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Main information gain from accreting sources from X-rays
L_X ~ 1043-48 erg s-1

∆ L_X ~ 1044 erg s-1 within 100 ls Source height is very large:
standard picture, light bending not
effective, half of the photons are
intercepted by the disc and half 
reach the observer, PLC is
recoverd

Miniutti 03, Fabian 04

Source height increases:
Gravitational potential that power-law
photons have to overcome is reduced,
so that more photons reach infinity and
PLC increases, reflection continuum
increases slightly

Source height of power-law is small:
Most of the photons are bent
towards the disc and lost in the
BH reducing the PLC at inifinity,
spectrum is reflection dominated
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The basic physics of accreting sources
assumptions: NLS1 evolution starts in the slim disc regime (L ~ Ledd)

dM/dt remains constant for some time and then gradually    
decreases

FWHM of emission lines increases ( )
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Simple picture for the optical line widths evolution of Seyfert 1s
Assumptions: the case for 1H0707 (a NLS1s starting with a small mass of ~2 . 106 Msun)

accretion rate:  6 . 1024 g . s-1 (10-3 earth mass per second) = 0.1 Msun/ yr
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Comparison with SDSS EDR
Williams et al. 135 NLS1 out of 944 BLS1
assuming  ~108 yr AGN phase
mean NLS1s phase ~15 Millions years
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The mass growth rate of 1H 0707-495

linear growth
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12 Million years: BH mass doubling time scale

50 Million years: 
BH mass increased
by factor 10

90 Million years: 
BH mass increased
by factor 100
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when high accretion rate ceased, NLS1s become normal Seyfert 1s within a few 10´s million yr
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MWL implications of super-Eddington 
accretion rates

BLS1                                     NLS1BLS1                                     NLS1

Compton cooling

dM/dt, M
flat       X-ray steep power law

broad                                       OPTICAL narrow optical linesIonizing photon density

Photon screening strong                                      OPTICAL weak [OIII] emission 

weak                                        OPTICAL strong Fe IIIonizing continuum

moderate X-ray extreme X-variability 
Doppler boosting, light bending

weak                                           X-ray strong disk emission
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Other implications: Larger size of the BLR, lower BH masses

NLS1

B. Peterson

Indications for low M 
in NLS1 

M = FWHM2 R  /  G
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Statement  II: 

MWL discrepancies for the Sy1/Sy2 unification scheme
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type 1 nature at X-rays17 of factor  withty variabiliamplitude low intrinsic neutral NH

ROSAT Chandra 400 s
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X-ray:    direct view to central BH,  
Optical:   BLR not visible (view blocked)

Seyfert 2

Seyfert 1

Plausible
scenarios:

Underluminous
BLR

Dust optically
thick for X-rays

High column
ionized X-ray
gas
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Statement III: 

How to determine the SED of obscured and non-obscured sources?  
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The power of NGC 6240
Fosbury&Wall 1979:two gravitational interacting nuclei
Genzel 1998: starburst dominated power-source
infrared emission arises from warm absorbing dust, 
surroundinig the inner parts

Schulz 1998: execptionally high ROSAT luminosity
1043 erg s-1; interpreted as AGN-starburst connection
and evidence for hidden AGN
Komossa et al: 1998: Detection of extended soft 
X-ray emission with the ROSAT HRI

Mitsuda 1995: ASCA detection of Fe K lines and hard
power-law emission; first solid proof for AGN activity

Vignati et al. 1999, Ikebe et al. 2001: BeppoSAX,RXTE
detection of extremely Compton thick absorber
NH = 1024 cm-2 and power-law emission from the corona
Komossa et al. 2002: Chandra detection of Fe Kα
emission from both nuclei

Optical image/ESO 2.2m
Keel et al. 1995
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The basic physics of obscured sources
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The power of combining Chandra with XMM-Newton

0.5                  1.5                     5          10 
keV

T-gradient NH-gradient
[keV]                      [cm-2]

RED          0.5-1.5                     0.2 1022

YELLOW  1.5-5.0                     0.4  1022

WHITE      5.0-10.0                   4.1  1022

Chandra image binned in energy according
to XMM-Newton spectral results
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NGC 6240 as the prototype object of highly absorbed
AGN in the local universe (Hasinger 2001)

NGC 6240

QSO QSO averageaverage
(Elvis et al.)(Elvis et al.)

