15.0

15.0-25.0
25.0-35.0
35.0-42.5
42.5-47.5
47.5-52.5
52.5-60.0
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BDTs in H.E.S.S.

> Results

= BDTs are a robust, simple and sensitive analysis method (better than others)
= Training in energy and zenith angle bands can take out parameter dependencies
= Classifier response changes as a function of energy/zenith

= Parameter importance changes as a function of energy/zenith

Xax at low energies
MRSW at medium energies
all parameters at high energies

60 ~- MRSW
- MRSWO
-©- MRSL
50 — -+ MRSLO
L ——= Xnax
Source: (5) N S AE/E
40—
| | o - MRSW -
Background rejection versus Signal efficiency ° r -¥ MRSWO -
« = AMVA, C -5~ MRSL 30
5 1E S T T T T 50— —+ MRSLO -
g [ _ ] s = Yoy ¥
% r \\ =\ i r S-AE/E 20—
2 0.98 — B a0l -
B i TN N \ ] £ r C
= r \\ \ 1 = r C
o e\ N 3 o 10
2098 AN ] § 30 -
5 MVA Method - t r C
@ —— BDTD \L 1 8 f PR I N B e - N
084 i BHERSD Q i E [ ST 20 30 40 50 60
T MLP \ o mean zenith angle [°]
0.92 o — L|kel3hoodD r
““F  — RuleFit N‘ 10
[ —— Fisher 7] -
0.3 i I PR RN RPRE SRR SRR AP I
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BDTs in H.E.S.S.

> Tests on real data
= BDTs are much more sensitive than box cuts performed on individual parameters
= for HESS and Hillas-based parameters, 45% less observation time for one cut set

= Performance improvement across all energies

= Very good agreement between Monte-Carlo simulations and real data

> Lessons learnt

= Test different classifiers and settings other than default

= Deep trees are good for complex problems

= Easy to extend to other/more input parameters (Becherini et al. 2011, Naumann-
Godo et al. 2009)

— hard-cuts
---- 6 pars. hard-cuts
—— € hard-cuts

‘hard-cuts

— std-cuts
---- 6 pars. std-cuts
—  std-cuts

Obs. Time (Hours)
Obs. Time (Hours)
—_
o
T

So

—
(=]
T

1g

L1 I L.t S PR I
1
. 102 0 10 20 30 40 50 60 -0.4 -0.2 0o _ 02 0.4 0.6 0.8
SOU rce: (5) Flux (Crab Units) zenith angle [°] log  Elog [TeV]

Flux (Crab Units)




Major Achievement

Hint of signal seen from NGC 253 after 50 hours of data taking with
BDT analysis triggered deep observations

— First detection of a Starburst Galaxy in TeV y rays (Science, 2009)

D
Q
=) 140
< 120
"..% 100
£ 80
(] |
-25 160
a 40
(S NGC 253 120
\\\ 3 _0
\k _20
) 71-40 W NASA/JPL-Caltech/WISE Team
-25.5 1-60

-80

-26
00h50m 00h48m 00h46m
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PART 2.3

Artificial Neural Networks
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Neural Networks (NNs)

> Concept

= Inspired by humans’ brain

= |s simulated collection of inter-
connected “neurons”

= Each neuron returns certain response
to set of input signals

Input 1
—_—

= Neural net is put into defined state by
applying external input signals that
can be measured by the response of
one (or multiple) output neurons it

= Connections have numeric weights

that determine importance of inputs Source: (15)

HELMHOLTZ &oiocii e
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Working Principle

> Artificial NNs
_ = ANN is a mapping of n-dimensional input
Input Layer  Hidden Layer Output Layer parameter space X, ..., X, to m-dimensional

output parameter space y,,...y,,
= m =1 is classical classification problem

= mapping linear if all neurons have linear
response; non-linear if response of one neuron
is non-linear

= behavior is determined by

layout of neurons

weights of inter-neuron connections, w

and the neuron response function (activation
function)

= Regression layout similar, but with one output
Source: (18) neuron per target
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Neuron response function

> Mathematical description

= neuron response function p maps /., ..., i, onto neuron output
1 n

= can often be separated into a synapse function k and a neuron activation function a

