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Double precision ?

50 years of computing heritage lead to rather silly names...

float, REAL or single precision means

a floating-point format
with 24 bits of mantissa,
(and 7 bits of exponent, and a sign bit, total 4 bytes)
or roughly 7 significant decimal digits

Not enough to compute
10.000.000∑

i=0

xi

double, REAL(8) or double precision means roughly 15 digits

quad, REAL*16, REAL(16) or quadruple precision will mean
roughly 30 digits.

There is a standard (IEEE-754, IEC 60559) that defines all this
(number representations, operation behaviour, and more).
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Floating point hardware in 2005

All recent processors have double-precision hardware operators
for +, −, ×
They all do their best to implement the IEEE-754 standard

Peak throughput of 2 to 4 double-precision FP op per cycle.

Power/PowerPC and Itanium hardware is based on
fused multiply-and-add: a× b + c in one instruction

more efficient (two operations in one instruction)
more accurate (only one rounding)

Less relevant to this talk:

IA32 (Intel/AMD) and IA64 (HP/Intel) hardware is actually
double-extended precision (18 digits)

Division is always much slower than the others, and is sometimes
implemented in software.

(More details)
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Double-precision not enough ?

From the web page of a quad-like library1:
This code has been used for:

Studies of Feigenbaum scaling in discrete dynamical systems.

Two-loop integral for radiative corrections in muon decay.

Number theory research, e.g. in LLL algorithms.

Coefficient generation and checking of double-precision
algorithms for transcendental functions.

Testing sensitivity to rounding errors of existing
double-precision code.

Linear programming problems which arise in the study of
linear codes.

Quadruple precision considered in the revision of the IEEE 754
Standard for Floating-Point Arithmetic

1K. Briggs’ doubledouble
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Purpose of this talk

What are the needs for quadruple (and more) precision ?

Can we hope for quadruple precision in hardware soon ?

What are the software alternatives, and their cost ?

Can algorithm changes reduce the need for quadruple
precision ?

5



The Arénaire project @ École Normale Supérieure de Lyon

Computer Arithmetic at large:

designing new operators
cleverly using existing operators
performance and accuracy

Current research domains:

Number representation and algorithms
Operations in fixed and floating point, cryptography,
elementary functions
Hardware (ASIC and FPGA), hardware-oriented algorithms
Software: multiple precision, intervals, elementary functions
Machine-checked proofs of all the above

The speaker is not a physicist...
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I have never built a workstation FPU

/+ −

−
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far path

close / far
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shift/round
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normalisation

Ez

Ex
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Building a quad-precision FPU:

Main blocks are of size n2 and n log(n)

Expect more than doubling the area of current FPU

Expect less than doubling the pipeline depth (3-6 levels
currently)
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Raw silicon cost

Itanium 2 Opteron
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Where the mass market is

Power 5 PowerPC 7400 (aka G4)
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The economics of the market

Does the market (you) justify hardware quad ?

An older question:

Does the market justify hardware division ?

In Itanium,

FP division has been delegated to software,
with specific instructions (frcpa) to accelerate it.
It makes sense in a global silicon budget.

Let us study the software quad alternatives

instructions to accelerate it ?
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The economics of your code

The most probable approach:
SSE2-like FPU with quad capabilities.

FPadd: each cycle, 2 // DP or 1 QP.

FPmul/FMA:

2 // DP each cycle, or 1 QP each other cycle2

more silicon: 4 // DP each cycle, or 1 QP each cycle

Conclusion:

Quad will mean a 2x-4x reduction in peak performance
compared to double.

