Next: Index Files, Previous: Files, Up: GDB Files
gdb allows you to put a program's debugging information in a file separate from the executable itself, in a way that allows gdb to find and load the debugging information automatically. Since debugging information can be very large—sometimes larger than the executable code itself—some systems distribute debugging information for their executables in separate files, which users can install only when they need to debug a problem.
gdb supports two ways of specifying the separate debug info file:
Depending on the way the debug info file is specified, gdb uses two different methods of looking for the debug file:
So, for example, suppose you ask gdb to debug
/usr/bin/ls, which has a debug link that specifies the
file ls.debug, and a build ID whose value in hex is
abcdef1234
. If the global debug directory is
/usr/lib/debug, then gdb will look for the following
debug information files, in the indicated order:
You can set the global debugging info directory's name, and view the name gdb is currently using.
set debug-file-directory
directoriesshow debug-file-directory
A debug link is a special section of the executable file named
.gnu_debuglink
. The section must contain:
Any executable file format can carry a debug link, as long as it can
contain a section named .gnu_debuglink
with the contents
described above.
The build ID is a special section in the executable file (and in other
ELF binary files that gdb may consider). This section is
often named .note.gnu.build-id
, but that name is not mandatory.
It contains unique identification for the built files—the ID remains
the same across multiple builds of the same build tree. The default
algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
content for the build ID string. The same section with an identical
value is present in the original built binary with symbols, in its
stripped variant, and in the separate debugging information file.
The debugging information file itself should be an ordinary
executable, containing a full set of linker symbols, sections, and
debugging information. The sections of the debugging information file
should have the same names, addresses, and sizes as the original file,
but they need not contain any data—much like a .bss
section
in an ordinary executable.
The gnu binary utilities (Binutils) package includes the `objcopy' utility that can produce the separated executable / debugging information file pairs using the following commands:
objcopy --only-keep-debug foo foo.debug strip -g foo
These commands remove the debugging information from the executable file foo and place it in the file foo.debug. You can use the first, second or both methods to link the two files:
objcopy --add-gnu-debuglink=foo.debug foo
Ulrich Drepper's elfutils package, starting with version 0.53, contains
a version of the strip
command such that the command strip foo -f
foo.debug has the same functionality as the two objcopy
commands and
the ln -s
command above, together.
ld --build-id
or
the gcc counterpart gcc -Wl,--build-id
. Build ID support plus
compatibility fixes for debug files separation are present in gnu binary
utilities (Binutils) package since version 2.18.
The CRC used in .gnu_debuglink
is the CRC-32 defined in
IEEE 802.3 using the polynomial:
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
The function is computed byte at a time, taking the least
significant bit of each byte first. The initial pattern
0xffffffff
is used, to ensure leading zeros affect the CRC and
the final result is inverted to ensure trailing zeros also affect the
CRC.
Note: This is the same CRC polynomial as used in handling the
Remote Serial Protocol qCRC
packet (see gdb Remote Serial Protocol). However in the
case of the Remote Serial Protocol, the CRC is computed most
significant bit first, and the result is not inverted, so trailing
zeros have no effect on the CRC value.
To complete the description, we show below the code of the function
which produces the CRC used in .gnu_debuglink
. Inverting the
initially supplied crc
argument means that an initial call to
this function passing in zero will start computing the CRC using
0xffffffff
.
unsigned long gnu_debuglink_crc32 (unsigned long crc, unsigned char *buf, size_t len) { static const unsigned long crc32_table[256] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; unsigned char *end; crc = ~crc & 0xffffffff; for (end = buf + len; buf < end; ++buf) crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8); return ~crc & 0xffffffff; }
This computation does not apply to the “build ID” method.