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The evolution of the strong coupling constant αs from MZ to the GUT scale is pre-

sented, involving three-loop running and two-loop decoupling. Accordingly, the two-

loop transition from the MS- to the DR-scheme is properly taken into account. We

find that the three-loop effects are comparable to the experimental uncertainty for αs.

1 Introduction

The observation that the gauge couplings of the strong, electromagnetic and weak interaction
tend to unify in the Minimal Supersymmetric Standard Model (MSSM) at a high energy
scale µGUT ≃ 1016 GeV and the consistent predictions made for SM parameters, such as
the top quark mass and the ratio of the bottom quark to the tau lepton masses, using
constraints on the Yukawa sector of SUSY-GUT models, brought SUSY in the center of the
phenomenological studies.

Nevertheless, SUSY is only an approximate symmetry in nature and several scenarios for
the mechanism of SUSY breaking have been proposed. A possibility to constrain the type
and scale of SUSY breaking is to study, with very high precision, the relations between the
MSSM parameters evaluated at the electroweak and the GUT scales. The extrapolation over
many orders of magnitude requires high-precision experimental data at the low energy scale.
A first set of precision measurements is expected from the CERN Large Hadron Collider
(LHC) with an accuracy at the percent level. A comprehensive high-precision analysis can be
performed at the International Linear Collider (ILC), for which the estimated experimental
accuracy is at the per mill level. In this respect, it is necessary that the same precision is
reached also on the theory side in order to match with the data [2]. Running analyses based
on full two-loop renormalization group equations (RGEs) [3, 4] for all parameters and one-
loop threshold corrections [5] are currently implemented in the public programs ISAJET [6],
SOFTSUSY [7], SPHENO [8], SuSpect [9]. The agreement between the different codes is in
general within one percent [10]. A first three-loop running analysis, based, however, only on
one-loop threshold effects, was carried out in Ref. [11].

In this talk, we report on the evaluation of the strong coupling αs in MSSM, based on
three-loop RGEs [12] and two-loop threshold corrections [13]. On the one hand, the three-
loop corrections reduce significantly the dependence on the scale at which heavy particles
are integrated out [14] and on the other hand, they are essential for phenomenological
studies, because they are as large as, or greater than, the effects induced by the current
experimental accuracy of αs(MZ) [15]. Additionally, we compare the predictions obtained
within the above mentioned approach with those based on the leading-logarithmic (LL)
approximation suggested in Ref. [2].
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2 Evaluation of αs(µGUT) from αs(MZ)

The aim of this study is to compute αs at a high-energy scale µ ≃ O(µGUT), starting from
the strong coupling constant at the mass of the Z boson MZ . We denote this parameter

α
MS,(5)
s (MZ) to specify that the underlying theory is QCD with five active flavours and MS

is the renormalization scheme . The value of αs(µGUT) is the strong coupling constant in
a supersymmetric theory, renormalized in the DR-scheme. The relation between the two
parameters requires the consistent combination of the following ingredients.

• The renormalization group evolution of αs.
The energy dependence of the strong coupling constant is governed by the RGE. In
QCD with nf quark flavours, the β function is known through four loops both in the
MS [16, 17] and the DR-scheme [18]. In SUSY-QCD, the β function has been evaluated
in the DR-scheme through three loops [12].

• The transition from the MS- to the DR-scheme.
For the three-loop running analysis we are focusing on, one needs to evaluate the
dependence of αs values in the DR-scheme from those in MS-scheme through two
loops [18]
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where αDR
s ≡ α

DR,(nf )
s (µ) and αMS

s ≡ α
MS,(nf )
s (µ). αe ≡ α

(nf )
e (µ) is one of the so-called

evanescent coupling constants that occur when DR is applied to non-supersymmetric
theories (QCD in this case). In particular, it describes the coupling of the 2ε-dimensional
components (so-called ε-scalars) of the gluon to a quark.

• The transition from five-flavour QCD to the full SUSY theory.
For mass independent renormalization schemes like MS or DR, the decoupling of heavy
particles has to be performed explicitely. In practice, this means that intermediate ef-
fective theories are introduced by integrating out the heavy degrees of freedom. One
may separately integrate out every particle at its individual threshold (“step approx-
imation”), a method suited for SUSY models with a severely split mass spectrum.
But the intermediate effective theories with “smaller” symmetry raise the problem of
introducing new couplings, each governed by its own RGE. To overcome this difficulty,
for SUSY models with roughly degenerate mass spectrum at the scale M̃ , one can
consider the MSSM as the full theory that is valid from the GUT scale µGUT down to
M̃ , which we assume to be around 1TeV. Integrating out all SUSY particles at this
common scale, one directly obtains the SM as the effective theory, valid at low ener-
gies. The transition between the two theories can be done at an arbitrary decoupling
scale µ:

