Distinguishing D-Y Resonances @ the LHC
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A Z’-like state at the TeV scale in the Drell-Yan channel
Is a very common prediction in many BSM scenarios:

« Extended SUSY-GUT groups

« Sneutrinos in R-Parity violating SUSY

» String constructions/intersecting branes
» Little Higgs models

* Hidden Valley/Sector models

 Extra dimensions: gauge & graviton KK’s
 String excitations

« Twin Higgs models

» Unparticles

» Wimponia

The LHC will open up a window to look for such states very
soon... but how do we know what we've found??? 2
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There are many ways to categorize these models but, thinking
about their specific aspects, one can broadly classify them in the

following way: 0901.2125
x10°

» ‘canonical’ states oo
« ‘weakly-coupled’ states
* ‘wrong-spin’ states @
* ‘wrong resonance profile’ states

0 200 300 350 400

Me.ez-si{%e\f]
By ‘wrong’ | mean somewhat ‘unusual’ in comparison to, e.g., a
common, ordinary, ‘run-of-the-mill’ GUT-inspired Z' we’ve talked
about for many years.

Placing a newly discovered leptonic resonance into one of these
bins is the first step towards identifying the underlying theory..



As is well-known, the D-Y channel is a particularly clean one.
It is reasonable to expect that enough observables will exist
to allow for some restrictions on the underlying theory once
such new states are discovered and enough statistics are

available.
What so we know so far? The Tevatron has told us that Z’-like

states, if they exist, are either reasonably massive or are
weakly coupled to the SM...
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Z'— leptons is a very clean mode and may provide the first signal
of new physics to be observed at the LHC... even with Vs=10 TeV
and a relatively low integrated luminosity ~100-200 pb-?
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Z <5y Signal at Different Vs With Low Luminosity
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Eventually the Z' 50 reach will extend up to ~4-5 TeV and beyond

for ‘conventional’ GUT-inspired models once sufficient lumi
Is accumulated....
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Aside:

W’-like states are also important!

While we’re discussing Z'-like states, let’s not forget that there
can also be corresponding W'-like states that occur in several of
these same models...due to the missing E; from neutrinos in the
conventional Drell-Yan channel there is generally less information
available to analyze in these cases (un/ess the RH neutrinos are
heavy and their decays are also observed...)

We may further subdivide the Z’ classification above by whether
or not a corresponding charged state exists

The interplay of the measured W’ and Z' properties, mass ratios
etc., may provide critical information about the underlying mddel
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For ‘conventional W’ models’ the reach is even better....
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If a resonance, X, is observed in the Drell-Yan channel,
what do we want to know about it? Plenty!!

THE OBVIOUS BASICS

* lineshape: mass (M), cross section (o), width (I'), etc. -
Is it really a Breit-Wigner?? - Detector resolution issues!

e spin = ?7?7? Is it a graviton (S=2), a sneutrino (S=0) or a ‘gauge
boson’ (S=1), or ‘some combination’? — angular distribution
of leptons

« Determine the couplings of X to the fields of the SM. (Note if
X-vythen S # 1). Is there generation dependence?
This is important if we want to access the underlying
fundamental theory.

15



Unparticle Resonances : a non-Breit-Wigner example
Note!
I — XaqPy
18 — p22-4 + iX4PG

1 - -
Ff’fp(ﬂf;: Pr, + ¢trPr)fO*
[ 167°/%T(d + 1/2)
47 2sindr (2m)2T(2d)T(d — 1)

Py = [1,e" 42} when &<, =],

. 2 T
G = A2@-1)°,
| d=1is a standard gauge
1 boson.. but as d increases
the resonance shape
becomes distorted away

from the familiar B-W....

T I
Idealized Case

109 —

Can this distortion be
seen at the LHC?
arXiv:0809.4659 0
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What can we conclude??

With enough luminosity, ~100 fb-1, /fthe unparticle is sufficiently
strongly coupled to SM fields and //the effective dimension, d,
is sufficiently far from unity, it will be possible to state with some
confidence that the resonance does not have a B-W lineshape.

Due to detector resolution, it is possible that much of this
information will come from the interference regime below the
resonance peak as well as the tail of the distribution above it.

However, to say much more will require a more realistic
detector-level study.

18
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Careful!

hep-ph/0411094
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String resonances, e.g., may be a ‘combination’ of several spin
states being produced simultaneousl/y with a complex weighting
so that the angular distribution of the final state leptons may be
more complicated.... 20



If a spin-1, B-W object is found, what's next?
COUPLING DETERMINATIONS

How many independent couplings are there?? Even in the
simplest possible scenario, where the Z’ couples in a
generation-independent manner and [Q,,, SU(2),]=0, there

are 5 coupling constants to determine corresponding to the 5
SM fields Q,L,uc,d® & e¢. Are there enough observables at the
LHC to uniquely determine these 5 quantities independently??

