High precision numerical accuracy
in Physics research

Florent de Dinechin, Arénaire Project, ENS-Lyon
Florent.de.Dinechin@ens-lyon.fr

ACAT 2005

@ Introduction: double-precision not enough ?
@ Hardware solutions?

© Software solutions

@ Mathematical solutions ?

@ Conclusion

Introduction: double-precision
not enough?

Introduction: double-precision not enough ?

50 years of computing heritage lead to rather silly names...
o float, REAL or single precision means
o a floating-point format
o with 24 bits of mantissa,
(and 7 bits of exponent, and a sign bit, total 4 bytes)
o or roughly 7 significant decimal digits
10.000.000
o Not enough to compute Z 59
i=0

50 years of computing heritage lead to rather silly names...
o float, REAL or single precision means
o a floating-point format
o with 24 bits of mantissa,
(and 7 bits of exponent, and a sign bit, total 4 bytes)
o or roughly 7 significant decimal digits
10.000.000
o Not enough to compute Z 59
i=0

@ double, REAL(8) or double precision means roughly 15 digits

50 years of computing heritage lead to rather silly names...
o float, REAL or single precision means
o a floating-point format
o with 24 bits of mantissa,
(and 7 bits of exponent, and a sign bit, total 4 bytes)
o or roughly 7 significant decimal digits
10.000.000

o Not enough to compute Z X;
i=0

@ double, REAL(8) or double precision means roughly 15 digits

@ quad, REAL*16, REAL(16) or quadruple precision will mean
roughly 30 digits.

50 years of computing heritage lead to rather silly names...
o float, REAL or single precision means
o a floating-point format
o with 24 bits of mantissa,
(and 7 bits of exponent, and a sign bit, total 4 bytes)
o or roughly 7 significant decimal digits
10.000.000

o Not enough to compute Z Xi

i=0

@ double, REAL(8) or double precision means roughly 15 digits

@ quad, REAL*16, REAL(16) or quadruple precision will mean
roughly 30 digits.

There is a standard (IEEE-754, IEC 60559) that defines all this
(number representations, operation behaviour, and more).

@ All recent processors have double-precision hardware operators
for +, —, %

@ They all do their best to implement the IEEE-754 standard
@ Peak throughput of 2 to 4 double-precision FP op per cycle.

@ Power/PowerPC and Itanium hardware is based on
fused multiply-and-add: a X b+ ¢ in one instruction

o more efficient (two operations in one instruction)
o more accurate (only one rounding)

Less relevant to this talk:

@ IA32 (Intel/AMD) and 1A64 (HP/Intel) hardware is actually
double-extended precision (18 digits)

@ Division is always much slower than the others, and is sometimes
implemented in software.

(More details)

8

From the web page of a quad-like library?:
This code has been used for:

o Studies of Feigenbaum scaling in discrete dynamical systems.
@ Two-loop integral for radiative corrections in muon decay.

o Number theory research, e.g. in LLL algorithms.
°

Coefficient generation and checking of double-precision
algorithms for transcendental functions.

o Testing sensitivity to rounding errors of existing
double-precision code.

o Linear programming problems which arise in the study of
linear codes.

K. Briggs’ doubledouble

4

From the web page of a quad-like library?:
This code has been used for:

o Studies of Feigenbaum scaling in discrete dynamical systems.

Two-loop integral for radiative corrections in muon decay.
Number theory research, e.g. in LLL algorithms.

Coefficient generation and checking of double-precision
algorithms for transcendental functions.

Testing sensitivity to rounding errors of existing
double-precision code.

Linear programming problems which arise in the study of
linear codes.

Quadruple precision considered in the revision of the |EEE 754
Standard for Floating-Point Arithmetic

K. Briggs’ doubledouble

4

@ What are the needs for quadruple (and more) precision ?
o Can we hope for quadruple precision in hardware soon ?
@ What are the software alternatives, and their cost ?