Even with hardware quad support, it will make sense to keep
using double-precision as often as possible

(at least it will make sense for a while)

2Akkaş and Schulte, DSD’03
12



Software solutions

1 Introduction: double-precision not enough ?

2 Hardware solutions ?

3 Software solutions

4 Mathematical solutions ?

5 Conclusion

13



Double-double versus Quad

Two options for reaching about 30 significant digits:

The double-double approach:
represent 1.2345678 as 1.234 + 5.678E-4

Some Fortran REAL*16 implementations use this
⊕ Mixing double and double-double easy
	 Exponent range is that of double-precision

quadruple precision is a 128-bit format (e15,m112) 3

Supported at least by Sun, HP, and Intel (on Itanium)
Revision of IEEE-754 should include it

⊕ A real floating-point format
⊕ Larger exponent
	 Conversions to/from double expensive, mixing double/quad

expensive

3IEEE Standard for Shared Data Formats 1596.5-1993
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Performance cost of double-double arithmetic

Double-double operations 4

Addition: 8 FP add/sub, and one comparison
Multiplication: 7 FMA, or (without an FMA) 9+15 mul+add

dependent operations, poor pipeline usage
In many cases (if you know what you do) you can save a lot of
operations

– Kahan summation algorithm
– double-doubles for elementary functions
– ... (illustrations of “Mixing double and double-double easy”)

Division, square root, elementary functions: in a factor 2-10 5

Conclusion: With an FMA, double-double slowdown less than 10

4Sterbenz (74), Dekker(1971), Knuth (1973), Linnainmaa and Seppo (1981),
Goldberg(1991). See also a Fortran90 implementation by Miller.

5Cornea et al (2002), Markstein (2003)
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Performance cost of quad

Operations:

Unpack numbers

Integer operations on 112-bit mantissa and 15-bit exponent

Normalisation of the result

Pack again

Possible optimisations:

Use of 128-bit wide multimedia extensions

New specific processor instructions to help round to 112 bits ?

Remarks

Software quad mostly relies on integer arithmetic

Quad elementary functions in Intel and HP libraries use
double-double-extended arithmetic internally.
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Important general remark

The price of a function call is several tens of cycles these days !

Using a library will be slow

REAL*16 handled by the compiler will be much faster

Inlined operations, no function call
Possible global optimisation of register and pipeline usage
For quad, most packing/unpacking disappears (internal format)

Alternative: C/C++ macros 6

6See for example crlibm at http://lipforge.ens-lyon.fr/projects/

crlibm/
17
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Better than Quad

If you really have to add more than 1030 numbers...

Quad-double7 and floating-point expansions8

Integer-based multiple precision: GMP and MPFR
(best for arbitrary precision)

Software Carry Save9

(best for fixed precision)

7Hida, Li, Bailey (2001)
8Priest (91), Daumas, Moreau-Fineau(98-99)
9Brent (78), Defour, de Dinechin (2002)
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Mathematical solutions ?
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Rounding is not always the culprit

Ask first-year students to write an n-body simulation

Run it with one sun and one planet

You always get rotating ellipses

Analysing the simulation shows that it creates energy.

x(t) := v(t)δt

The following only deals with roundoff errors.
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How do you know that double is not enough ?

Kahan: “How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation ?”

Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

Repeat the computation with same precision but
different/variable (IEEE-754) rounding modes, and compare
the results.

Repeat the computation a few times with same precision but
slightly different inputs, and compare the results.

Use interval arithmetic

Of these schemes, only interval arithmetic provides a guarantee
(often “ Your result is in [−∞,+∞], guaranteed”)
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Analysis of rounding errors propagation

Error analysis techniques: how are your equations sensitive to
roundoff errors ?

Forward error analysis: what errors did you make ?
Backward error analysis: which problem did you solve exactly ?
See Higham. Several attempts to automate them (see
Langlois’ habilitation thesis @ ENS-Lyon)

Measure of the behaviour of the problem: Conditioning:

Cond =
|relative change in output|
|relative change in input|

= lim
x̂→x

|(f (x̂)− f (x)) /f (x)|
|(x̂ − x)/x |

The greater Cond , the more your problem can be sensitive to
rounding (ill-conditionned).
forward error < Cond × backward error
Possibly pessimistic bound

22



Analysis of rounding errors propagation

Error analysis techniques: how are your equations sensitive to
roundoff errors ?