= In e.g. TMVA, the functions are implemented as

w(()? - E y(e) (2) Sum,

K : (y(g) y(£)|w(e) 7(53)) — w(()? Z ( () ()) Sum of squares,

1 2% 07 »

N

w((,ﬁ) + Z |y(e) (e)| Sum of absolutes,

. S - (18 (T Linear,
Input Single Neuron ouree 19
1 l_km Sigmoid,
a: T —r 4 w+ € Cx
e’ —e
m Ta,nh,
\ e~e°/2 Radzal.
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Feed-forward Networks and Learning

> Characteristics

= ANNSs are organized in layers: input, output and hidden layers
= Each neuron in one layer is connected to all neurons in next layer — feed forward

= No connection among neurons in same layer

> Multiple hidden layers possible

> Back-propagation and learning /\
= Provide N training events of known type Tr——— :y/\

Define set of input parameters

|| Cat eating mouse

Compare with expectation | .\©Nie‘l,svHa \/
Adjust weights, repeat until minimum is reached

Adjust weights by means of an error function (compare output with expectation)

SYYSN
\
£

Let ANN classify event

change weights via gradient decent (differentiate functions)
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Practical training issues

> Generally

problem is overparametrized

optimisation is unstable

issues may appear depending on the non-linear function type used

Overfitting is an issue (add weight decay or weight elimination (i.e. | rmewoe
adding penalty to the error function) Pmgn

> N etWO rk a r.Ch ite Ctu re Nel‘xrjcll.NetW(j’urk.- 10 Uflits, Weight:D:ecay'=0.:02

influences the performance a lot

too many hidden layers is better than not enough

less hidden layers means worse response to non-linearities in data

Multiple layers allow for construction of hierarchy and search for P
different levels of detail (resolution) in data TanmETo®

TestError: 0223 ©: 111t o i
Bayes Error:  0.210 EEEE R g

T —
Source: (19)
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Preliminary Summary

> NNs attracted a lot of attention, but

tend to overfit (there are ways out of it)
are computationally expensive
are black boxes

most applications could be realized with other, more transparent methods, achieving
the same performance

good in cases where prediction without interpretation is required

less so if model interpretation is needed, or where physical quantities of inputs and
their inter-relation is required

> Mid 2000’s

Feature extraction in big data
renewed interest in neural networks, especially in the context of deep learning

industry entered the game

HELMHOLTZ 00 e
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Deep Learning

> |s the (reasonably) new kid on the block
> Most popular approach to tackle artificial intelligence (Al) problems

> Used to describe the world (i.e. data) with networks of hierarchical non-
linear functions (i.e. NNs or NNs combined with other classifiers)

> Used by biggest (i.e. data-intense) internet companies in the world

'\‘ twitter) . Go 81@ E:_;:E—?E af Microsoft

Adobe

> Very successful in performing specific tasks
= Social media (e.g. image recognition)
= Consumer electronics (smartphones, wearables)
= Entertainment and media (“users who bought this,...”)

= Medicine, Defense & Intelligence .

er School | TR
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Convolutional Neural Network (CNN)

> Widely used for image and video recognition

> Were very popular in the 1990’s for hand-written digit classification and
face detection

> Recently renewed interest thanks to

= much larger data sets of e.g. images that are labeled (millions)
= better model generalization strategies (see dropout method)

= powerful GPU implementations allowing for very large models to be trained
> Utilize

= Backpropagation (see before)

= Receptive fields

multiple layers of small collections of neurons that learn about a part of an image
connected to better describe the boundaries
performed for every layer

= Rectified Linear Units (ReLU)

model neuron response as f(x) = max(0,x), rather than tanh or sigmoid function

HELMHOLTZ (500 e
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Convolutional Neural Network (CNN)

> Typical layers

= Convolutional layers

« convolves input image with set of learnable filters
« reproduces one feature in the output image
- weights are shared, i.e. same filter is used for all pixels in a receptive field

= Pooling layer

+ compute max/average value of certain feature per sub-image
— increase robustness to translations in images

= Dropout method

« prevents overtraining by leaving out nodes with probability 0.5 at each training step — new
network architecture every round reduces susceptibility to rely on a few significant nodes

= Loss layer

« employs different loss functions for different applications (single class, probability, real values)