@ Can algorithm changes reduce the need for quadruple
precision ?

o Computer Arithmetic at large:
o designing new operators
o cleverly using existing operators
o performance and accuracy

@ Current research domains:

o Number representation and algorithms

o Operations in fixed and floating point, cryptography,
elementary functions

Hardware (ASIC and FPGA), hardware-oriented algorithms
Software: multiple precision, intervals, elementary functions
o Machine-checked proofs of all the above

o Computer Arithmetic at large:
o designing new operators
o cleverly using existing operators
o performance and accuracy

@ Current research domains:

o Number representation and algorithms

o Operations in fixed and floating point, cryptography,
elementary functions

Hardware (ASIC and FPGA), hardware-oriented algorithms
Software: multiple precision, intervals, elementary functions
o Machine-checked proofs of all the above

The speaker is not a physicist...

Hardware solutions ?

Hardware solutions ?

X Y

exchange/subtract
X ¥ Ex-Ey

shiftround |

normalisation

sign/exception handling

Building a quad-precision FPU:

@ Main blocks are of size n? and nlog(n)

X Y

exchange/subtract
X ¥ Ex-Ey

shiftiround

normalisation

sign/exception handling

Building a quad-precision FPU:
@ Main blocks are of size n? and nlog(n)
@ Expect more than doubling the area of current FPU

@ Expect less than doubling the pipeline depth (3-6 levels
currently)

Floating
Branch Point Pipeline
Unit Unit Control Integer Unit

1A-32
Engine

T6KB LIl | e g : Multimedia
Cache .
Advanced Load/Stare.
Load
Address
Table

Hardware
Page

Walker Lookaside

Buffer

256KB L2 Cache
and Control

Buslogic ~ 3MBL3Cache L3Tags

Itanium 2

£
£
£
3
g
E
s
£
&
8
8

Opteron

)

aka G4

(

PowerPC 7400

10

Does the market (you) justify hardware quad ?

An older question:
@ Does the market justify hardware division ?

@ In Itanium,

o FP division has been delegated to software,
o with specific instructions (frcpa) to accelerate it.
o It makes sense in a global silicon budget.

@ Let us study the software quad alternatives
o instructions to accelerate it?

11

The most probable approach:
SSE2-like FPU with quad capabilities.

e FPadd: each cycle, 2 // DP or 1 QP.
e FPmul/FMA:

o 2 // DP each cycle, or 1 QP each other cycle?
o more silicon: 4 // DP each cycle, or 1 QP each cycle

Conclusion:
@ Quad will mean a 2x-4x reduction in peak performance
compared to double.

@ Even with hardware quad support, it will make sense to keep
using double-precision as often as possible

o (at least it will make sense for a while)

2Akkas and Schulte, DSD’'03

12

Software solutions

Software solutions

1Lg

Two options for reaching about 30 significant digits:

@ The double-double approach:
represent 1.2345678 as 1.234 + 5.678E-4

o Some Fortran REAL*16 implementations use this
@® Mixing double and double-double easy
© Exponent range is that of double-precision

@ quadruple precision is a 128-bit format (e15,m112) 3

o Supported at least by Sun, HP, and Intel (on Itanium)
o Revision of IEEE-754 should include it
@ A real floating-point format
@ Larger exponent
© Conversions to/from double expensive, mixing double/quad
expensive

3|EEE Standard for Shared Data Formats 1596.5-1993

14

@ Double-double operations

o Addition: 8 FP add/sub, and one comparison
o Multiplication: 7 FMA, or (without an FMA) 9415 mul+add

“Sterbenz (74), Dekker(1971), Knuth (1973), Linnainmaa and Seppo (1981),
Goldberg(1991). See also a Fortran90 implementation by Miller.
®Cornea et al (2002), Markstein (2003)

15

@ Double-double operations

o Addition: 8 FP add/sub, and one comparison
o Multiplication: 7 FMA, or (without an FMA) 9415 mul+add
o dependent operations, poor pipeline usage