Unfortunately, it appears the answer is likely ‘No’!!!

Remember also that we want to do this coupling determination
with as few additional assumptions as possible, e.g., allowing
for the possible decay of the Z' into non-SM final states.



What observables do we have to perform this analysis???

* o & I' independently are sensitive to decay assumptions but
the product oI” ~ is not. This product can be determined at

the ~ 5-10% uncertainty level at the LHC with high lumi for
conventional models....

Table 1.2, Results on oy and oy % 'z, for all studied models from ATLAS.
Here one compares the input values from the generator with the reconstructed
values obtained after full detector simulation.

o () of(fh) o X Trec (th.GeV)
SSM TE.4+0.8 TH.54+1.8 A550+£137
P 22.64+0.3 22. 706 166+£15
M=15TeV Y 47.540.6 45.441.3 =004+47
' 26.240.3 24.6+0.6 212+16
LR 085406 51.1+1.3 1405472
M — 4 TeV SSM 0 0.16x0.002  0.160.004 1941
KK 2.210.07 2.21+0.12 331135

22



* Arg both on- & off- resonance

On-peak AZ2"™ and 6=, 1 TeV CMS
Forward backward asymmetry measurement
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ATLAS/CMS simulations indicate these can be reasonably
well measured at the LHC: 23



ATLAS

Tahble 1.3. Measured on-peak Apg for all studied models in the central mass
bin from ATLAS. Here the raw walue obtained before dilution corrections is

labeled as *Observed’.
Model | J £(76-1) | Generation Observed Corrected On- & off—peak
1.5 TeV . ,
SSM 100 T0.088 £ 0.013 | 10060 £ 0.022 | 10108 +0.027 measurements’ of
X 100 —0.38G £ 0.013 | —0.144 + 0.025 | —0.361 +0.030 .
n 100 —0.112 £ 0.010 | —0.067 £ 0.032 | —0.204 + 0.030 AFB by ATLAS with
7 300 —0.000 £ 0.011 | —0.050 £ 0.018 | —0.120 £ 0.022 ;
s 100 +0.008 £ 0.020 | —0.056 £ 0.033 | —0.070 £ 0.042 |al’ge Integ rated
U 300 F0.010 £ 0.011 | —0.010 £ 0.010 | —0.011 £ 0.024 . e
LR 100 +0.177T £ 0.016 | +0.100 + 0.026 | +0.186 + 0.032 |um|nOS|t|eS
1TeV
SSA 10000 +0.057 £ 0.023 | —0.001 + 0.040 | +0.078 £ 0.051
KK 500 F0.401 £ 0.028 | +0.180 £ 0.057 | +0.457 L0073
Note the large errors
Table 1.4. Measured off peak, 0.8 < Af < 1.4 TeV, Ap g for all studied models

from ATLAS using the same nomenclature as above.

in the off-peak values

Model Cifeh) Creneration Observed Corrected icti
Model 1] | | | due to small statistics
S5M 100 +0.077 £ 0,025 | +0.086 £ 0.038 | +0.171 £0.045
X 100 +0.440 + 0.019 | +0.180 + 0.032 | 4+0.354 4+ 0,030
n 100 +0.503 + 0.016 | +0.257 £ 0.033 | 40.561 4 0.030
B 100 +0.673 £ 0.012 | +0.204 + 0.033 | 4+0.568 £0.039
LR 100 +0.303 £ 0.022 | 4+0.180 £ 0.033 | 40.327 £ 0.040

24



- Rapidity distributions

Shape of the different quark fractions

M. Dittmar et al.

Rapidity distribution
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Fig. 1.13.

Comparison of Rz values determined at the generator level and after detector

simulation by ATLAS,




To first approximation these observables really on/y probe
the 4 coupling combinations
My o ) Carena et al.
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which can be reasonably well determined in a simultaneous fit
...even including NLO QCD contributions 20



Other Possible Z' Observables For
Coupling Determinations

L \ /
i ] ;//
« Z’ »tt polarization measurement /
e Associated on-shell Z’ + (W,Z,y) production .. =~ T
* Rare Decays: Z’ - ff'V(V=W,Z; f=1,v)
° Z’ —_ WW, Zh mé_ 1::: _ 8 (deg)
«Z’ >bb, tt

Tw

These have not been studied in any detail for the LHC but

all will require quite high luminosity even for a light Z’ -



Generation-Dependent Couplings

* These are common, e.g., for KKs in ED setups (i.e., RS)

* It is very likely that e-p universality will be reasonably well
satisfied by any new resonances but will be easily tested.