HELMHOLTZ &oiocii e
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K2012 approach

> |ldea
= map 2D color input image to probability vector over different classes via series of layers
> Each layer consists of

1. Convolution of previous layer output with set of learned filters
Passing response through ReLU functions

optionally max-pooling over neighbouring kernels

> W DN

optionally renormalization through contrast operation

192 128 Max

Figure 2 of K2012 ™" ™

HELMHOLTZ




Visualizing the K2012 network arch

> In general hard to interpret or even to understand
> Hence also hard to guide for future improvements

> Z£2013 developed visualization technique that

= is based on a multi-layered deconvolution network (Zeiler et al. 2011)

= features are far from random or un-interpretable
= reveal intuitive properties such as compositionality

= minimum depth of network is vital to performance

Figure 2 of 22013

itecture (Z2013)

why certain layouts perform well

-
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Recurrent Neural Network (RNN)

> Properties

= have feedback connections that can ‘remember’ information about previous training events

= put NN into internal state, allowing for dynamic behavior
> Application

= handwriting/speech recognition

= learning syntax from any input (latex, code, wikipedia)
> Back-propagation through time (BPTT)

= error signals ‘flow back in time’, by connecting units to previous layers
> Reinforcement learning

= inspired by behavioral psychology: NN interacts with environment through observation —
action — reward

= use fitness or reward function, where the goal of the NN is to maximize future reward

net, s, =S, +gy" AL

\ out, /

3 10-58-0%) =

_—7 v
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Applications (K2015)

> How is it learning

= Use Leo Tolstoys “War and Peace” as training input, sample every x training cycles
= 100 cycles: jibberish, but note words separated by spaces

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aocaenns lng

= 300 cycles: learns periods at end are followed by spaces

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

= 500 cycles: shortest and most common words

we counter. He stutn co des. His stanted out one ofler that concossions and was
to gearang reay Jotrets and with fre colt otf paitt thin wall. Which das stimn

= 700 cycles: more and longer words appearing

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

= 2000 cycles: quotations, questions, exclamation marks, names, words

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



Learning NNs to play ATARI 2600 games (M2015)

-n
=
<
8
<3
8
©
o

> L ayo u t Convgl ufion Convglution Fully cgnnected

= combines reinforcement learning (LSTMs)
with convolutional NNs

= 84 x 84 x 4 image followed by 3
convolutional layers, and 2 fully connected
layers

= output is action with joystick
= hidden layers are followed by ReLUs
> Training

= each game is one set of trained NN
= via a reward function

= agent selects from set of allowed actions,
changing internal state — modifying the
emulator — reward

— NN learns based on sequences of actions
and observations

HELMHOLTZ &oiocii e
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Learning NNs to play ATARI 2600 games (M2015)

Visualizing game states of last hidden layer

IX > High reward scenes
*. Expected = completing a screen
Reward leads to a new screen

> Medium reward
scenes

= in the middle of a
level, where rewards
are less imminent

= orange bunkers not
that significant
towards end of level

| 18.08.2018 | Page 57

Space Invaders
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How come there is so much fuzz about that now? (N2015)

> Answer is simple

= Big Data to learn deep neural networks
= New deep learning techniques, and (most importantly)

= computing power via CPUs and GPUs
> Why GPUs

= Neural Networks explore functions, matrices, vector operations, connections
= Requires many cores to perform calculations (cloud-like CPU computing infrastructure)

= GPUs are designed for these kind of operations (e.g. “Deep learning with COTS HPC systems”’,
Coates, et al. ICML 2013)

= GPUs make deep learning accessible when organized in servers with interconnections

1000 CPU servers 3 GPU-acc. servers
2000 CPUs 12 GPUs

16,000 cores 18,432 cores
600kWatts, $5M 4kWatts, $33k

Stanford Al labs +

HEMAOSZa  Thats the game changer v« {255y



Summary and outlook

> Big Data

= we are drowning in data, but

= we have tools to crawl data for relevant information
> Machine Learning

= is the way to go

= just have to be smart about the methods and decide what tools to use when/how
> Deep Neural Networks

= are widely used in industry nowadays
= if things are industry standard, good to think about how to use them in science
= GPUs have revolutionized the field

= Application to scientific data only starting in the last few years.
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