Forward error analysis: what errors did you make ?
Backward error analysis: which problem did you solve exactly ?
See Higham. Several attempts to automate them (see
Langlois’ habilitation thesis @ ENS-Lyon)

Measure of the behaviour of the problem: Conditioning:

Cond =
|relative change in output|
|relative change in input|

= lim
x̂→x

|(f (x̂)− f (x)) /f (x)|
|(x̂ − x)/x |

The greater Cond , the more your problem can be sensitive to
rounding (ill-conditionned).
forward error < Cond × backward error
Possibly pessimistic bound

22



Solutions

Analyse the algorithm and localise the procedures where
precision is lost

Inversion of an ill-conditionned matrix10

Polynomial roots close one to another 11

Flat triangles 12

...

Was that part of your training ?

Improve this procedure

Find another algorithm
Keep the algorithm, but change all the REAL*8 to REAL*16
Change only some

Hasegawa compares the performance of the two first options on a
range of systems.

10Hasegawa (2003)
11Kahan, Langlois (2002)
12Shewshuck (1997), Kahan
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Near future

If you add together more than 1015 numbers of similar
magnitude, then you do need quad precision.

Don’t expect 100% hardware quad too soon (especially for
Grid@home-like computing)

Software quad or double-double can be reasonably fast if
managed by the compiler, or by yourself...

We would love to collaborate on that.

There is a lot of science to do in mathematic and algorithmic
approaches.

We would love to collaborate on that, too.
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Any questions ?

(I have asked all mine already)

26



Floating point hardware in 2005

IA32 instruction set (AMD and Intel x86 processors)

single, double (e11,m53) and double-extended (e15,m64)
one FP adder, one FP mult
IEEE-754 compliance difficult (and cornercases slow on Intel)
SSE2 adds two IEEE-754 compliant, double-precision FPUs

Power instruction set (Power/PowerPC processors)

single and double precision only
one or two FMA (Fused Multiply and Add)
IEEE-754 compliance easy (but downgrade FMA)

SPARC instruction set (processors by Sun, Fujitsu, ...)

single and double precision only
up to two adders and two multipliers (Fujitsu SPARC64 V)
IEEE-754 compliance easy

IA64 instruction set

single, double and double-extended (e=17, m=64)
Two FMA
intruction-wise precision and rounding control
IEEE-754 compliance easy27



Some recent processors

Cycle Integer units FP units
Design Time Nb a± b a× b Nb a± b a× b a÷ b

(ns) L/T L/T L/T L/T L/T

Alpha 21264 1.6 4 1/1 7/1 2 4/1 4/1 15/12

Athlon K6-III 0.71 6 1/1 1/1 3 3/1 3/2 20/17

Pentium III 1.0 3 1/1 4/1 1 3/1 5/2 32/32

Pentium IV 0.4 3 .5/.5 14/3 2 5/1 7/2 38/38

Itanium 2 1.25 4 1/1 18/1 4 4/1 4/1 soft

PowerPC 750 2.5 2 1/1 2-5/1 1 3/1 4/2 31/31

Sun UltraSparc III 0.95 4 3/1 4/1 2 4/1 4/1 24/17
L : latency, T : throughput, in cycles.
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The IEEE-754 standard for floating-point arithmetic

There exists a standard for FP, and it is a good one

It enables portability and provability of FP programs

It requires cooperation of processor, OS, language, compiler,
...

Standard compliance conflicts with performance, and is
probably disabled by default on your system

One drawback of the standard:

In the 70s, when people ran the same program on different
machines, they got widely different results.

They had to think about it and find what was wrong.

Now they get the same result, and therefore trust it.

We (computer scientists) have to educate them...

29



Architecture of FP adder and multiplier
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Software Carry-Save
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Interval arithmetic

Instead of computing f (x), compute an interval [fl , fu] which
is guaranteed to contain f (x)

operation by operation
use directed rounding modes
several libraries exist

This scheme does provide a guarantee

... which is often overly pessimistic
(“ Your result is in [−∞,+∞], guaranteed”)

Limit interval bloat by being clever (changing your formula)

... and/or using bits of arbitrary precision when needed (MPFI
library).

Therefore not a mindless scheme

Fair tradeoff between mindlessness and manual proof
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