CMBCMB

CIB

CXB

COB

32A
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Looking for obscured quasars: 
a combined X-ray, optical, near infrared selection
Shallow X-ray flux + large area pick-up the most extreme sources

Selection of high-z obscured QSO:
from X-ray + photo-z catalog

•optical-to-near-infrared color (R-K)>4)

•X-ray-to-optical color (X/O>10)

•photometric redshift (zphot>1)
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Statement IV: Dark Energy measurements via chemical evolution

Detection of a 2-Gyr-old quasar at z=3.91 (Hasinger et al. 2003) 
is of particularly interest as it constrains the amount of dark energy

ΩΛ ~ 0.78

Alcaniz et al. 03

ΩΛ ~ 0.78

Alcaniz et al. 03

requires
precise optical
line intensity
measurements
via line of growth
measurements

e.g. 
Fe versus O
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Statement V: MWL results of X-ray
sources from deep field observations
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Example: COSMOS field

• 50 pointing scheduled with XMM (1.4 
Ms)

• 25 observed 
• 2 failed due to particles flares
• Field complete in June 2006 
• Chandra Proposal (P.I. M. Elvis)
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•Need to go to larger and contiguous scales 2 sq.deg.

•Need multiwavelength coverage

Cosmos
Survey 

2 degrees
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25 XMM-Newton Pointings
(15.06 05)

7

IRAS 100 µm map

RA: 10h00m26s  DEC: 2°12’36‘‘
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XMM-Cosmos field
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COSMOS major components :
HST (i-band – 590 orbits)

Subaru imaging (~25 nights, b,v,r,i,z,)  

VLT (540 hours) & Magellan (12 nights) 

XMM-Newton (1.4 Ms) 

VLA (265 hours)

GALEX deep (200 ks, AB~25)

http://www.astro.caltech.edu/cosmos/

all underway !

(>50 members from US, 
Japan, Europe and Canada)+ MAMBO, CFHT and others
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Subaru r band

20‘‘ x 20‘‘
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z ~ 1.0z ~ 1.0

VLAVLA--COSMOS vs. HST morphologiesCOSMOS vs. HST morphologies

2”2”

2”2”

2”2”

2”2”

z ~ 0.2z ~ 0.2

z ~ 1.3z ~ 1.3

z ~ 0.2z ~ 0.2
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I. Matute + V. Mainieri

VIMOS P73 spectra of XMM sources

XMM-5 XMM-137
log L0.5-2.0 keV= 43.9

type-1 AGN
log L0.5-2.0 keV= 43.8

type-2 Quasar ?

z=1.152 z=1.800
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A few numbers on optical SUBARU 
identification

N(X-ray sources)
695

N(with opt ID)
626 90%

N(ambiguous opt ID)
28 7%

N(no opt ID)
41 3%

Images: Subaru R-band
20‘‘ x 20‘‘ in size

check check withwith K  K  detectionsdetections

CaseCase forfor ChandraChandra proposalproposal

Empty fields
or very faint objects
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Future :
HST-ACS - g band (proposed)

Chandra 1.4 Ms (proposed)

Spitzer IRAC & MIPS (proposed)

Subaru : COSMOS-18 ==> improved phot-z
emission line survey

SCUBA-2 submm
deeper J,H, K

next: ALMA

ApJ special issue: Fall 2005
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Science aspects
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Statement VI:
MWL observations of cluster of galaxies are

of great scientific interest
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MWL observations of X-ray clusters

Entropy map with RADIO contours overlaid
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Galaxy cluster X-ray - Optical
Galaxy cluster
z=0.73

VLT FORS

Average spectrum of 13 cluster candidates –
all confirmed to be @z~0.73 

~12 x 6 arcmin
A. Comastri in preparation
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