α
DR,(nf )
s (µ) = ζ

(nf )
s αDR,(full)

s (µ) , α
(nf )
e (µ) = ζ

(nf )
e α(full)

e (µ) . (2)

ζs and ζe depends logarithmically on the scale µ, which is why one generally chooses
µ ∼ M̃ . In Eq. (2), nf = 6 means that only the SUSY particles are integrated out,
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while for nf = 5 at the same time the top quark is integrated out. This procedure,
also known as “common scale approach” [19], is implemented in most of the present
codes computing the SUSY spectrum [8, 7, 9] by applying the one-loop approximation
of Eq. (2) and setting nf = 5 and µ = MZ .

In the following, we will assume that QCD is obtained by integrating out the heavy
degrees of freedom (squarks and gluinos) from SUSY-QCD. Due to SUSY, the evanescent
couplings in SUSY-QCD can be related to the gauge coupling αs as follows:

α(full)
e (µ) = αDR,(full)

s (µ) . (3)

The evanescent couplings in nf -flavour QCD, i.e. α
(nf )
e are then obtained by decoupling

relations analogous to Eq. (2).

For the evaluation of α
DR,(full)
s (µGUT) from α

MS,(nf )
s (µMZ

) we propose the following
method:

α
MS,(nf )
s (MZ)

(i)
→ α

MS,(nf )
s (µdec)

(ii)
→ α

DR,(nf )
s (µdec)

(iii)
→ αDR,(full)

s (µdec)
(iv)
→ αDR,(full)

s (µGUT) .

(4)

The individual steps require: (i) β(αs) in QCD through three loops, (ii) the MS–DR relation
through order α2

s, (iii) decoupling of the SUSY particles through order α2
s, and (iv) β(αs)

through three loops in SUSY-QCD. The advantage of this procedure as compared to a multi-
scale approach is that the RGEs are only one-dimensional and that for αe one can apply
Eq. (2).

2.1 Numerical results
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Figure 1: αs(µGUT) as a function of µdec.

The result for αDR
s (µGUT = 1016 GeV),

obtained using MZ = 91.1876 GeV and

mt = 170.9±1.9 GeV , αMS
s (MZ) = 0.1189 ,

M̃ = mq̃ = mg̃ = 1000 GeV as input pa-
rameters is shown if Figure 1. The dot-
ted, dashed and solid line are based on
Eq. (4), where n-loop running is combined
with (n − 1)-loop decoupling, as it is re-
quired for consistency (n = 1, 2, 3, respec-
tively). We find a nice convergence when
going from one to three loops, with a very
weakly µdec–dependent result at three-loop
order. For comparison, we show the re-
sult (the dash-dotted line) obtained from
the formula given in Eq. (21) of Ref [2]. It
corresponds to the resummed one-loop contributions originating from both the change of
scheme and the decoupling of heavy particles. However, the difference between our three-loop
result with two-loop decoupling (upper solid line) and the one-loop formula given in Ref. [2]
exceeds the experimental uncertainty by almost a factor of four for sensible values of µdec.
This uncertainty is indicated by the hatched band, derived from δαs(MZ) = ±0.001 [15].
The formulae of Ref. [2] should therefore be taken only as rough estimates.
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Figure 2: αs(µGUT) as a function of M̃ .

In Figure 2 we show αs(µGUT) as a
function of M̃ where µdec = M̃ has been
adopted. Dotted, dashed and full curve cor-
respond again to the one-, two- and three-
loop analysis and the uncertainty form
αs(MZ) is indicated by the hatched band.
One observes a variation of 10% as M̃ is
varied between 100 GeV and 10 TeV. This
shows that the actual SUSY scale can sig-
nificantly influence the unification, respec-
tively, the non-unification behaviour of the
three couplings at the GUT scale.

3 Conclusions

We have used recent three- and four-loop

results for the β functions, and the decoupling coefficients in order to derive αDR
s (µGUT)

from αMS
s (MZ) at three- and four-loop level, respectively.

It turns out that the three-loop terms are numerically significant. The dependence on
where the SUSY spectrum is decoupled becomes particularly flat in this case. The theoretical
uncertainty is expected to be negligible w.r.t. the uncertainty induced by the experimental
input values. In consequence, we recommend that phenomenological studies concerning the
implications of low energy data on Grand Unification should be done at three-loop level.
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