Neutrinos in Particle and Astroparticle Physics: An Overview

Manfred Lindner Technical University Munich

Astroteilchenphysik in Deutschland: Status und Perspektiven 2005 DESY Zeuthen, 04.-05. Oktober 2005

Motivation: Physics Beyond the SM

Motivation: Neutrino Sources

Manfred Lindner

Astroteilchenphysik in Deutschland 2005

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- oscillations
- astrophysics & cosmology

Parameters for 3 Light Neutrinos

mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Kinematical Mass Determination

Sensitivity \Leftrightarrow degenerate ν -spectrum \Rightarrow Oscillations: $\Delta m_{ij}^2 \ll m_i^2 \Rightarrow \qquad \sum m_i^2 |U_{ei}|^2 < (2.2 \text{ eV})^2$

Future: KATRIN \rightarrow 0.25 eV \rightarrow ?

 \bullet ? $\bullet \bullet \bullet$ c.f. comological bounds

Neutrino-less Double β-Decay

$$m_1$$
→small → m_{ee} =const. ~ $(\Delta m_{ij}^2)^{1/2}$ ←→ sign (Δm_{31}^2)
 m_1 large → m_{ee} ~ m_1

Manfred Lindner

cosmological bound on m₁

CUORICINO, GERDA 🗲

Cosmology: syst. errors → X10?

 $0\nu 2\beta$ – nuclear matrix elements?

theory: LR, RPV-SUSY, ...

CUORE, Majorana, ...

aim: $(\Delta m_{31}^2)^{1/2} \simeq 0.05 \text{eV}$

claim **→** ,tension'

new experiments:

Neutrino Oscillation Signals

Solar Neutrinos: Learning About the Sun

Observables:

- optical (total energy, surface dynamics, sun-spots, historical records, B, ...)
- **neutrinos** (rates, spectrum, ...)

Learning from Atmospheric Neutrinos

The Future of Oscillation Physics

<u> Δm^2 and θ_{ij} regions</u> \rightarrow improved oscillation experiments \rightarrow controlled sources & detectors

→ long baseline experiments with neutrino beams
→ reactor experiments with identical near & far detector

<u>Aims</u>: → improved precision of the leading 2x2 oscillations → detection of generic 3-neutrino effects: θ₁₃, CP violation

→ precision neutrino physics

New Neutrino Beams

- <u>conventional beams, superbeams</u>
 → MINOS, CNGS: <u>OPERA</u> ICARUS, T2K, NOvA, T2H,...
- <u>β-beams</u>

→ pure v_e and v_e beams from radioactive decays; $\gamma \ge 100$

<u>neutrino factories</u>

 \rightarrow clean neutrino beams from decay of stored μ 's

$$\begin{split} P(\nu_e \to \nu_\mu) &\approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \ \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\ &\pm \ \sin \delta_{\rm CP} \ \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \end{split}$$

correlations & degeneracies

New Reactor Experiments

Sensitivity Versus Time

 $\sin^2 2\theta_{13}$ sensitivity versus time

The Value of Precision for θ_{13}

- models for masses & mixings
- input: Known masses & mixings
 - \rightarrow distribution of θ_{13} "predictions"
- + θ_{13} often close to experimental bounds
 - → motivates new experiments
 - θ₁₃ controls 3-flavour effects
 like leptonic CP-violation

for example: sin²2θ₁₃ < 0.01 → physics question: why is θ₁₃ so small ? → numerical coincidence → symmetry

Reference	$\sin\theta_{13}$	$\sin^2 2\theta_{13}$
50(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold SO(10)		
Asaka, Buchmüller, Covi [41]	0.1	0.04
SO(10) + flavor symmetry		
Babu, Pati, Wilczek [42]	$5.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, lobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Dan [45]	0.014	7.8 - 10-1
Machawa [46]	0.22	0.18
Pozz Velezeo Sevillo [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SU(10) + terture		
Buchmüller, Wyler [50]	0.1	0.04
Bando Obara [51]	0.01 0.06	$4 \cdot 10^{-4}$ 0.01
Flavor summetries	0.01 0.00	1 10 0.01
Crimua Loucura [52, 52]	0	0
Grimus Lavoura [52]	03	0.3
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Monapatra [55]	0.08 0.4	0.03 0.5
Ohlsson, Seidi [50]	0.07 0.14	0.02 0.08
King, Boss [57]	0.2	0.15
Tenture	012	
Honda Kaneko Tanimoto [58]	0.08 0.20	0.03 0.15
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	0.01 0.05	4 0 2.001
Ibarra, Boss [61]	0.2	0.15
3 × 2 see_sou	0.2	0.20
	0.05	0.01
Fremeter, Clockey, Veneride [64]	0.05	0.01
Mei Xing [65] (normal hierarchy)	0.07	0.02
(invented hierarchy)	0.01	0.02
(mverted merarchy)	> 0.006	$> 1.6 \cdot 10^{-4}$
	> 0.006	$> 1.6 \cdot 10^{-4}$
Anarchy	> 0.006	$> 1.6 \cdot 10^{-4}$
de Gouvêa, Murayama [66]	> 0.006	$> 1.6 \cdot 10^{-4}$ > 0.04

Further Implications of Precision

Precision allows to identify / exclude:

- special angles: $\theta_{13} = 0^{\circ}$, $\theta_{23} = 45^{\circ}$, ... $\leftarrow \rightarrow$ discrete f. symmetries?
- special relations: $\theta_{12} + \theta_C = 45^\circ$? $\leftarrow \rightarrow$ quark-lepton relation?
- quantum corrections
 renormalization group evolution

Provides also measurements or tests of:

- **MSW effect** (coherent forward scattering and matter profiles)
- cross sections
- 3 neutrino unitarity **< >** sterile neutrinos with small mixings
- neutrino decay (admixture...)
- decoherence
- NSI
- MVN, ...

The Interplay of Topics

Neutrinos & Cosmology

- Dark Matter ~ 25% & Dark Energy 70%
- mass of all neutrinos: $0.001 \le \Omega_v \le 0.02$
- baryonic matter $\Omega_{\rm B} \sim 0.04$

Present Day Acceleration

Big Bang

Inflation

Expansion

neutrinos affect:

- BBN, structure formation

- baryon asymmetry, ...

Source: Devid Aigslar, Hervard Smithsonian Center for Astrophysics

Astroteilchenphysik in Deutschland 2005

Cosmology and Neutrino Mass

• **v**'s are hot dark matter → smears structure formation on small scales

Baryon Asymmetry & Neutrinos

Supernova Neutrinos

2 possibilities:

Supernovae & Gravitational Waves

Dimmelmeier, Font, Müller

- \rightarrow additional information about galactic SN
- → global fits: optical + neutrinos + gravitational waves
- → neutrino properties + SN explosion dynamics
- → SN1987A: strongest constraints on large extra dimensions

Neutrinos & TeV γ 's

A plausible explanation: -SN shock front acceleration - γ 's from π^0 decay → v flux from GC \rightarrow v signal @ km³ detectors

Neutrino Telescopes

Conclusions

Neutrinos probe new physics in many ways!