“Sterbenz (74), Dekker(1971), Knuth (1973), Linnainmaa and Seppo (1981),
Goldberg(1991). See also a Fortran90 implementation by Miller.
®Cornea et al (2002), Markstein (2003)

15

@ Double-double operations

Addition: 8 FP add/sub, and one comparison

Multiplication: 7 FMA, or (without an FMA) 9+15 mul+add
dependent operations, poor pipeline usage

In many cases (if you know what you do) you can save a lot of
operations

© 6 0 o

— Kahan summation algorithm
— double-doubles for elementary functions
— ... (illustrations of “"Mixing double and double-double easy”)

“Sterbenz (74), Dekker(1971), Knuth (1973), Linnainmaa and Seppo (1981),
Goldberg(1991). See also a Fortran90 implementation by Miller.
®Cornea et al (2002), Markstein (2003)

15

e Double-double operations *

Addition: 8 FP add/sub, and one comparison

Multiplication: 7 FMA, or (without an FMA) 9+15 mul+add
dependent operations, poor pipeline usage

In many cases (if you know what you do) you can save a lot of
operations

© 6 0 o

— Kahan summation algorithm
— double-doubles for elementary functions
— ... (illustrations of “"Mixing double and double-double easy”)

@ Division, square root, elementary functions: in a factor 2-10 °

Conclusion: With an FMA, double-double slowdown less than 10

“Sterbenz (74), Dekker(1971), Knuth (1973), Linnainmaa and Seppo (1981),
Goldberg(1991). See also a Fortran90 implementation by Miller.
®Cornea et al (2002), Markstein (2003)

15

Operations:

@ Unpack numbers

@ Integer operations on 112-bit mantissa and 15-bit exponent
@ Normalisation of the result
°

Pack again

16

Operations:

@ Unpack numbers

@ Integer operations on 112-bit mantissa and 15-bit exponent
@ Normalisation of the result
o

Pack again

Possible optimisations:
@ Use of 128-bit wide multimedia extensions

@ New specific processor instructions to help round to 112 bits?

16

Operations:

@ Unpack numbers

@ Integer operations on 112-bit mantissa and 15-bit exponent
@ Normalisation of the result
°

Pack again

Possible optimisations:
@ Use of 128-bit wide multimedia extensions

@ New specific processor instructions to help round to 112 bits?

Remarks
@ Software quad mostly relies on integer arithmetic

@ Quad elementary functions in Intel and HP libraries use
double-double-extended arithmetic internally.

16

The price of a function call is several tens of cycles these days !

@ Using a library will be slow
@ REAL#*16 handled by the compiler will be much faster

o Inlined operations, no function call
o Possible global optimisation of register and pipeline usage
o For quad, most packing/unpacking disappears (internal format)

o Alternative: C/C++ macros ©

6See for example crlibm at http://lipforge.ens-lyon.fr/projects/

crlibm/
17

http://lipforge.ens-lyon.fr/projects/crlibm/
http://lipforge.ens-lyon.fr/projects/crlibm/

If you really have to add more than 103° numbers...

e Quad-double” and floating-point expansions®

@ Integer-based multiple precision: GMP and MPFR
(best for arbitrary precision)

@ Software Carry Save®
(best for fixed precision)

"Hida, Li, Bailey (2001)
8Priest (91), Daumas, Moreau-Fineau(98-99)

°Brent (78), Defour, de Dinechin (2002)
18

19

Mathematical solutions?

Mathematical solutions ?

@ Ask first-year students to write an n-body simulation
@ Run it with one sun and one planet

@ You always get rotating ellipses

20

@ Ask first-year students to write an n-body simulation

@ Run it with one sun and one planet
@ You always get rotating ellipses

@ Analysing the simulation shows that it creates energy.

x(t) :=v(t)ot

The following only deals with roundoff errors.

20

Kahan: “How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation 7"

21

Kahan: “How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation 7"

@ Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

21

Kahan: “How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation 7"
@ Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

@ Repeat the computation with same precision but
different/variable (IEEE-754) rounding modes, and compare
the results.