* The real issue is with the models which treat the third
generation, i.e., t’s, differently. These are more difficult to
see due to both reduced efficiencies as well as the larger

SM backgrounds

* |t is important to measure how badly universality is violated,
Is it ~10% or is it O(1) as these can possibly point to very

different classes of underlying models. -
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studied the case of
collected data

Various models predict a
wide range of values for
the ratio of 3" to 1st gen-
eration branching fractions..
Both enhancements and
suppressions are possible.

LHC studies indicate

S

ATLAS

| i
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Selection [[ Signal | 13 [ Drell-Yan | Multijet | Wjet |
Trige 1356, 2136000 [ 2.3950 107 | 419000 10° | 6.69400 10°
Lepic G5, 1 50000 1240000 101 1.OR230 10% 1 2000

T selection 308, TRIR. 145680 BN NE ] 4587

Opposite charge 315, 2498, 5306 23240 I7I.
Er =30 GeV 270, 2040, 25602 R3S 162,
= A5 GeW 203.2 02,4 ARA.O Eieliwt HAR
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Paclo SPAGHOLO

Once an excess is observed,
the collinear approximation
helps to measure the mass

of the resonance

that Z' to 1 pairs is not
always so easy but lots
of statistics is helpful.
The relative branching
fraction for this mode
may then be difficult to
determine for heavy29

. states



Weakly Coupled (to the SM) Resonances

Lighter DY resonant states may exist with masses below ~1 TeV
that are so weakly coupled that they get missed at the Tevatron
due to poor S/VB but can still can show up at the LHC...

0901.2125
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» Generally weakly coupled - narrow with small cross section,
e.g., 2" KKs in UED, Stueckelberg Z’ or Wimponia

* ‘Normally’ coupled to a hidden sector - ‘standard’ width but
small cross section, e.g., Hidden Valley models

In many cases the SM couplings are induced by either mass
mixing via Higgs fields, in which case the resonance looks like a
SSM Z' with scaled-down couplings, or via gauge kinetic mixing:

| | 1 - SIN Y -
* - 7 BpE o T L
LK —.!kua — 1 ..F.'|.!_|..|.|.---.F _L."'r}w..."'r 2

.-"” BHY

The coupling is then ~ gY sin g, i.e., weakly coupled to
hypercharge. This also happens for the Stueckelberg Z'.
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Events,/Bin/300 fb™"

If the coupling is not too small the Z’ will still be easily seen
provided it is not too massive..
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For low lumi the situation is much more difficult especially if
the dilepton mass resolution is poor..

1000 — — 1000 — B
soof- SSM 1% = soof- SSM 3% -

100 |

50 F

10 -

NUMBER/BIN/10 fb™"

NUMBER/BIN/10 fb~!

140( 1401

SSM with each lower histogram coupling %2 of the previous one.
One can argue whether or not the 1/16 case is visible assuming
this lumi & a 1% mass resolution (no), but it clearly is not in tfgge
3% case.



EVENTS/BIN/100 fb~*

EVENTS/BIN /300 fb*
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Looking at this another way..

at high luminosity rather
small values of scaled SSM
couplings can be accessible
if the Z’ is not too heavy.

But at some point we just
run out of steam
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The problem can much more severe for even smaller couplings
or for heavier states...

hep-ph/0606183

0.16

0.12
—_—HC
- ILC-500
0.08 - Tevatron
- LEP-206

0.04

.

200 400 600 800 1000
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FIG. 4: Detection plot of estimated 5o confidence level of X -
boson that kinetically mixes with hypercharge. Detection for
Tevatron (8fb— 1), LHC (100fb— 1), LEP (/s = 206 GeV and
725 pb~ 1), and ILC (/s = 500 GeV and 500 fb—!) can occur

at points above their respective lines.
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..and similarly..
hep-ph/0606249
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Indirect Z' Searches at LHC??

Can we observe a Z' below threshold at the LHC by ‘contact-
interaction-like’ deviations in the cross section?? No statistics

there to see any effect!

Events/bin/300 tb~*

| | | ] ]
- SM background ~ reach SSM 14 TeV
20— ’ l —
J_L At most a few extra
[ events below the
1.0 _ ]
Y peaks ]
i E
0.2 o ol
0‘1 || ﬂ: 1 l7—|‘ 1 :l‘ 1 1 1 1 1 1 I 1 I_III
3000 4000 5000 8000 7000

M (GeV)



EVENTS /BIN /30 fb~!