21

Kahan: “How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation 7"

@ Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

@ Repeat the computation with same precision but
different/variable (IEEE-754) rounding modes, and compare
the results.

@ Repeat the computation a few times with same precision but
slightly different inputs, and compare the results.

21

Kahan: “How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation 7"

@ Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

@ Repeat the computation with same precision but
different/variable (IEEE-754) rounding modes, and compare
the results.

@ Repeat the computation a few times with same precision but
slightly different inputs, and compare the results.

@ Use interval arithmetic

21

Kahan: “How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation 7"

@ Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

@ Repeat the computation with same precision but
different/variable (IEEE-754) rounding modes, and compare
the results.

@ Repeat the computation a few times with same precision but
slightly different inputs, and compare the results.

@ Use interval arithmetic

Of these schemes, only interval arithmetic provides a guarantee
(often " Your result is in [—00, +00], guaranteed”)

21

@ Error analysis techniques: how are your equations sensitive to
roundoff errors?

o Forward error analysis: what errors did you make ?

o Backward error analysis: which problem did you solve exactly ?

o See Higham. Several attempts to automate them (see
Langlois’ habilitation thesis @ ENS-Lyon)

22

@ Error analysis techniques: how are your equations sensitive to
roundoff errors ?
o Forward error analysis: what errors did you make ?
o Backward error analysis: which problem did you solve exactly ?
o See Higham. Several attempts to automate them (see
Langlois’ habilitation thesis @ ENS-Lyon)

@ Measure of the behaviour of the problem: Conditioning:
Cond — |relative change in output| i [(f(x) — f(x)) /f(x)]

|relative change in input| Ealy (X — x)/x|

o The greater Cond, the more your problem can be sensitive to
rounding (ill-conditionned).

o forward error < Cond x backward error

o Possibly pessimistic bound

22

@ Analyse the algorithm and localise the procedures where
precision is lost
o Inversion of an ill-conditionned matrix*°
o Polynomial roots close one to another 1!
o Flat triangles 12
o ...

Hasegawa (2003)
Y“Kahan, Langlois (2002)

2Shewshuck (1997), Kahan
23

@ Analyse the algorithm and localise the procedures where
precision is lost

Inversion of an ill-conditionned matrix'°

Polynomial roots close one to another 1!

Flat triangles 2

Was that part of your training ?

Hasegawa (2003)
Y“Kahan, Langlois (2002)

2Shewshuck (1997), Kahan
23

@ Analyse the algorithm and localise the procedures where
precision is lost
o Inversion of an ill-conditionned matrix!°
Polynomial roots close one to another 1!
Flat triangles 2

© ©6 o6 o

Was that part of your training ?
@ Improve this procedure

o Find another algorithm
o Keep the algorithm, but change all the REAL*8 to REAL*16
o Change only some

Hasegawa (2003)
Y“Kahan, Langlois (2002)

2Shewshuck (1997), Kahan
23

@ Analyse the algorithm and localise the procedures where
precision is lost
o Inversion of an ill-conditionned matrix!°
Polynomial roots close one to another 1!
Flat triangles 2

© ©6 o6 o

Was that part of your training ?
@ Improve this procedure

o Find another algorithm
o Keep the algorithm, but change all the REAL*8 to REAL*16
o Change only some

Hasegawa compares the performance of the two first options on a
range of systems.

Hasegawa (2003)
Kahan, Langlois (2002)
2Shewshuck (1997), Kahan

28]

24

Conclusion

Conclusion

o If you add together more than 10> numbers of similar

magnitude, then you do need quad precision.
@ Don't expect 100% hardware quad too soon (especially for
Grid@home-like computing)

@ Software quad or double-double can be reasonably fast if
managed by the compiler, or by yourself...

o We would love to collaborate on that.

@ There is a lot of science to do in mathematic and algorithmic
approaches.

o We would love to collaborate on that, too.