W’ Coupling Helicity

* W’ are usually chiral so the most critical issue is to determine
the handedness of its couplings to SM fermions

 This cannot be done on the ‘peak’ of the transverse mass
distribution BUT can be done in the W-W’ interference
region given enough integrated luminosity
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A W’ with small couplings will also have some visibility issues...
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LHeC

Polarized e*p collisions in the 1.5< Vs < 2 TeV range...
Can these be used to get new coupling info on the Z' while we
wait for a linear collider? Is there any Z' coupling sensitivity?

Technique: form polarization asymmetries to reduce systematics
& PDF uncertainties. Apply (x,y,Q?) cuts to increase sensitivity
& then integrate over the N N

do(er ) — do(ep)

remaining X range, plotvsy. AT — it
J 9e, P y da:r{ﬁf] + dr:r[eﬁ}

These asymmetries are found

to have a completely different do(er ) — do(ef g)

( —
dependence on the Z' couplings ol do(ep p) + do(ef p)
than do the Drell-Yan
observables at the LHC itself ~ doleg ) —do(efp)
Bl,i" — _ +
dolep p) +dolen ) 40



_ Example: M, = 1.2 TeV
= T T 7 _,—_l—'i withep@\/s=1.5TeV
i : ‘data’=SM prediction

ool / t N Need beam polarization
[ ssMm R & high luminosity
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o " o8 2 We'll use GUT-inspired
N models for demonstration
Ly J purposes
0.40_—

N

L~ |
st T 1 1 71 I I T_j N
Clearly these variables
show substantial
coupling sensitivity
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Different asymmetries show a wide range of various sensitivities
to Z' couplings but only 4 of them are independent... 2
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00

Z’ search reach at a /s=0.5 TeV(a) or 1 TeV(b) ILC as a function of the

integrated luminosity without(solid) or with(dashed) 60% positron beam polarization

for models 1/(green), y(red), SSM(magenta) and LRM with x = 1(blue).
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ILC Indirect Z' Coupling Determinations
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Summary

* D-Y resonances come in many shapes & sizes but should be
easy to spot at the LHC if they are not too heavy or if their
couplings to the SM are not too small

« We need to differentiate states with various (combinations of)
spins and to identify non-BW resonance line shapes.

* Insufficient info available to uniquely determine Z’' couplings?

* More detailed studies of narrow states are required at the
detector level to understand what is & is not observable &
what properties can be measured.

* The interplay of results from Z'-like & W’-like states may be
important in identifying the underlying theory
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Summary, Part I

« The LHeC may provide useful coupling info depending upon
the Z' mass and the specifics of the machine design:
collision energy, luminosity & availability of beam polarization

* Indirect Z’ searches at LHC are not likely to be useful

* The ILC may play an important role in coupling determinations
provided the Z’ is not too heavy, M ~3-4+'s, with indirect search
sensitivity in the ~6-12+'s range.

« With CLIC it may be possible to sit on the resonance peak &
extract all of the coupling information with high precision as
was done by LEP/SLC. The discovery of a 2-3 TeV resonance
at the LHC would be a very strong motivation to go as quickly
as possible to this energy range. 46



BACKUP SLIDES



0 :_ _:
] R | 1 ]
10" 1000 1500 2000 2500 3000
M, (GeV)
T'I_—i T T H
D
8 | ATLAS .
2107} A 1
(%]
g - !
g 10%F . ﬁ ;
-
a 4O Weeeay
n O Wopv
10+ & 0 combined i
8 4 W ev (systematics)
B W' v (systematics)
g ® combined (systematics)
1 ’) i i
1 2 3
M(W’) [TeV]

CMS Collaboration

Luminosity [pb]

Luminosity (fb™)

=k
[=]
W

=k
[=]
]

107

1072

10*

10°

10%

10

\

g‘ T I LI T T T T T T T 17T I LI L |

P er‘r

p =

§

N

1 2 3 4 5 L

M (TeV/c?)

Discovery Sensitivity

MS PrEIilminary _I - = W. S¥S. errors

WO. SYS. errors

1 2 3 4

m,, [TeV]

5

18



Z’ bounds can also arise from precision measurements, e.g.,
APV (0902.0335)

APV Lower Bound (GeV)
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W' - Heavy RH Neutrinos
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Fig. 3. Sum of the transverse energies of the two muons and two leading jets (St) (a), and
dilepton invariant mass (b) for backgrounds and two signal points in the search for W' bosons
decaying following the chain W' — uNgp,Ng — pW '™ W'* — gq’. The signal points LRSM_18_3
and LRSM_15_5 correspond to masses my,» = 1800 GeV, my,, = 300 GeV and my,» = 1500 GeV,
my = 500 GeV respectively.
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