25

(I have asked all mine already)

26

27

@ IA32 instruction set (AMD and Intel x86 processors)

single, double (e11,m53) and double-extended (e15,m64)
one FP adder, one FP mult

IEEE-754 compliance difficult (and cornercases slow on Intel)
SSE2 adds two IEEE-754 compliant, double-precision FPUs

@ Power instruction set (Power/PowerPC processors)

o single and double precision only
o one or two FMA (Fused Multiply and Add)
o IEEE-754 compliance easy (but downgrade FMA)

@ SPARC instruction set (processors by Sun, Fujitsu, ...)

o single and double precision only
o up to two adders and two multipliers (Fujitsu SPARC64 V)
o |IEEE-754 compliance easy

@ |A64 instruction set

single, double and double-extended (e=17, m=64)
Two FMA

intruction-wise precision and rounding control
IEEE-754 compliance easy

© 6 o o

Cycle Integer units FP units
Design Time | Nb | axb | axb | Nb|athb|axb| ax+b

(ns) L/T L/T L/T L/T L/T
Alpha 21264 1.6 4 1/1 7/1 2 4/1 4/1 | 15/12
Athlon K6-I11 0.71 6 1/1 1/1 3 3/1 3/2 | 20/17
Pentium [I 10 | 3 | 1/1 | 4/1 | 1 | 3/1 | 5/2 | 32/32
Pentium 1V 0.4 3 5/5 | 14/3 2 5/1 7/2 | 38/38
Itanium 2 1.25 4 1/1 18/1 4 4/1 4/1 soft
PowerPC 750 25 2 1/1 2-5/1 1 3/1 4/2 31/31
Sun UltraSparc Il | 0.95 4 3/1 4/1 2 4/1 4/1 | 24/17

28

L : latency, T : throughput, in cycles.

@ There exists a standard for FP, and it is a good one
@ It enables portability and provability of FP programs
@ It requires cooperation of processor, OS, language, compiler,

@ Standard compliance conflicts with performance, and is
probably disabled by default on your system

One drawback of the standard:

@ In the 70s, when people ran the same program on different
machines, they got widely different results.

o They had to think about it and find what was wrong.
o Now they get the same result, and therefore trust it.
o We (computer scientists) have to educate them...

29

30

X Y

exchange/subtract

Ex-Ey

normalisation
sign/exception handling

X X X
X CYy XY X Y3 X Ya)
K—W

YaX;

Sil}

o Instead of computing f(x), compute an interval [f;, f,] which
is guaranteed to contain f(x)
o operation by operation
o use directed rounding modes
o several libraries exist

32

o Instead of computing f(x), compute an interval [f;, f,] which
is guaranteed to contain f(x)

o operation by operation
o use directed rounding modes
o several libraries exist

@ This scheme does provide a guarantee

32

o Instead of computing f(x), compute an interval [f;, f,] which
is guaranteed to contain f(x)
o operation by operation
o use directed rounding modes
o several libraries exist

@ This scheme does provide a guarantee

@ ... which is often overly pessimistic
(" Your result is in [—o00, +00], guaranteed”)

32

Instead of computing f(x), compute an interval [f;, f,] which
is guaranteed to contain f(x)

o operation by operation

o use directed rounding modes

o several libraries exist

This scheme does provide a guarantee

... which is often overly pessimistic
(" Your result is in [—o00, +00], guaranteed”)

Limit interval bloat by being clever (changing your formula)

... and/or using bits of arbitrary precision when needed (MPFI
library).

82

o Instead of computing f(x), compute an interval [f;, f,] which
is guaranteed to contain f(x)
o operation by operation
o use directed rounding modes
o several libraries exist

@ This scheme does provide a guarantee
@ ... which is often overly pessimistic
(" Your result is in [—o00, +00], guaranteed”)
@ Limit interval bloat by being clever (changing your formula)
@ ... and/or using bits of arbitrary precision when needed (MPFI
library).
@ Therefore not a mindless scheme
o Fair tradeoff between mindlessness and manual proof

82

	Introduction: double-precision not enough?
	Hardware solutions?
	Software solutions
	Mathematical solutions?
	Conclusion

